Abstract
In this paper, we study quasiconcavity properties of solutions of Dirichlet problems related to modified nonlinear Schrödinger equations of the type$$-{\rm div}\big(a(u) \nabla u\big) + \frac{a'(u)}{2} |\nabla u|^2 = f(u) \quad \hbox{in $\Omega$},$$where $\Omega$ is a convex bounded domain of $\mathbb{R}^N$.In particular, we search for a function $\varphi:\mathbb{R} \to \mathbb{R}$, modeled on $f\in C^1$ and $a\in C^1$, which makes $\varphi(u)$ concave. Moreover, we discuss the optimality of the conditions assumed on the source.
Citation
Nouf M. Almousa. Jacopo Assettini. Marco Gallo. Marco Squassina. "Concavity properties for quasilinear equations and optimality remarks." Differential Integral Equations 37 (1/2) 1 - 26, January/February 2024. https://doi.org/10.57262/die037-0102-1
Information