September/October 2020 A Discrete Stochastic Interpretation of the Dominative $p$-Laplacian
Karl K. Brustad, Peter Lindqvist, Juan J. Manfredi
Differential Integral Equations 33(9/10): 465-488 (September/October 2020). DOI: 10.57262/die/1600135322

Abstract

We build a discrete stochastic process adapted to the (nonlinear) dominative $p$-Laplacian $$ \mathcal{D}_p u(x):=\Delta u + (p-2)\lambda_{N} , $$ where $\lambda_{N}$ is the largest eigenvalue of $D^2 u$ and $p > 2$. We show that the discrete solutions of the Dirichlet problems at scale $\varepsilon$ tend to the solution of the Dirichlet problem for $\mathcal{D}_p$ as $\varepsilon\to 0$. We assume that the domain and the boundary values are both Lipschitz.

Citation

Download Citation

Karl K. Brustad. Peter Lindqvist. Juan J. Manfredi. "A Discrete Stochastic Interpretation of the Dominative $p$-Laplacian." Differential Integral Equations 33 (9/10) 465 - 488, September/October 2020. https://doi.org/10.57262/die/1600135322

Information

Published: September/October 2020
First available in Project Euclid: 15 September 2020

zbMATH: 07250703
MathSciNet: MR4149517
Digital Object Identifier: 10.57262/die/1600135322

Subjects:
Primary: 35J60 , 35J92 , 49L20 , 91A15

Rights: Copyright © 2020 Khayyam Publishing, Inc.

Vol.33 • No. 9/10 • September/October 2020
Back to Top