Abstract
We study the uniqueness problem for nonnegative solutions of $u_t=\Delta u^m$ in $\Omega \times [0,T)$, $-\frac{\partial u^m}{\partial \hat{n}}(x,t)=u^{\lambda}(x,t)$ on $\partial \Omega \times (0,T)$ and $u(x,0) \equiv 0$ on $\Omega$ where $m > 1$, $\lambda \ge 1$, and $\Omega$ is a bounded domain with smooth boundary in $\mathbf {R}^N$. We prove that the solution $u \equiv 0$ is unique if and only if $2\lambda \geq m+1$.
Citation
Carmen Cortazar. Manuel Elgueta. Julio D. Rossi. "Uniqueness and nonuniqueness for the porous medium equation with non linear boundary conditions." Differential Integral Equations 16 (10) 1215 - 1222, 2003. https://doi.org/10.57262/die/1356060545
Information