Abstract
Consider the mean field equation with parameter $\lambda=8\pi$ in a bounded smooth domain $\Omega$. Denote by $E_{8\pi}(\Omega)$ the infimum of the associated functional $I_{8\pi}(\Omega)$. We prove that if $|\Omega|=\pi$, then $E_{8\pi}(\Omega)\ge E_{8\pi}(B_1)$ and equality holds if and only if $\Omega$ is a ball. We also give a sufficient condition for the existence of a minimizer for $I_{8\pi}(\Omega)$.
Citation
Yilong Ni. "The mean field equation with critical parameter in a plane domain." Differential Integral Equations 19 (12) 1333 - 1348, 2006. https://doi.org/10.57262/die/1356050292
Information