November/December 2014 Two Stefan problems for a non-classical heat equation with nonlinear thermal coefficients
Adriana C. Briozzo, María Fernanda Natale
Differential Integral Equations 27(11/12): 1187-1202 (November/December 2014). DOI: 10.57262/die/1408366789

Abstract

The mathematical analysis of two one-phase unidimensional and non-classical Stefan problems with nonlinear thermal coefficients is obtained. Two related cases are considered, one of them has a temperature condition on the fixed face $x=0$ and the other one has a flux condition of the type $-q_{0}/\sqrt{t }$ $ ( q_{0}>0 ) .$ In the first case, the source function depends on the heat flux at the fixed face $x=0,$ and in the other case it depends on the temperature at the fixed face $x=0. $ In both cases, we obtain sufficient conditions in order to have the existence of an explicit solution of a similarity type, which is given by using a double fixed point.

Citation

Download Citation

Adriana C. Briozzo. María Fernanda Natale. "Two Stefan problems for a non-classical heat equation with nonlinear thermal coefficients." Differential Integral Equations 27 (11/12) 1187 - 1202, November/December 2014. https://doi.org/10.57262/die/1408366789

Information

Published: November/December 2014
First available in Project Euclid: 18 August 2014

zbMATH: 1289.34166
MathSciNet: MR3250759
Digital Object Identifier: 10.57262/die/1408366789

Subjects:
Primary: 35R35 , 45G10 , 80A22

Rights: Copyright © 2014 Khayyam Publishing, Inc.

Vol.27 • No. 11/12 • November/December 2014
Back to Top