Abstract
We study the existence, uniqueness and stability of global strong solutions to the mixed problem for the nonhomogeneous Kirchhoff equation $$ u_{tt}(x,t) - \varphi (x,t) M \Big (\int_{\Omega} \mid \nabla u(\xi,t) \mid^{2}\, d\xi \Big ) \Delta u(x,t) + g(x, t, u_{t}(x,t)) = 0 $$ with small initial data.
Citation
Alfredo T. Cousin. Cícero L. Frota. Nickolai A. Lar'kin. "Global solvability and decay of the energy for the nonhomogeneous Kirchhoff equation." Differential Integral Equations 15 (10) 1219 - 1236, 2002. https://doi.org/10.57262/die/1356060752
Information