2000 Stationary profiles of degenerate problems when a parameter is large
J. García-Melián, J. Sabina de Lis
Differential Integral Equations 13(10-12): 1201-1232 (2000). DOI: 10.57262/die/1356061124

Abstract

The structure of positive solutions to nonlinear diffusion problems of the form $-\text{div}\ (|{\nabla} u|^{p-2}{\nabla} u) = \lambda f(u)$, in $\Omega$, $u = 0$ on $\partial \Omega$, $p > 1$, $\Omega \subset \mathbb R^N$ a bounded, smooth domain, is precisely studied as $\lambda \to +\infty $, for a class of logistic-type nonlinearities $f(u)$. By logistic it is understood that $f(u)/u^{p-1}$ is decreasing in $u > 0$, $f(u) \sim m u^{p-1}$, $m > 0$, as $u\to 0+$, while $f$ has a positive zero $u = u_0$ of order $k$. It is shown that the positive solution ${u_\lambda}$ homogenizes towards $u_0$ as $\lambda \to +\infty $, and develops a boundary layer near $\partial\Omega$ whose width is exactly measured. On the other hand, the arising of ``dead cores" $\{{u_\lambda} = u_0\}$ for $\lambda$ large is shown in the parameters regime $k < p-1$, the distance $\text{dist}(\{{u_\lambda} = u_0\},\partial\Omega)$ to $\partial \Omega$ being also exactly estimated as $\lambda \to +\infty $. Thus, earlier results in [12], [22] are substantially sharpened. In addition, suitable lower-order perturbations at infinity of the problem are studied.

Citation

Download Citation

J. García-Melián. J. Sabina de Lis. "Stationary profiles of degenerate problems when a parameter is large." Differential Integral Equations 13 (10-12) 1201 - 1232, 2000. https://doi.org/10.57262/die/1356061124

Information

Published: 2000
First available in Project Euclid: 21 December 2012

zbMATH: 0976.35021
MathSciNet: MR1785705
Digital Object Identifier: 10.57262/die/1356061124

Subjects:
Primary: 35J60
Secondary: 35B15 , 35B25

Rights: Copyright © 2000 Khayyam Publishing, Inc.

Vol.13 • No. 10-12 • 2000
Back to Top