2002 Global solvability and decay of the energy for the nonhomogeneous Kirchhoff equation
Alfredo T. Cousin, Cícero L. Frota, Nickolai A. Lar'kin
Differential Integral Equations 15(10): 1219-1236 (2002). DOI: 10.57262/die/1356060752

Abstract

We study the existence, uniqueness and stability of global strong solutions to the mixed problem for the nonhomogeneous Kirchhoff equation $$ u_{tt}(x,t) - \varphi (x,t) M \Big (\int_{\Omega} \mid \nabla u(\xi,t) \mid^{2}\, d\xi \Big ) \Delta u(x,t) + g(x, t, u_{t}(x,t)) = 0 $$ with small initial data.

Citation

Download Citation

Alfredo T. Cousin. Cícero L. Frota. Nickolai A. Lar'kin. "Global solvability and decay of the energy for the nonhomogeneous Kirchhoff equation." Differential Integral Equations 15 (10) 1219 - 1236, 2002. https://doi.org/10.57262/die/1356060752

Information

Published: 2002
First available in Project Euclid: 21 December 2012

zbMATH: 1011.35097
MathSciNet: MR1919769
Digital Object Identifier: 10.57262/die/1356060752

Subjects:
Primary: 35L70
Secondary: 35B35 , 35B40

Rights: Copyright © 2002 Khayyam Publishing, Inc.

Vol.15 • No. 10 • 2002
Back to Top