November/December 2014 A sharp estimate for the Jacobian equation
Olivier Kneuss
Differential Integral Equations 27(11/12): 1013-1024 (November/December 2014). DOI: 10.57262/die/1408366782

Abstract

In this paper we show the existence of $\varphi$ satisfying the estimate $$ \|\varphi-\operatorname{id}\|_{C^{r+1,\alpha}} \leq C\|g\|_{C^{r+1,\alpha}}\|f-g\|_{C^{r,\alpha}} $$ together with the Jacobian equation $$ g\circ \varphi \det\nabla \varphi=f. $$ We, moreover, prove that the previous estimate is sharp.

Citation

Download Citation

Olivier Kneuss. "A sharp estimate for the Jacobian equation." Differential Integral Equations 27 (11/12) 1013 - 1024, November/December 2014. https://doi.org/10.57262/die/1408366782

Information

Published: November/December 2014
First available in Project Euclid: 18 August 2014

zbMATH: 1299.35099
MathSciNet: MR3263079
Digital Object Identifier: 10.57262/die/1408366782

Subjects:
Primary: 35F30

Rights: Copyright © 2014 Khayyam Publishing, Inc.

Vol.27 • No. 11/12 • November/December 2014
Back to Top