November/December 2022 Multiplicity of solutions for the degenerate Kirchhoff system with critical nonlinearity on the Heisenberg group
Shiqi Li, Sihua Liang
Differential Integral Equations 35(11/12): 749-765 (November/December 2022). DOI: 10.57262/die035-1112-749

Abstract

In this paper, we deal with the multiple solutions for the degenerate Kirchhoff system with critical nonlinearity on the Heisenberg group: \begin{equation*} \begin{cases} \displaystyle -M \Big (\int_{\Omega}|\nabla_Hu|^{2}d\xi\Big )\Delta_{H} u + \phi_{1}|u|^{q-2} u=\lambda|u|^{2} u+F_{u}(\xi, u, v) & \text { in } \Omega, \\[8pt] \displaystyle -M\Big (\int_{\Omega}|\nabla_Hv|^{2}d\xi\Big )\Delta_{H} v + \phi_{2}|v|^{q-2} v=\lambda|v|^{2} v+F_{v}(\xi, u, v)& \text { in } \Omega, \\ \displaystyle -\Delta_{H} \phi_{1}=|u|^q, \quad-\Delta_{H} \phi_{2}=|v|^q & \text { in } \Omega, \\ \displaystyle \phi_{1}=\phi_{2}=u = v =0& \text { on } \partial \Omega,\end{cases} \end{equation*} where $\Delta_{H}$ is the Kohn-Laplacian, $1 < q < 2$, ${\lambda}$ is a positive real parameter, and $F=F(\xi,u,v),F_{u}=\frac{\partial F}{\partial u}$, $F_{v}=\frac{\partial F}{\partial v}$. Under some suitable assumptions on the Kirchhoff function $M$ and $F$, together with the symmetric mountain pass theorem and the concentration-compactness principles for classical Sobolev spaces on the Heisenberg group, we prove the existence and multiplicity of nontrivial solutions for the above problem in the degenerate cases on the Heisenberg group. The result of this paper extends or else completes recent papers and is new in several directions for the critical Kirchhoff-Poisson systems on the Heisenberg group.

Citation

Download Citation

Shiqi Li. Sihua Liang. "Multiplicity of solutions for the degenerate Kirchhoff system with critical nonlinearity on the Heisenberg group." Differential Integral Equations 35 (11/12) 749 - 765, November/December 2022. https://doi.org/10.57262/die035-1112-749

Information

Published: November/December 2022
First available in Project Euclid: 9 August 2022

Digital Object Identifier: 10.57262/die035-1112-749

Subjects:
Primary: 346E35 , 35J20 , 35R03

Rights: Copyright © 2022 Khayyam Publishing, Inc.

Vol.35 • No. 11/12 • November/December 2022
Back to Top