Translator Disclaimer
May/June 2019 Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case
Jiayun Lin, Ziheng Tu
Differential Integral Equations 32(5/6): 249-264 (May/June 2019).

Abstract

The blow up problem of the semilinear scale-invariant damping wave equation with critical Strauss type exponent is investigated. The life span is shown to be: $T(\varepsilon)\leqslant \exp(C\varepsilon^{-p(p-1)})$ when $p=p_S(n+\mu)$ for $0 < \mu < \frac{n^2+n+2}{n+2}$. This result completes our previous study [9] on the sub-Strauss type exponent $p < p_S(n+\mu)$. Different from the work of M. Ikeda and M. Sobajima [5], we construct the suitable test function by introducing the modified Bessel function of second type. We note this method can be easily extended to some other scale-invariant wave models even with the Laplacian of variable coefficients.

Citation

Download Citation

Jiayun Lin. Ziheng Tu. "Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case." Differential Integral Equations 32 (5/6) 249 - 264, May/June 2019.

Information

Published: May/June 2019
First available in Project Euclid: 3 April 2019

zbMATH: 07088830
MathSciNet: MR3938339

Subjects:
Primary: 35B44, 35L71

Rights: Copyright © 2019 Khayyam Publishing, Inc.

JOURNAL ARTICLE
16 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.32 • No. 5/6 • May/June 2019
Back to Top