Abstract
We prove a priori bounds for derivatives of solutions $w$ of a class of quasilinear equations of the form \begin{equation*} \mathrm {div} \mathcal{A} ( x,w ) \nabla w+\vec{\gamma} ( x,w ) \cdot \nabla w+f ( x,w ) =0, \end{equation*} where $x \! = \! ( x_{1},\dots ,x_{n} ) $, and where $f$, $\vec{\gamma} = ( \gamma^{i} ) _{1\leq i\leq n}$ and $\mathcal{A}= ( a_{ij} ) _{1\leq i,j\leq n}$ are $\mathcal{C}^{\infty }$. The rank of the square symmetric matrix $\mathcal{A}$ is allowed to degenerate, as all but one eigenvalue of $\mathcal{A}$ are permitted to vanish to infinite order. We estimate derivatives of $w$ of arbitrarily high order in terms of just $w$ and its first derivatives. These estimates will be applied in a subsequent work to establish existence, uniqueness and regularity of weak solutions of the Dirchlet problem.
Citation
Cristian Rios. Eric T. Sawyer. Richard L. Wheeden. "A priori estimates for infinitely degenerate quasilinear equations." Differential Integral Equations 21 (1-2) 131 - 200, 2008. https://doi.org/10.57262/die/1356039062
Information