Translator Disclaimer
March/April 2015 Regularity of stagnation-point form solutions of the two-dimensional Euler equations
Alejandro Sarria
Differential Integral Equations 28(3/4): 239-254 (March/April 2015).

Abstract

A class of semi-bounded solutions of the two-dimensional incompressible Euler equations, satisfying either periodic or Dirichlet boundary conditions, is examined. For smooth initial data, new blowup criteria in terms of the initial concavity profile is presented and the effects that the boundary conditions have on the global regularity of solutions is discussed. In particular, by deriving a formula for a general solution along Lagrangian trajectories, we describe how periodicity can prevent blow-up. This is in opposition to Dirichlet boundary conditions which, as we will show, allow for the formation of singularities in finite time. Lastly, regularity of solutions arising from non-smooth initial data is briefly discussed.

Citation

Download Citation

Alejandro Sarria. "Regularity of stagnation-point form solutions of the two-dimensional Euler equations." Differential Integral Equations 28 (3/4) 239 - 254, March/April 2015.

Information

Published: March/April 2015
First available in Project Euclid: 4 February 2015

zbMATH: 1363.35059
MathSciNet: MR3306561

Subjects:
Primary: 35B10, 35B44, 35B65, 35Q35

Rights: Copyright © 2015 Khayyam Publishing, Inc.

JOURNAL ARTICLE
16 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.28 • No. 3/4 • March/April 2015
Back to Top