January/February 2023 A new deduction of the strict sub-additive inequality and its application: Ground state normalized solution to Schrödinger equations with potential
Xuexiu Zhong, Wenming Zou
Differential Integral Equations 36(1/2): 133-160 (January/February 2023). DOI: 10.57262/die036-0102-133

Abstract

In the present paper, we prove the existence of solutions $(\lambda, u)\in \mathbb R\times H^1(\mathbb R^N)$ to the following elliptic equations with potential $$\displaystyle -\Delta u+(V(x)+\lambda)u=g(u)\;\hbox{in}\;\mathbb R^N, $$ satisfying the normalization constraint $$ \int_{\mathbb R^N}u^2=a>0, $$ which is deduced by searching for solitary wave solution to the time-dependent nonlinear Schrödinger equations. Besides the importance in the applications, not negligible reasons of our interest for such problems with potential $V(x)$ are their stimulating and challenging mathematical difficulties. We develop an interesting way based on iteration and give a new proof of the so-called ``sub-additive inequality", which can simplify the standard process in the traditional sense. Under some mild assumption on the potential $V(x)$ and some other suitable assumptions on $g$, we can obtain the existence of ground state solution for prescribed $a > 0$.

Citation

Download Citation

Xuexiu Zhong. Wenming Zou. "A new deduction of the strict sub-additive inequality and its application: Ground state normalized solution to Schrödinger equations with potential." Differential Integral Equations 36 (1/2) 133 - 160, January/February 2023. https://doi.org/10.57262/die036-0102-133

Information

Published: January/February 2023
First available in Project Euclid: 12 September 2022

Digital Object Identifier: 10.57262/die036-0102-133

Subjects:
Primary: 35B09 , 35C08 , 35J20 , 35Q51 , 35Q55

Rights: Copyright © 2023 Khayyam Publishing, Inc.

JOURNAL ARTICLE
28 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.36 • No. 1/2 • January/February 2023
Back to Top