Translator Disclaimer
July/August 2012 On the support of solutions to the NLS-KdV system
José Jiménez Urrea
Differential Integral Equations 25(7/8): 611-618 (July/August 2012).

Abstract

It is shown that if $(u,v)$ is a sufficiently smooth solution of the initial value problem associated with the Schrödinger-Korteweg-de Vries system such that there exist $a, b\in\mathbb{R}$ with $\operatorname{supp}u(t_j)\subseteq(a,\infty)$ (or$(-\infty,a)$) and $\operatorname{supp}v(t_j)\subseteq(b,\infty)$ (or $(-\infty,b)$), for $j=1,2 \ (t_1\neq t_2)$, then $u\equiv v\equiv0$.

Citation

Download Citation

José Jiménez Urrea. "On the support of solutions to the NLS-KdV system." Differential Integral Equations 25 (7/8) 611 - 618, July/August 2012.

Information

Published: July/August 2012
First available in Project Euclid: 20 December 2012

zbMATH: 1265.35305
MathSciNet: MR2975685

Subjects:
Primary: 35Q53, 35Q55

Rights: Copyright © 2012 Khayyam Publishing, Inc.

JOURNAL ARTICLE
8 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.25 • No. 7/8 • July/August 2012
Back to Top