2005 Compactness and quasilinear problems with critical exponents
A. El Hamidi, J. M. Rakotoson
Differential Integral Equations 18(11): 1201-1220 (2005). DOI: 10.57262/die/1356059738

Abstract

A compactness result is revised in order to prove the pointwise convergence of the gradients of a sequence of solutions to a general quasilinear inequality (anisotropic or not, degenerate or not) and for an arbitrary open set. Combining this result with the well-known Brézis-Lieb lemma, we derive simple proofs of Palais-Smale properties in many optimization problems especially on unbounded domains.

Citation

Download Citation

A. El Hamidi. J. M. Rakotoson. "Compactness and quasilinear problems with critical exponents." Differential Integral Equations 18 (11) 1201 - 1220, 2005. https://doi.org/10.57262/die/1356059738

Information

Published: 2005
First available in Project Euclid: 21 December 2012

zbMATH: 1212.35113
MathSciNet: MR2174817
Digital Object Identifier: 10.57262/die/1356059738

Subjects:
Primary: 35J20
Secondary: 35B33 , 35J60 , 35J85

Rights: Copyright © 2005 Khayyam Publishing, Inc.

Vol.18 • No. 11 • 2005
Back to Top