2008 A priori estimates for infinitely degenerate quasilinear equations
Cristian Rios, Eric T. Sawyer, Richard L. Wheeden
Differential Integral Equations 21(1-2): 131-200 (2008). DOI: 10.57262/die/1356039062

Abstract

We prove a priori bounds for derivatives of solutions $w$ of a class of quasilinear equations of the form \begin{equation*} \mathrm {div} \mathcal{A} ( x,w ) \nabla w+\vec{\gamma} ( x,w ) \cdot \nabla w+f ( x,w ) =0, \end{equation*} where $x \! = \! ( x_{1},\dots ,x_{n} ) $, and where $f$, $\vec{\gamma} = ( \gamma^{i} ) _{1\leq i\leq n}$ and $\mathcal{A}= ( a_{ij} ) _{1\leq i,j\leq n}$ are $\mathcal{C}^{\infty }$. The rank of the square symmetric matrix $\mathcal{A}$ is allowed to degenerate, as all but one eigenvalue of $\mathcal{A}$ are permitted to vanish to infinite order. We estimate derivatives of $w$ of arbitrarily high order in terms of just $w$ and its first derivatives. These estimates will be applied in a subsequent work to establish existence, uniqueness and regularity of weak solutions of the Dirchlet problem.

Citation

Download Citation

Cristian Rios. Eric T. Sawyer. Richard L. Wheeden. "A priori estimates for infinitely degenerate quasilinear equations." Differential Integral Equations 21 (1-2) 131 - 200, 2008. https://doi.org/10.57262/die/1356039062

Information

Published: 2008
First available in Project Euclid: 20 December 2012

zbMATH: 1224.35149
MathSciNet: MR2479665
Digital Object Identifier: 10.57262/die/1356039062

Subjects:
Primary: 35J70
Secondary: 35B45 , 35B65 , 35J62

Rights: Copyright © 2008 Khayyam Publishing, Inc.

Vol.21 • No. 1-2 • 2008
Back to Top