
COMMUN. MATH. SCI. c© 2007 International Press

Supplemental Issue, No. 1, pp. 21–53

SEMIDISCRETIZATION AND LONG-TIME ASYMPTOTICS OF
NONLINEAR DIFFUSION EQUATIONS

JOSÉ A. CARRILLO∗, MARCO DI FRANCESCO† , AND MARIA P. GUALDANI‡

Abstract. We review several results concerning the long-time asymptotics of nonlinear diffusion
models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffu-
sion models are proposed and their numerical properties analyzed. We demonstrate the long-time
asymptotic results by numerical simulation and we discuss several open problems based on these
numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics
can be characterized in terms of fixed points of certain maps which are contractions for the euclidean
Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family
of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities
near zero.
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1. Introduction
The fine description of long-time asymptotics for nonlinear diffusion equations

has attracted the attention of many researchers in the last few years. This revival has
been devoted to new ideas brought up in the subject from different communities: the
entropy approach from kinetic theory having its roots in the famous H-theorem for the
Boltzmann equation [18, 27], the optimal mass transport theory giving a geometric
point of view of these equations based on suitable metrics in the space of probability
measures [29, 17, 1, 2] and variational techniques related to new Gagliardo-Nirenberg
inequalities [21].

This review is intended to show some recent topics of research concerning long-
time asymptotics of equations of the form

∂u

∂t
= div(u∇V +∇f(u)), x ∈ RN , t > 0, (1.1)

in which V (x) ∈ W 1,1
loc (RN ) is positive and f(u) verifies

(F1) f belongs to C([0,+∞)) ∩ C1((0,+∞)),
(F2) f strictly increasing such that f(0) = 0 and f ′(u) > 0 for all u > 0. f−1 is

Hölder continuous of order θ with 0 < θ < 1. Moreover the function h(u) :=∫ u

1
f ′(s)

s ds, u > 0 belongs to L1((0,+∞)) with the property h(+∞) = +∞.

This family of equations includes nonlinear Fokker-Planck equations where V (x)
is assumed to be confining (see next section for details) and general nonlinear diffu-
sion equations where V (x) = 0. The Cauchy problem for general nonlinear diffusion
equations is well-posed by classical results [9, 7] and for the nonlinear Fokker-Planck
equations we refer to [16] and the references therein. We remark that solutions to (1.1)
stay nonnegative for nonnegative initial data and we will reduce to nonnegative solu-
tions in the rest.
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Nonlinear diffusion equations without confinement V (x) = 0 are expected to
diffuse as t → ∞, and thus, solutions should vanish as t → ∞ with an expansion
of their support or their tails depending whether the diffusion is slow or fast. On
the contrary, nonlinear Fokker-Planck equations are expected to stabilize towards
an steady state defined by setting the flux to zero in (1.1). The rigorous proof of
this stabilization was done in [29, 16] in L1 by using an entropy-entropy production
approach. The stationary state was characterized as the unique minimizer in the
space of integrable functions with given mass of a suitable functional that we call
entropy. This entropy functional was then proved to be a Lyapunov functional for
the equation and thus, the study of its evolution gave the desired convergence rate.
We refer to [18, 29, 16, 27] for details. Moreover, generalized Log-Sobolev inequalities
were obtained in [16] relating the entropy to the entropy production.

Both equations share remarkable properties with respect to Wasserstein distances
for probability measures. These distances are well-known in the probability commu-
nity since probability measure spaces with suitable bounded moments endowed with
these distances become complete metric spaces. The remarkable property of the fam-
ily of equations (1.1) is that assuming that V (x) is convex, their flow map is a global
contraction for the Euclidean Wasserstein distance [29, 17, 1, 2]. Moreover, in the
one-dimensional case, equations (1.1) under convexity assumptions on V (x), are con-
tractions for all Wasserstein distances [19, 14]. Recently, J. L. Vázquez [37] has shown
a very nice counterexample proving that this result is not true for large index in the
Wasserstein distance in any other dimension. However, it is an open problem to show
if it is asymptotically, for large times, true.

Nonlinear Fokker-Planck equations with confining potential V (x) = 1
2 |x|2 and

homogeneous nonlinearity f(u) = um are equivalent through an explicit change of
variables to the nonlinear diffusion equation with V (x) = 0 and f(u) = um and
therefore, the study of their long-time behavior is equivalent too. In fact, the stabi-
lization towards equilibrium of the nonlinear Fokker-Planck equation translates into a
self-similar behavior as t →∞ for the nonlinear diffusion equation, in the sense that
all solutions resemble a self-similar profile as t → ∞. This self-similar profile is the
well-known Barenblatt profile for homogenous nonlinear diffusions.

We will show in Section 2 that the semidiscretization of equations (1.1) based
on the implicit Euler scheme formally preserves the non-increasing behavior of the
entropy functional. Moreover, in Section 2.2 we will analyse how to discretize nonlin-
ear diffusion Fokker-Planck equations in order to avoid numerical instabilities arising
due to the stabilization towards equilibria with degenerate diffusions. This numeri-
cal scheme enjoying entropy decay does not preserve theoretically the contraction of
Wasserstein metrics at a discrete level. Let us mention that one-dimensional schemes
have recently been proposed in [22] preserving the contraction of metrics.

In Section 3, the contraction of Wasserstein distances in one space dimension
for general nonlinear diffusion equations is used in the case of asymptotically homo-
geneous nonlinearities to obtain a bound on the expansion rate of the support of
solutions. They will behave basically like the Barenblatt profile corresponding to the
exponent to which the nonlinearity resembles for small values of u. This result is
already known since the work of J. L. Vázquez [34] but here we will give a original
proof related to the recent result in [14].

Although several qualitative properties of the solutions for general nonlinear dif-
fusion equations have been obtained [25], there is no result concerning asymptotic
profiles of general diffusion equations except in the case of power-like behavior for
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small values of u. One of the objectives of this review is to summarize the results
recently obtained in [11], in which asymptotic profiles for general nonlinear diffusion
equations are obtained and characterized by being fixed points of suitable contraction
maps in Wasserstein distances. This result will be explained in detailed in Section 4.
Moreover, we will try to elucidate numerically the behavior of these asymptotic pro-
files as t →∞ using the entropy preserving scheme introduced in Section 2.

Finally, we propose in Section 5 an alternative scaling to the one introduced in [11]
to characterize again asymptotic profiles by means of a sequence of fixed points whose
convergence for large times can be studied at least in the case of asymptotic homo-
geneity. In order to do that, continuity arguments with respect to the nonlinearity
developed in [7] become relevant. This results shows that the large time limit of the
asymptotic profile for homogeneous nonlinearities stabilizes towards the correspond-
ing Barenblatt profile.

2. Semidiscretization of nonlinear diffusion equations
We consider the general non-linear Fokker-Planck equation

∂u

∂t
= div(u∇V +∇f(u)), x ∈ RN , t > 0, (2.1)

u(x, 0) = uI(x), x ∈ RN , (2.2)

where 0 ≤ uI ∈ L1(RN ) ∩ L∞(RN ). A potential V ≥ 0 will be called confining if it
satisfies:

(V1) V a convex function and V (x) −→ +∞ as |x| −→ +∞.

Much is already known for the problem (2.1), (2.2) about existence and uniqueness
(see [15, 16] and references therein). Let us denote by (H1)∗ the dual space of H1.

Theorem 2.1. There exists u ∈ L∞(0, T, L∞(RN )) ∩ L∞(0, T, L1(RN )) nonnega-
tive with f(u) ∈ L2(0, T, H1(RN )) ∩ L∞(0, T, L∞(RN )) and ∂u

∂t ∈ L2(0, T,H1∗(RN ))
fulfilling

∫ T

0

〈∂u

∂t
,Φ〉H1∗,H1 dt = −

∫ T

0

∫

RN

∇Φ · (u∇V +∇f(u)) dxdt,

for all compactly supported Φ ∈ C∞(RN × [0, T ]).

The proof of the above theorem is worked out in the forthcoming paper [15] in
case the potential is a positive function, not necessarily convex, such that ‖∆V ‖L∞(Rd)

is finite. Problem (2.1), (2.2) has the mass conservation property, i.e.,

‖u(·, t)‖L1(RN ) = ‖uI(·)‖L1(RN ),

for all t > 0 and it is also known that its solution u converges exponentially fast to
the stationary state u∞, solution of the problem

u∞∇V +∇f(u∞) = 0, ‖u∞(·)‖L1(RN ) = ‖uI(·)‖L1(RN ). (2.3)

The proof of this result is based on the so-called entropy dissipation method, in which
the convergence towards equilibrium is concluded using the time monotonicity of the
physical entropy

E(u(t)) :=
∫

RN

[u(x, t)V (x) + φ(u(x, t))] dx, (2.4)
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where φ is a strictly convex function determined by

φ′′(u) =
f ′(u)

u
, φ′(1) = 0, φ(0) = 0, (2.5)

(see [18, 29, 16] for details).
As already mentioned in the introduction, in the special case V (x) = 1

2 |x|2 and
f(u) = um, if N(m−1)+2 > 0, there exists a time-depending scaling which transforms
equation (2.1) into the diffusion equation

∂v

∂t
= ∆vm, x ∈ RN , t > 0,

v(x, 0) = uI(x). (2.6)

This result allows us to translate any result on the asymptotic behavior of equa-
tion (2.1), if V (x) = 1

2 |x|2 and f(u) = um, into results of asymptotic behavior in time
of equation (2.6). In fact it has been shown [18] that the similarity solution of (2.6)

B(|x|, t) = t−
N
λ

(
C − (m− 1)

2mλ
|x|2t− 2

λ

) 1
m−1

+

, (2.7)

where λ := N(m − 1) + 2, evaluated at the time t = 1
λ , coincides with the unique

compactly supported equilibrium state u∞ of (2.1).
In this work we consider a fully implicit Euler semidiscretization for equation (2.1)

uk(x)− uk−1(x)
∆t

= div(uk(x)∇V (x) +∇f(uk(x))), (2.8)

where uk(x) denotes the approximation u(x, k∆t), k ∈ N. The main properties of the
above semidiscretization are proved in [15] and summarized in Theorem 2.3 for which
we show a formal proof. We start by stating the result of existence shown in [15] for
the semidiscrete problem in case the potential is a positive function, not necessarily
convex, such that ‖∆V ‖L∞(Rd) is finite.

Theorem 2.2. For each k ∈ N there exists a nonnegative weak solution uk ∈ L2(RN )
with f(uk) ∈ H1(RN ) of (2.8) fulfilling

∫

RN

∇ψ · ∇f(uk) dx = −
∫

RN

uk∇ψ · ∇V dx− 1
∆t

∫

RN

ψ(uk − uk−1) dx, (2.9)

for all ψ ∈ H1(RN ) with compact support.

The basic property of the above numerical scheme is the decay of the relative entropy

E(u|u∞) :=
∫

RN

[φ(u)− φ(u∞)− φ′(u∞)(u− u∞)] dx. (2.10)

Let us also remember that for general nonlinear Fokker-Planck equations the en-
tropy (2.4) and the relative entropy (2.10) satisfy the following inequality

E(u)− E(u∞) ≥ E(u|u∞),

being equal if and only if u∞ is positive everywhere (see [16, Proposition 5]). Moreover
the difference can be explicitly written as

E(u)− E(u∞)− E(u|u∞) =
∫

RN

[V (x) + φ′(u∞(x))](u− u∞)) dx. (2.11)
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In the rest, we assume furthermore that V is a uniformly convex function, which
means

ξ Hess(V (x)) ξT ≥ α|ξ|2, ∀ ξ, x ∈ RN , α > 0. (2.12)

The following results holds:

Theorem 2.3. For k ∈ N let uk be a recursively defined nonnegative weak solution
of (2.8) in the sense of Theorem 2.2. It holds

E(uk)− E(u∞) ≤ (E(uI)− E(u∞))(1 + 2α∆t)−k, k ∈ N,

where u∞ describes the equilibrium function, solution to (2.3).

Proof. Here we only recall the main formal ideas behind the proof given in [15].
The proof makes use of this line of arguments by a suitable and technical approxi-
mation in bounded domains and regularization of the initial data, we refer to [15] for
further details. Let

D(uk) :=
∫

RN

uk|∇V +∇φ′(uk)|2 dx,

be the entropy production for the functional E(uk|u∞); the generalized Log-Sobolev
inequality [16, Theorem 17] asserts that

E(uk|u∞) ≤ E(uk)− E(u∞) ≤ 1
2α

D(uk) ∀ k ∈ N, (2.13)

using the uniform convexity of the potential V (2.12). From the convexity of φ, it
follows

E(uk|u∞) ≥
∫

RN

φ′(uk+1)(uk − uk+1) + φ(uk+1)− φ(u∞)− φ′(u∞)(uk − u∞) dx

=
∫

RN

φ(uk+1)− φ(u∞)− φ′(u∞)(uk+1 − u∞)

+
∫

RN

φ′(u∞)(uk+1 − uk) + φ′(uk+1)(uk − uk+1) dx

= E(uk+1|u∞) +
∫

RN

[φ′(u∞)− φ′(uk+1)](uk+1 − uk) dx.

Now, using (2.11) we get

E(uk)− E(u∞) ≥ E(uk+1|u∞) +
∫

RN

[φ′(u∞)− φ′(uk+1)](uk+1 − uk) dx

+
∫

RN

[V + φ′(u∞)](uk − u∞) dx

= E(uk+1|u∞)−
∫

RN

[V + φ′(uk+1)](uk+1 − uk) dx

+
∫

RN

[V + φ′(u∞)](uk − u∞) dx +
∫

RN

φ′(u∞)(uk+1 − uk) dx

+
∫

RN

V (uk+1 − uk) dx
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= E(uk+1|u∞) +
∫

RN

[V + φ′(u∞)](uk+1 − u∞) dx

−
∫

RN

[V + φ′(uk+1)](uk+1 − uk) dx

= E(uk+1)− E(u∞)−
∫

RN

[V + φ′(uk+1)](uk+1 − uk) dx.

Therefore, from (2.8) after integration by parts, we deduce
∫

RN

[V + φ′(uk+1)](uk+1 − uk) dx = −∆t

∫

RN

uk+1|∇V +∇φ′(uk+1)|2 dx,

and thus,

E(uk)− E(u∞) ≥ E(uk+1)− E(u∞) + ∆tD(uk+1).

From inequality (2.13) it holds

E(uk)− E(u∞) ≥ (1 + 2α∆t) (E(uk+1)− E(u∞)),

recursively we conclude

E(uk)− E(u∞) ≤ (1 + 2α∆t)−k (E(uI,m)− E(u∞)),

finishing the proof.

Let us point out that previous lemma was already observed in the linear case
in [3] with a proof simplified by the fact V (x)+φ′(u∞(x)) = C for all ∈ RN for linear
diffusions. It is the discrete version of the exponential decay with rate 2α in the
continuous case obtained in [16, 18, 29, 21]. In the case of general nonlinear diffusion
equations we have also a decay estimate for the corresponding entropy.

Corollary 2.4. Let vk be solution of (2.8) with V ≡ 0 and

E(k) :=
∫

RN

φ(vk(x)) dx. (2.14)

For all k ∈ N it holds E(k) ≥ E(k + 1).

Proof. From equations (2.8) and (2.5) we get

E(k)− E(k + 1) =
∫

RN

φ(vk)− φ(vk+1) dx =
∫

RN

φ′(vk+1)(vk − vk+1) dx

= −∆t

∫

RN

φ′(vk+1)div(∇f(vk+1)) dx

= ∆t

∫

RN

f ′(vk+1)2

vk+1
|∇vk+1|2 dx,

finishing the proof.

Let us mention that semidiscretizations derived from a discrete variational scheme
based on the Wasserstein distance was introduced in the linear case in [23] and gener-
alized to the nonlinear case in [1, 2] and the references therein. This semidiscretization
also verifies the decay of the entropy stated in Corollary 2.4. Let us show some numer-
ical results related to problem (2.6) and (2.1) in the case f(u) := um for some m > 1.
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2.1. The porous medium equation. We introduce the fully discretization
of equation (2.6) in a uniform grid using central finite differences in space to obtain:

vk(i)− vk−1(i)
∆t

= D+D−(f(vk(i))), k ∈ N, i = 1, . . . , M, (2.15)

where D+ and D− are the standard forward and backward first order finite difference
operators, defined for any discretized function (z(i))i=1,...,M as follows

D+z(i) :=
z(i + 1)− z(i)

∆x
, i = 1, . . . , M − 1,

D−z(i) :=
z(i)− z(i− 1)

∆x
, i = 2, . . . , M.

The resulting nonlinear system of equations is iteratively solved by Newton’s method
at each time step. Time stepping is set to constant.
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Fig. 2.1. Numerical results and entropy decay for (2.6) in case m = 2 with initial condition
(2.16): (a) time evolution of v(x, t), (b) time evolution of E(t).

Figure 2.1 shows numerical results for f(v) := v2 with initial data

vI(x) =





2[(4−x2)−3.9 cos(π
4 x)]

‖2[(4−x2)−3.9 cos(π
4 x)]‖L1(−2,2)

if − 2 ≤ x ≤ 2,

0 otherwise.
(2.16)

Let us point out that the expected Barenblatt asymptotic profile (2.7) is fixed by mass
conservation ∫

R
B(|x|, t) dx =

∫

R
vI(x) dx.

The results show the convergence to the self-similar profile given by the Barenblatt
profile as t → ∞ and the decreasing character of the entropy. Note that in this case
the decay rate of the entropy is not exponential but rather algebraic. In fact, for
the porous medium equation the entropy becomes the Lm-norm of the solution that
decays like m−1

m λ due to the L1-L∞ effect [4, 38]

‖v(·, t)‖L∞(RN ) ≤ C t−
N

N(m−1)+2 ‖vI‖
2

N(m−1)+2

L1(RN )
.
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In Figure 2.2 the numerical approximations of the two dimensional porous medium
equation with f(v) = v3 together with the entropy decay are plotted.
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Fig. 2.2. Time evolution and entropy decay in time of the two dimensional nonlinear diffusion
equation (2.6) in case m = 3.

2.2. Nonlinear Fokker-Planck equation. This part of the paper is devoted
to the investigation of problem (2.1) in case f(u) := um, m > 1 and V (x) := 1

2x2. It
is well known that a standard central finite differences fully discretized implicit Euler
scheme for (2.1) does not give nice results. This is due to the fact that if |Vx| assumes
large values where the function u is small, the drift term uVx becomes predominant
with respect to the diffusion term f(u)xx, and this will cause undesired oscillations
and large negative values in the solution (see Figure 2.3).

Therefore we follow the same scheme as in [24], used for a numerical approxima-
tion of the one dimensional transient drift-diffusion model for a bipolar semiconductor.

We briefly recall the most important steps. For the spatial discretization, we
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Fig. 2.3. Numerical results for (2.1) with central finite differences.

make use of a mixed exponential fitting method. The main idea is to linearize at
each time step the current of the equation assuming f ′(u(x, tk)) ∼ f ′k(x) is already
known and rewrite the current term J(x, t) := −(u(x, t)Vx(x) + f ′k(x)ux(x, t)) into
an equation for the new variable z := ue−V in each spatial cell.

Let xi = i∆x, where i = 1, . . . , M and ∆x > 0, Ii := (xi−1, xi] and Jk(i), uk(i)
and V (i) denote the approximations at xi and at time tk := k∆t. The method can
be summarized in two main steps: approximation of the diffusion term and change of
variables.

It physically makes sense to expect that, if the current density J̃k in the interval Ii

is positive, the flow is moving to the right direction and then the density evaluated at
the left uk(i− 1) can be taken for the approximation of the coefficient of the diffusion
term. More precisely we define

f ′k(i) :=

{
f ′(uk(i− 1)) if J̃k(i) > 0,

f ′(uk(i)) if J̃k(i) ≤ 0.
(2.17)

We need an approximated value of the current J̃k(i) in Ii; for this we take

J̃k(i) :=





0 if uk(i)=uk(i−1)=0,

−1
∆x

[(φ′(uk(i))−φ′(uk(i−1)))+(V (i)−V (i−1))] else.

We define now a new variable

zk := uk exp(V/f ′k(i)) in Ii.

Then the expression of the current on the interval Ii becomes

Jk ' −(f ′k(i) exp(−V/f ′k(i))zk,x)),

and equation (2.8) can be rewritten as

1
f ′k(i)

exp(V/f ′k(i))Jk + zk,x = 0 in Ii,

(Jk)x = − 1
∆t

(uk+1 − uk) in Ii.
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We approximate now Jk and zk as follows

Jk ∈ X1 := {ϕ ∈ L2(Ω) | ϕ(x) = aix + bi, x ∈ Ii, i = 1, . . . , M},
zk ∈ X0 := {φ ∈ L2(Ω) | φ const. in Ii, i = 1, . . . , M},

and taking τ ∈ X1 and φ ∈ X0 as test functions fot the above equations, the discrete
system becomes

M∑

i=1

(∫

Ii

1
f ′k(i)

exp(V/f ′k(i))Jkτ dx−
∫

Ii

zkτx dx + [uk exp(V/f ′k(i))τ ]xi
xi−1

)
= 0,

M∑

i=1

(∫

Ii

(Jk)xφ +
∫

Ii

1
∆t

(uk+1 − uk)φ
)

= 0.

We have now to approximate the last integrals. We choose φ = 1 in Ii and φ = 0
elsewhere as test function, getting in this way

Jk(i)− Jk(i− 1) = − 1
∆t

∫

Ii

(uk+1 − uk).

The last integral is approximated as follows
∫

Ii

(uk+1 − uk) = ∆x(uk+1(i− 1)− uk(i− 1)).

It remains to compute Jk; first we approximate Jk(x) = Jk(i) if x ∈ Ii, then taking
τ = 1 in Ii and τ = 0 elsewhere as test function, it holds

∫

Ii

1
f ′k(i)

exp(V/f ′k(i))Jk(i) dx = −[uk exp(V/f ′k(i))]xi
xi−1

,

which implies

Jk(i) =−
(

V (i)− V (i− 1)
2

coth
V (i)− V (i− 1)

2f ′k(i)

)
uk(i)− uk(i− 1)

∆x

− uk(i) + uk(i− 1)
2

V (i)− V (i− 1)
∆x

.

This approximation for the flux is used in combination with an explicit Euler method

uk+1(i)− uk(i)
∆t

= − 1
∆x

(Jk(i + 1)− Jk(i)).

Since the approximation for the flux is conservative, it is clear that the L1-norm of
the solution will be preserved at the fully discrete level.

Figure 2.4 shows the evolution in time of (2.1) with f(u) = u2. In this case the
stationary-state of the Cauchy problem with the same mass as the initial data

uI(x) =

{
π
4 cos

(
π
2 x

)
if − 1 ≤ x ≤ 1,

0 otherwise,
(2.18)

is given by u∞(x) =
(
91/3 − x2

)2

+
/16. Figure 2.4(b) shows that the relative en-

tropy (2.4), decays exponentially fast with rate −2.
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Fig. 2.4. Numerical results and entropy decay for (2.1) with initial condition (2.18) in the case
f(u) = u2: (a) time evolution of u(x, t), (b) logarithmic plot of the time evolution of E(u)−E(u∞).
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Fig. 2.5. Numerical results and entropy decay for (2.1) with initial condition (2.19) in case
f(u) = u3: (a) time Evolution of u(x, t), (b) logarithmic plot of the time evolution of E(u)−E(u∞).

The numerical solution of (2.1) with initial condition

uI(x) =





− 13
3 x2 + 5

3x if − 0.8 ≤ x ≤ −0.5,

−10x2 − 14x− 4.8 if − 0.1 ≤ x ≤ 0.5,

0 otherwise,

(2.19)

in the case f(u) = u3 is showed in Figure 2.5. In this case, the convergence in
time to a Barenblatt-type function is clear from the subplot 2.5(a). The relative
entropy E(u) − E(u∞) decreases numerically with constant rate -2 after an initial
time interval, in which the decay is faster (Figure 2.5(b)). This behavior has been
recently theoretically proven [13].

3. Evolution of the 1-D Wasserstein distances
In this section we analyze the Cauchy problem for general nonlinear diffusion

equations (2.6) in one space dimension, i.e.
{

vt = f(v)xx,

v(x, 0) = vI(x),
(3.1)
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where the initial datum vI is taken in L1
+(R). We require the nonlinearity function f

to satisfy the conditions as in Section 1 and moreover, f satisfies the additional
assumption

(F3) f(v) = vm + Ψ(v), m > 1, where Ψ(v) = O(vn) as u → 0, for some n > m,
Ψ ∈ C1((0,+∞)).

No condition on the growth of Ψ at infinity is needed apart from f satisfying the
conditions of Section 1. This is due to the diffusion character of the equation. More
precisely, values of the solution will tend pointwise to zero due to the L1-L∞ effect and
thus, the only important values of Ψ affecting the long time behavior of the solutions
are the values close to 0. We perform the standard time dependent scaling

v(x, t) = R(t)−
1
λ w(y, s), y = R(t)−

1
λ , s =

1
λ

log R(t),

R(t) = (1 + λt) , λ = m + 1, (3.2)

which turns (3.1) into




ws = (yw + emsf(e−sw)y)y ,

w(y, 0) = wI(y) = vI(y).
(3.3)

In the sequel we shall assume for simplicity that
∫ +∞
−∞ vI(x)dx = 1. Our aim is to

study, for any p ≥ 1, the dynamic induced by (3.3) on the metric space

M2p = {U(·) ∈ L1
+(R),

∫ +∞

−∞
|x|2p U(x) dx < ∞}

endowed with the 2p-Wasserstein distance

W2p(U1, U2) = inf
[∫ +∞

−∞
|x− T (x)|2p U1(x) dx

] 1
2p

, (3.4)

where the infimum is taken over the admissible maps T : R→ R such that
∫ +∞

−∞
ψ(x) U2(x) dx =

∫ +∞

−∞
ψ(T (x))U1(x) dx, for all ψ ∈ C0(R).

In one space dimension, the infimum in (3.4) is achieved and the optimal map T ∗ can
be expressed in a very simple way. Given two probability densities U1, U2 ∈M2p, we
define the distribution functions

F (x) =
∫ x

−∞
U1(y) dy, G(x) =

∫ x

−∞
U2(y) dy,

and their pseudo-inverses F−1, G−1 : [0, 1] → R

F−1(ρ) = inf{ω : F (ω) > ρ} G−1(ρ) = inf{ω : G(ω) > ρ}
(eventually F−1 and G−1 may attain the values±∞ at ρ = 0 or at ρ = 1). Then, it can
be proven by direct computation that the optimal map T ∗ between the measures U1 dx
and U2 dx is the unique admissible map T ∗ = G−1 ◦F . Hence, by writing down (3.4)
in terms of T ∗, after a change of variable, we get

W2p(U1, U2) =
[∫ 1

0

∣∣F−1(ρ)−G−1(ρ)
∣∣2p

dρ

] 1
2p

. (3.5)
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We refer to [39] for a detailed explanation of these topics.
Thanks to the monotonicity of W2p(U1, U2) with respect to the index p, one can

eventually send p →∞ to obtain

W∞(U1, U2) = sup
ρ∈(0,1)

∣∣F−1(ρ)−G−1(ρ)
∣∣ .

It can easily be seen that, whenever U1 and U2 have compact support, the quantity
W∞(U1, U2) provides an estimate of the ‘relative’ speed of propagation of the supports
of U1 and U2 respectively. More precisely, it holds (see [19, 14])

|inf{suppU1} − inf{suppU2}| ≤ W∞(U1, U2),
|sup{suppU1} − sup{suppU2}| ≤ W∞(U1, U2). (3.6)

Moreover, whenever U1 has compact support, then W∞(U1, U2) is finite if and only
if U2 has compact support.

Let us consider for the moment the case of a homogeneous nonlinearity f(u) = um,
which corresponds to the porous medium equation in (3.1). We are interested in
computing the Wasserstein distance between any nonnegative w solution with unit
mass of the rescaled equation

ws = (yw + (wm)y)y ,

and the corresponding self-similar Barenblatt profile w∞ with unit mass defined
in (2.7) written in similarity variables (y, s), i.e. the stationary profile

w∞(y) =
(

C − m− 1
2m

|y|2
) 1

m−1

+

, (3.7)

for some constant C. In order to study the evolution of such a quantity, we set

F (y, s) =
∫ y

−∞
w(z, s) dz, G(y, s) =

∫ y

−∞
w∞(z) dz.

Let F−1, G−1 : (0, 1) → R be the pseudo-inverses of F and G respectively. Then, F−1

satisfies the following equation (see [19, 14])

∂F−1

∂s
= −F−1 − ∂

∂ρ

[(
∂F−1

∂ρ

)−m
]

, (3.8)

while G−1 satisfies

G−1 +
∂

∂ρ

[(
∂G−1

∂ρ

)−m
]

= 0. (3.9)

Equations (3.8) and (3.9) provide a direct computation of the L2p-norms of the
difference F−1 − G−1, and therefore, an estimate of the 2p-Wasserstein distance be-
tween w and w∞, as shown in [14]. As we will see later on, the diffusion term

− ∂

∂ρ

[(
∂F−1

∂ρ

)−m
]

,
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in (3.8) is dissipative, while the term −F−1 provides an exponential decay. More
precisely, we have

W2p(w(s), w∞) ≤ e−sW2p(wI , w∞).

In the original variables, we have the following contraction property

W2p(v(t), B(x, t + λ−1)) ≤ W2p(vI , B(x, λ−1)),

where B(x, t + λ−1) is the Barenblatt profile corresponding to w∞ in the original
variables. Sending p →∞ yields contraction of the W∞ and, thanks to (3.6),

∣∣inf{supp v(t)} − inf{suppB(x, t + λ−1)}∣∣ ≤ W∞(vI , B(x, λ−1)),∣∣sup{supp v(t)} − sup{suppB(x, t + λ−1)}
∣∣ ≤ W∞(vI , B(x, λ−1)). (3.10)

In fact, the last lines can even be improved to show the finite speed of propagation
without assuming it from the beginning. Since the W∞-distance is contractive and
B(x, t + λ−1) has compact support at any time t ≥ 0, taking compactly supported
initial data vI , the quantity W∞(v(t), B(x, t + λ−1)) stays finite and immediately it
follows that v(t) has compact support. In [14] the above arguments are performed
rigorously, by means of an approximation of the original Cauchy problem by an initial
boundary value problem on a closed interval eventually tending to the whole real line.
Our purpose is to generalize the previous approach to the perturbed case f(u) =
um + Ψ(u) according to assumption (F3). Before proceeding further, let us remark
that these results were already proven in [34] by comparison arguments. The novelty
here is the proof by completely different arguments that might be generalized to larger
dimensions at least asymptotically.

We shall perform the estimate of the Wasserstein distances directly on the so-
lutions of the Cauchy problem. The computations below can be made rigorous in a
similar fashion as in [14]. To heuristically justify our procedure, let us turn back (3.3).
By formally letting s tend to infinity, we deduce that the evolution of the solution w(s)
for large s is governed by the power term wm. Therefore, we expect that the Wasser-
stein distance between the rescaled solution w(·, s) of (3.3) and the corresponding
stationary Barenblatt profile w∞ defined in (3.7) tends to zero as s goes to infinity
with the same exponential rate as for the porous medium equation. Given a solution w
to (3.3) and given the stationary Barenblatt profile with unit mass w∞ corresponding
to the power nonlinearity um, we denote once again

F (y, s) =
∫ y

−∞
w(z, s) dz, G(y, s) =

∫ y

−∞
w∞(z) dz.

The two corresponding pseudo-inverses F−1 and G−1 satisfy

∂F−1

∂s
= −F−1 − ∂

∂ρ

{[
∂F−1

∂ρ

]−m

+ emsΨ

(
e−s

(
∂F−1

∂ρ

)−1
)}

, (3.11)

G−1 +
∂

∂ρ

[(
∂G−1

∂ρ

)−m
]

= 0.

We next state our result concerning Wasserstein distances.

Theorem 3.1. Let f(v) satisfy conditions (F1)-(F3) stated before.
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(a) Let w(y, s) be the solution to (3.3) with vI ∈ L1
+(R) having unit mass and

finite second moment. Then, for any p ≥ 1,

W2p(w(s), w∞) =
[∫ 1

0

∣∣F−1(ρ)−G−1(ρ)
∣∣2p

dρ

] 1
2p

≤ Ce−s, (3.12)

holds, where C = C0 + W2p(vI , w∞) and C0 depends only on f .
(b) Let w(y, s) be the solution to (3.3) with vI ∈ L1

+(R) having unit mass and
compact support. Then

W∞(w(s), w∞) ≤ Ce−s, (3.13)

where C = C0 + W∞(vI , w∞) and C0 depends only on f .

In original variables (3.1), part (b) of the previous theorem provides a result
concerning the expansion rate of the support of any solution v(x, t) having compactly
supported initial datum vI . Indeed, since the support of the Barenblatt profile is a
ball of radius C(t + λ−1)

1
m+1 for some fixed constant C > 0, we easily obtain the

following consequence.

Corollary 3.2. Let v(x, t) be solution to (3.1) with vI ∈ L1
+(R) having compact

support, let B(x, t + λ−1) be the Barenblatt profile with same mass. Then, there exist
a fixed constant C such that

∣∣inf{supp v(t)} − inf{suppB(x, t + λ−1)}
∣∣ ≤ C,∣∣sup{supp v(t)} − sup{suppB(x, t + λ−1)}∣∣ ≤ C. (3.14)

Remark 3.3. We found a lot of references in the literature concerning the finite
speed of propagation property in slow diffusion equations (see [26, 25] for the general
nonlinear case). Most of them are based on heavy analytic tools. Our result is more
complete in the general nonlinear case, and covers a wider class of nonlinearities.
Moreover, this technique applies to this problem in a very natural way.

Proof of Theorem 3.1. To perform the proof of Theorem 3.1, we compute
the evolution of W2p(w(s), w∞) by means of the one-dimensional representation for-
mula (3.5). The calculations below are formal, in the sense that we should need the
pseudo-inverse function F−1 to be smooth enough. We observe that this occurs when
the initial datum vI is supported on a interval. We could make this argument rigor-
ous by means of standard approximation tools (see [14]). We skip these details and
suppose that F−1 is smooth.

Moreover, we need to know a priori that the speed of propagation of the support
of the solution is finite. This property, which actually characterizes slow diffusion
equations, was proved by Kalashnikov, Oleinik and Yiu-Lin (see [25] and the refer-
ences therein). In fact, a refinement of the argument leads to proof that the speed of
propagation is finite without assuming it, by showing the control on W∞-distance by
approximations. Using the notations of the previous subsection, thanks to (3.11) and
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after integration by parts, we have

d

ds

∫ 1

0

[
F−1 −G−1

]2p
dρ = 2p

∫ 1

0

[
F−1 −G−1

]2p−1 ∂

∂s
F−1(ρ, s) dρ

= 2p

∫ 1

0

[
F−1 −G−1

]2p−1

[
−F−1 − ∂

∂ρ

((
∂F−1

∂ρ

)−m

+emsΨ

(
e−s

(
∂F−1

∂ρ

)−1
))

+ G−1 +
∂

∂ρ

((
∂G−1

∂ρ

)−m
)]

dρ

= −2p

∫ 1

0

[
F−1 −G−1

]2p
dρ− 2p (2p− 1)

∫ 1

0

[
F−1 −G−1

]2p−2
(

∂F−1

∂ρ
− ∂G−1

∂ρ

)

× ems

[
f

(
e−s

(
∂F−1

∂ρ

)−1
)
− f

(
e−s

(
∂G−1

∂ρ

)−1
)]

dρ

− 2p

∫ 1

0

[
F−1 −G−1

]2p−1 ∂

∂ρ

(
emsΨ

(
e−s

(
∂G−1

∂ρ
, s

)−1
))

dρ.

(3.15)

We observe that, due to the compact support of the solutions, the boundary term
coming from integration by parts disappears (see [19, 14]). In fact, this boundary
term is given by

∑

i=0,1

(−1)i2p
[
F−1(i, s)−G−1(i)

]2p−1

[(
∂F−1

∂ρ

)−m

(i, s)

+ emsΨ

(
e−s

(
∂F−1

∂ρ

)−1
)

(i, s)−
(

∂G−1

∂ρ

)−m

(i, s)

]
.

The first bracket is bounded at any s because of the finite speed of propagation
property of the solutions. The second bracket is a sum of positive powers of the
solution w and of the Barenblatt function w∞ evaluated at the boundary of their
support respectively. Hence, this second bracket equals zero.

Now, since the function f is increasing, the second integral at the end of (3.15) is
nonnegative. This observation is the key point in this computation (see again [14]).
In fact, thanks to this we can get rid of the nonlinear term, and we have only to
estimate the term depending on the Barenblatt profile, which is known. Indeed, after
some calculations in the very last term of (3.15), due to the equation satisfied by G−1

in (3.11), we obtain the following inequality

d

ds

∫ 1

0

[
F−1 −G−1

]2p
dρ ≤ −2p

∫ 1

0

[
F−1 −G−1

]2p
dρ

− 2p

m
e(m−1)s

∫ 1

0

[
F−1 −G−1

]2p−1
G−1Ψ′

(
e−s

(
∂G−1

∂ρ

)−1
)(

∂G−1

∂ρ

)m−1

dρ.

We can assume that Ψ(v) = vng(v), with g′(v) = O(vk), k > −1, as v → 0. Then, it
follows that Ψ′(v) = O(vn−1), as v → 0. Hence, by Hölder inequality, the last integral
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above can be estimated from above by the term

pC(w∞) e−(n−m)s

(∫ 1

0

∣∣F−1 −G−1
∣∣2p−1

dρ

) 2p−1
2p

,

where the constant C(w∞) is given by

C(w∞) = ‖w∞‖L∞(R) max{| inf{suppw∞}|, | sup{suppw∞}|},
that depends only on the mass and on the exponent m. We now apply the variation
of constants formula in order to get the rate of convergence to zero of Wp(w(s), w∞).
In order to perform this task, we set for simplicity

Xp(s) =
∫ 1

0

[
F−1(ρ, s)−G−1(ρ)

]2p
dρ.

Hereafter, C denotes a fixed positive constant, independent on p and s. So far we
have proved that

d

ds
Xp(s) ≤ −2p Xp(s) + 2p Ce−(n−m)sXp(s)

2p−1
2p . (3.16)

By Young inequality we get

d

ds
Xp(s) ≤ −2p

(
1− Ce−(n−m)s

)
Xp(s) + Ce−(n−m)s,

and the variation of constants formula implies that

Xp(s) ≤ (Xp(0) + C) e−min{2p,(n−m)}s. (3.17)

In case that n−m < 2p, the exponential rate of convergence in (3.17) can be improved
iteratively by substituting the above inequality in the last addend of (3.16), until it
reaches the value e−2ps. Obviously, the number of steps depends on p. We have thus
proved (3.12). Inequality (3.13) easily follows by letting p →∞.

Figure 3.1 shows the evolution of the p-Wasserstein distance defined in (3.5)
for several values of p between v1(x, t) and v2(x, t), solutions of (2.15) with initial
conditions (2.16) and (2.18) respectively in case f(v) = v2. The integral in (3.5) for
the forthcoming tests is computed by numerical quadrature and we are using the fully
discretized implicit Euler scheme described in Subsection 2.1.

It is interesting to observe that although the distance between the solutions is
only known to be a contraction, this distance is in fact decaying quickly as t → ∞.
Let us point out that the two initial data have zero center of mass and therefore are
well centered. In fact, in [12] we have shown that the Euclidean Wasserstein distance
between the solutions when you fix the center of mass of the initial data decays. In
the case of expansion rate of supports, this was already observed by J. L. Vázquez
in [34].

4. Intermediate asymptotics for general nonlinearities
In this section we summarize a result contained in [11] concerning the long time

behavior for a general nonlinear diffusion equation

∂v

∂t
= ∆f(v), x ∈ RN , t > 0, (4.1)

where f satisfies the the following assumptions:



38 LONG TIME ASYMPTOTICS FOR NONLINEAR DIFFUSION MODELS

(a)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

p=
2

(b)

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

p=
5

(c)

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

p=
15

Fig. 3.1. p-Wasserstein distance Wp(v1, v2).

(NL1) f ∈ C[0,+∞) ∩ C1(0,+∞), f(0) = 0 and f ′(v) > 0 for all v > 0,

(NL2) ∃C > 0 and m > N−2
N such that f ′(v) ≥ Cvm−1 for all v > 0,

(NL3)
f(v)

v1−1/N
is nondecreasing on v ∈ (0,∞).

Assumption (NL1) ensures that (4.1) is well-posed for any initial datum
in L1

+(RN ) (see [6, 38], see also [9, 7] for more qualitative properties of solutions).
Under the additional assumption (NL2), (4.1) enjoys an L1-L∞ regularizing prop-
erty. Indeed, it is proved that the solution to (4.1) with initial datum in L1

+(RN )
satisfies the following in time decay estimate (see [4] for the power law case, [38] for
the general nonlinear case)

‖v(·, t)‖L∞(RN ) ≤ C t−
N
λ ‖vI‖

2
λ

L1(RN )
. (4.2)

Assumption (NL3) implies that the entropy functional associated to (4.1) is dis-
placement convex [28] and thus, the flow map of the nonlinear diffusion (4.1) is a non-
expansive contraction in time with respect to the euclidean Wasserstein distance W2

in probability measures [29, 17, 2].
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As previously observed, in the power law case f(v) = vm self-similar solutions
of the form (2.7) can be seen as stationary profiles of (4.1) written in similarity
variables, i.e., the nonlinear Fokker-Planck equation (2.1) with V (x) = |x|2

2 and f(u) =
um. Moreover, relative entropy tools provide exponential convergence towards such
stationary profiles. In case of a general nonhomogeneous nonlinearity f(v) there are
no time-dependent scalings which allow rewriting (4.1) in the form of (2.1); therefore
it was an open problem how to detect any special solution as a reasonable candidate
to be the universal asymptotic profile for (4.1).

We first define the “temperature” of a solution v to (4.1) as its second moment,
i.e.,

θv(t) =
∫

RN

|x|2
2

v(x, t) dx.

Given a solution v(t) to (4.1) we will study the long-time behavior of

θv(t)N/2v(θv(t)1/2x, t). (4.3)

Similar scalings have been used in the analysis of homogeneous cooling states
in granular media equations (see, for instance, [5, 31] and the references therein).
The nonlinear time dependent scaling (4.3) can be also seen as the projection of the
solution v(·, t) onto the manifold of probability measures with unit temperature (see
also [10])

M =
{

µ ∈ P2(RN ),
1
2

∫

RN

|x|2dµ(x) = 1
}

.

In order to get the above scaling (4.3) well defined for all positive times t, we must
require in addition the following natural assumption on the nonlinearity f , namely
(FT) for any solution v(x, t) to (4.1), it holds,

∫

RN

|x|2v(x, 0) dx < ∞, ⇒
∫

RN

|x|2v(x, t) dx < ∞ for all t > 0.

In [11] we prove that the above assumption is satisfied under reasonable require-
ments for the function f , also including fast diffusion ranges of nonlinearities.

For further reference, we state the following lemma, which ensures that θv(t) tends
to infinity as t → +∞ (see [11] for the proof).

Lemma 4.1. Suppose that f satisfies assumptions (NL1),(NL2) and (FT). It holds

θ(v)(t) ≥ C0t
2

d(m−1)+2 , (4.4)

where C0 depends only on the mass of v.

Our main result is the following:

Theorem 4.2 (Asymptotic profile for general nonlinear diffusions). Given f ver-
ifying hypotheses (NL1)–(NL3) and (FT), there exists t∗ > 0 and a one parameter
curve of probability densities v∞(t), with unit temperature defined for t ≥ t∗ such that,
for any solution of (4.1) with initial data (1 + |x|2)vI ∈ L1

+(RN ) of unit mass and
temperature,

W2

(
θv(t)N/2v(θv(t)1/2 · , t), v∞(t)

)
−→ 0 as t →∞.
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Moreover, the asymptotic profile v∞(t) is characterized as the unique fixed point of
the renormalized flow map S(t)

S(t)vI := θv(t)N/2v(θv(t)1/2·, t),
where v(·, t) is the solution to (4.1) with initial datum vI .

The main ingredient in previous theorem is the proof of a contraction property
for the maps S(t), t ≥ t∗ > 0, obtained as compositions of the flow map for (4.1) and
the projection of the solution onto the unit second moment manifold M. In the case
of the homogeneous nonlinearities f(v) = vm the asymptotic profile v∞(t) is nothing
else but the Barenblatt-Prattle solution at the time in which it has unit temperature
(therefore is constant in time) [32]. Indeed, thanks to our point of view we can gener-
alize the classical notions of self-similarity and source-type solution by means of the
idea of invariance of the solution orbit after projection onto the subset M. The proof
of contraction of S(t) with respect to the euclidean Wasserstein distance makes use
of the L1 − L∞ regularizing effect, needed to control from below the behavior of the
temperature of the solution as t →∞. Then, the proof is based on elementary prop-
erties of the euclidean Wasserstein distance, which allow to generalize our approach
to more situations. Open problems are the eventual convergence of v∞(t) to a unique
limit point as t → ∞, and convergence results in Lp spaces for solutions of (4.1) to
such a limit. We can provide an answer only in case f(v) satisfies assumption (F3) of
the previous section, i.e. when f is a higher order perturbation of a power law vm. In
that case, we could prove convergence towards the corresponding Barenblatt profile
(see [11]).

Theorem 4.3 (Asymptotically homogeneous nonlinearities). Let v(x, t) be the
solution to (4.1) with nonlinearity f satisfying hypotheses (NL1)-(NL3), (F3) and
(FT) above with initial datum vI ∈ L1

+(RN ) such that
∫

RN

[
vm

I (x) + |x|2vI(x) + φ(vI(x))
]
dx < +∞.

Let B(|x|, t) be the Barenblatt self-similar function with the same mass as vI corre-
sponding to the exponent m. Then, the following estimate holds for all t ≥ 0

‖v(·, t)−B(| · |, t)‖L1(RN ) ≤ C (t + 1)−
δ

λα ,

where

λ = N(m− 1) + 2, α =

{
2 if m ≤ 2
m if m ≥ 2,

δ = min{2, Nn},

n is given by condition (F3) and C depends only on the initial datum vI .

4.1. Numerical results. The aim of this section is to compute numerically
the asymptotic profiles v∞(t) and try to clarify if that profile has a unique limit
as t →∞. All the results in this section are obtained by applying a simple fixed point
iteration on the maps S(t) for several values of t chosen uniformly over a time inter-
val [T1, T2]. Therefore, one uses the fully discretized Euler implicit scheme introduced
in Subsection 2.1 to compute the solution to (4.1) for each value of the iteration till
eventual convergence of the fixed point iteration up to a fixed tolerance. Let us finally
remark that all theoretical results were written by projecting the solution onto the
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manifold of measures with unit second moment, of course, everything can be general-
ized by projecting onto the manifold with an arbitrary fixed temperature and we will
do so for numerical convenience.

Figure (4.1) is a benchmark for the scheme since we know theoretically that the
asymptotic profile of the problem vt = (v2)xx is the Barenblatt (2.7) B(x, t∗) with
C fixed by conservation of mass ‖vI(·)‖L1(R) = ‖B(·, t∗)‖L1(R) and t∗ fixed by the
initial second moment: ∫

R
x2vI(x) dx =

∫

R
x2B(|x|, t∗) dx.

We take as initial data vI defined by (2.16) and we have plotted all the v∞(t) fixed
points onto a time interval [5, 14] that match each other and B(x, t∗) as expected.

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

x

w
∞
(x

,t)

Fig. 4.1. Asymptotic profile of (4.1) with f(v) = m2.

Figure (4.2) shows the asymptotic profile for (4.1) with f(v) = v2 +v3 and taking
as initial datum vI(x) defined by (2.16) to fix the mass and the temperature of the
asymptotic profile like before and to start the fixed point iteration. Since this case is
a perturbation of the homogeneous equation with f(v) = v2 in the sense of hypothe-
sis (F3), then the asymptotic profile should approach the Barenblatt corresponding
to f(v) = v2 with initial mass and time fixed by the initial second moment. Results
shown in this figure support this fact since the computed values of the asymptotic
profile v∞(t) converges increasingly to the expected limiting Barenblatt (dotted line
in subplot (4.3)(a) and (b)).

The asymptotic profile of (4.1) with

f(v) =
v2

v2 + 0.5(1− v)2
, (4.5)

is plotted in Figure (4.3). The initial datum vI is defined by (2.16). Note that
f defined by (4.5) satisfies (F2) for 0 ≤ v ≤ 1, then this case is a perturbation
of (2.6) with f(v) = v2. The approach of the asymptotic profile to the Barenblatt
corresponding to f(v) = v2 with the initial mass and time fixed by the initial second
moment (dotted line in subplot (4.3)(a) and (b)) is clear from the subplot (4.3)(b).

Finally in Figure (4.4), we show the asymptotic profile for (4.1), where f is defined
as the primitive of

f ′(v) := v

(
1 + 2 sin2

(
10
v

))
. (4.6)
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Fig. 4.2. (a) Asymptotic profile of (4.1) with f(v) = v2 + v3, (b) Zoom of subplot (a) around
x = 0, (c) |v∞(x = 0, t)−B(x = 0)|.

This case is chosen in such a way that the derivative of the nonlinearity oscillates
near zero. We observe that the computed values of the asymptotic profiles oscillate
and at least up to time 17 they do not stabilize in time. Recently, we have given [20] a
construction of nonlinearities allowing oscillations as t →∞ of the profile for equations
of the form (4.1). It is an open problem to characterize those nonlinearities for which
there is convergence as t →∞ of the asymptotic profile towards a fixed state.

5. An alternative approach to intermediate asymptotics for general
nonlinearities

In this section, we propose an alternative procedure in order to detect the typical
asymptotic state for a general nonlinear diffusion equation as fixed points of some
renormalized flow map. As we shall see, the present approach will narrow the class of
admissible nonlinearities. However, it has the advantage of providing a convergence
result of the renormalized solutions towards a stationary profile. Let us consider again
the nonlinear diffusion equation

∂v

∂t
= ∆f(v), (5.1)

where v = v(x, t), x ∈ RN , t ≥ 0. As before, f : R+ → R+ is a continuous and
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Fig. 4.3. (a) Asymptotic profile of (4.1) with f(v) defined by (4.5), (b) Zoom of subplot (a)
around x = 0, (c) |v∞(x = 0, t)−B(x = 0)|.

strictly increasing function. We consider only positive solutions. We denote again the
temperature of a solution v at time t by

θ(v)(t) =
∫

RN

|x|2
2

v(x, t) dx.

The idea of the present approach is to rescale the solution in a similar fashion as for
the porous medium case. Of course in general the equation does not enjoy a similarity
structure, therefore the choice of the new variables is not trivial. Hereafter we shall
require f to satisfy assumptions (NL1)–(NL3)–(FT) defined in the previous section.
Moreover, for some positive constant C we require
(NL4) f ′(v) ≤ Cvm−1 as 0 < v ¿ 1,
where m is the same exponent as in assumption (NL2). Under the above hypothesis,
we prove that the temperature of the solution v grows like a certain power as t →∞.

Lemma 5.1. Let f : R+ → R+ satisfy (NL1)–(NL4)–(FT). Let v be the solution
to (5.1) with initial datum vI ∈ L1

+(RN ) with unit mass and finite temperature θ0.
Then, there exist two positive constants A1 and A2 such that the temperature θ(v)(t)
of the solution v(t) satisfies

A1t
2
λ ≤ θ(v)(t) ≤ θ0 + A2t

2
λ (5.2)
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Fig. 4.4. (a) Asymptotic profile of (4.1) where f is defined by (4.6), (b) Zoom of subplot (a)
around x = 0, (c) w∞(x = 0, t).

for all t larger than a fixed t0, where λ = N(m− 1) + 2 as usual.

Proof. The first inequality in (5.2) comes from Lemma 4.1, in which (NL2) is
used. To prove the second inequality, we use integration by parts to obtain

d

dt
θ(v)(t) =

∫

RN

|x|2
2

∆f(v)dx = −
∫

RN

x · ∇f(v)dx = N

∫

RN

f(v)dx

= N

∫

RN

f(v)
v

vdx ≤ N

∥∥∥∥
f(v)

v

∥∥∥∥
L∞

≤ N sup
v∈
�
0,Mt

− N
N(m−1)+2

� |f ′(v)| ≤ C(N)t−
N(m−1)

N(m−1)+2 ,

where we have used (NL4) and the L1-L∞ smoothing effect (see [38]). After integra-
tion with respect to the time (5.2) follows.

Let us fix a positive θ0. Let us consider the space of probability measures

Mθ0 =
{

µ ∈ P2(RN ),
1
2

∫
|x|2dµ ≤ θ0

}
,
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endowed with the 2-Wasserstein distance. We define a family of maps {Rα}α≥α0
on

the subspace of probability densities of Mθ0 , with α0 to be chosen later on. For
vI ∈ L1 ∩Mθ0 we then set

RαvI(x) = αNv
(
αx, αλ

)
(5.3)

where v(x, t) is the solution to (5.1) with initial datum vI . In the following two lemmas
we show that Rα is a contraction on the metric space L1 ∩Mθ0 for all α > 2.

Lemma 5.2. Let θ0 > 2A2 be fixed, where A2 is the constant in Lemma 5.1. Then,
for any α > 2, RαvI ∈ L1 ∩Mθ0 .

Proof. It is clear that the scaling (5.3) is mass preserving. We now estimate the
temperature of RαvI by means of the estimate (5.2) in Lemma 5.1. We have

∫
RαvI(x)|x|2dx =

∫
αNv

(
αx, αλ

) |x|2dx = α−2

∫
v

(
y, αλ

) |y|2dy

≤ α−2
[
θ0 + A2α

2λ
λ

]
= θ0α

−2 + A2.

Hence, by choosing θ0 > 2A2 and α > 2 (we recall that the constant A2 depends only
on the dimension and on the function f), the proof is complete.

Lemma 5.3. The map Rα : Mθ0 →Mθ0 is a contraction for all α > 2.

Proof. Let vI,1, vI,2 ∈ L1 ∩Mθ0 , and let v1 and v2 be the solutions to (5.1) with
initial data vI,1 and vI,2 respectively. We recall the following scaling property of the
2-Wasserstein distance W2. Let ρ1, ρ2 be two probability densities on RN , and let
ρµ

i (x) = µNρi(µx), i = 1, 2, µ > 0. It holds

W2 (ρµ
1 , ρµ

2 ) = µ−1W2 (ρ1, ρ2) . (5.4)

The proof of (5.4) is straightforward (see [39, Proposition 7.16]). Using (5.4) we get

W2 (RαvI,1, RαvI,2) = α−1W2

(
v1(·, αλ), v2(·, αλ)

)
.

Finally, we use the non-expansive contraction property of the semigroup v(t) with
respect to the p-Wasserstein distances, which is a consequence of assumption (NL3)
(see [1, 29, 17]) to recover

W2 (RαvI,1, RαvI,2) ≤ α−1W2(vI,1, vI,2),

and the proof is complete.

We now extend the map Rα, α > 2, to the whole space of probability measures
Mθ0 (θ0 > 2A2) by density and uniform continuity with same technique as in [11], so
that each map Rα is a contraction on a complete metric space. Therefore, we conclude
the existence of a family of fixed points v∞α,θ0

(depending on the parameter α of the
map Rα and on Mθ0).

Finally, we prove that the two parameters family {v∞α,θ0
} is actually a one pa-

rameter family, because we can drop out the dependence on the temperature θ0. To
see this, we first observe that each map Rα defined on a space Mθ0 depends a priori
on θ0 too. However, it easily seen that the action of Rα on a function vI does not
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depend on the upper bound θ0 on the temperature of vI . Hence, by uniqueness in the
Banach fixed point theorem we have, for θ0 6= θ1,

v∞α,θ0
= v∞α,θ1

.

We have thus proven that there exists a one-parameter family {v∞α }α>2 such that

Wp

(
αNv

(
α · , αλ

)
, v∞α

) −→ 0 as α →∞, (5.5)

for all solutions v(x, t) to (5.1).
This alternative approach has also the advantage that we can relate the scaled

function αNv
(
αx, αλ

)
to the solution of a partial differential equation. More precisely,

let v be the solution to (5.1) with initial datum v0, we have

αNv
(
αx, αλ

)
= RαvI(x) = Vα(x, 1),

where Vα(x, t) solves
{

∂Vα

∂t = αmN∆f
(
α−NVα

)
,

V(x, 0) = αNvI(αx).
(5.6)

This is easily seen by solving the above problem, by performing the scaling

αNv
(
αx, αλt

)
= Vα(x, t),

and by observing that v solves (5.1). Finally, one immediately realizes that Vα(x, 1)
is exactly RαvI(x). In the homogeneous case f(v) = vm, the equation in the Cauchy
problem (5.6) is again the original equation (5.1) (i.e. the porous medium equation).
This is due to the well known invariance property of the porous medium equation un-
der its similarity transformation. In such a case, one can prove that the family of fixed
points is independent on the parameter α and it coincides with the rescaled Barenblatt
profile which is a stationary solution to a nonlinear Fokker-Planck equation.

As a consequence of what we have proved in this section, for any fixed α we have

v∞α (x) = Vα(x, 1),

where Vα is the solution to (5.6) with initial datum αNv∞α (αx). Hence, one can try to
investigate the limiting behavior of the solutions to (5.6) as α →∞ in order to detect
an eventual limit as α → ∞ for the family of fixed points v∞α . In order to perform
this task, we use the following strategy. We first analyze the asymptotic behavior
with respect to the parameter α of the rescaled solutions Vα under quite general
assumptions on the initial data. In particular, under certain extra assumptions on
f we shall be able to detect a unique limit point V∞ (in some sense to be specified
afterwards) for the family {Vα}α by means of standard energy techniques. Then, we
apply such convergence result to some suitable choice of initial datum vI in order to
obtain convergence with respect to the W2 distance of Rα(vI) as α → +∞ towards
the unique limit point V∞. Finally, we obtain convergence in W2 of v∞α to V∞ by
means of (5.5) and by triangulation. We remark that the parameter α appears both
in the equation in (5.6) and in the rescaled initial datum αNvI(α·), so that we are
dealing both with a problem of continuous dependence on the initial data (with initial
data eventually approaching a measure, as we will see later) and with a continuous
dependence on the nonlinearity function.
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In order to pursue our goal, let us first identify the limit of the rescaled initial
data Vα(·, 0) = αNvI(α·) for some vI ∈ L1

+ ∩ L∞ as α → ∞. We make use of the
following

Lemma 5.4. Vα(·, 0) = αNvI(α·) → δ0 as α →∞ in the sense of measures.

Next, let us characterize those nonlinearities for which αNmf
(
α−Nv

)
admits a

limit as α → +∞ for fixed v > 0. Let us then impose

αNmf
(
α−Nv

) → Φ(v), as α → +∞.

By a change of variable α−Nv = z, we have

lim
z→0

vm f(z)
zm

= Φ(v),

and therefore f(z) ∼ Czm as z → 0 for some constant C . Thus, Φ(v) = Cvm.
This heuristic limit procedure suggests us that we may hope to get some result when
passing to the limit at least in case f behaves like a power in zero. Let us then impose
the following assumption:

(NL5) lim
v→0

f(v)− Cvm

vm
= 0, for some positive constant C.

We now aim to prove some strong compactness for the family of functions
{Vα(·, ·)}α in order to get the limit as α → +∞ in a suitable way. To perform
this task we generalize the standard energy method for the porous medium equation
(see for instance [36]). We shall prove the following lemma.

Lemma 5.5. For any 0 < t1 < t2 and for any α > 2, we have

∫ t2

t1

∫

Rd

[∣∣∣∣
∂

∂t
αmNf(α−NVα(x, t))

∣∣∣∣
2

+
∣∣αmN∇f(α−NVα(x, t))

∣∣2
]

dxdt ≤ C, (5.7)

for some constant C depending only on the mass, on the function f and on t1.

Proof. In what follows we shall assume that the solution Vα to (5.6) is smooth
enough to perform the computations below. The assertion above for a general weak
solution can be obtained by standard approximation. We first observe that the family
of solutions Vα enjoys a bound in L∞([t0,+∞]× RN ) which is uniform with respect
to α. This comes from the usual L1-L∞ regularizing property for nonlinear diffusion,
which is a consequence of assumption (NL2) above. Such bound eventually holds
in L∞([0,+∞] × RN ) if the initial data are bounded. Let us multiply the equation
in (5.6) by α−Nf(α−NVα) and integrate over RN × [t1, t2]. Integration by parts yields

α(m−1)N

∫ t2

t1

∫

RN

∣∣∇f(α−NVα(x, t))
∣∣2 dxdt ≤

∫
F (α−NVα(x, t1))dx,

where F (v) =
∫ v

0
f(ζ)dζ. Then, since f(v) ≤ Cvm as v ∈ [0,M ], we have F (v) ≤

C(m)vm+1 on the same interval. Thus, due to uniform bound in L∞ for the family Vα,
we deduce

α2mN

∫ t2

t1

∫

RN

∣∣∇f(αmNVα(x, t))
∣∣2 dxdt ≤ C, (5.8)
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for some C independent on α and depending on t1 and on the initial mass. In order
to estimate the time derivative term in (5.7) we compute

1
2

d

dt

∫

RN

∣∣∇αmNf(α−NVα)
∣∣2 = α2mN

∫

RN

∇f(α−NVα) · ∇∂tf(α−NVα)dx

= −α2mN

∫

RN

∆f(α−NVα)∂tf(α−NVα)dx = −αN(m−1)

∫

RN

|∂tVα|2f ′(α−NVα)dx.

Let us define G(v) =
∫ v

0
f ′(ζ)1/2dζ. We have, then

1
2

d

dt

∫

RN

∣∣∇αNmf(α−NVα)
∣∣2 = −

∫

RN

∣∣∣∣
∂

∂t

(
αN(m+1)/2G(α−NVα)

)∣∣∣∣
2

dx.

Therefore, integration with respect to t over (t1/2, t2) yields
∫ t2

t1/2

∫

RN

(t− t1/2)
∣∣∣∣
∂

∂t

(
αN(m+1)/2G(α−NVα)

)∣∣∣∣
2

dx

= −1
2

∫ t2

t1/2

(t− t1/2)
d

dt

[∫

RN

∣∣αmN∇f(α−NVα(x, t))
∣∣2 dx

]
dt

= −1
2

(
t2 − t1

2

) ∫

RN

∣∣αmN∇f(α−NVα(x, t2))
∣∣2 dx

+
1
2

∫ t2

t1/2

∫

RN

∣∣αNm∇f(α−NVα)
∣∣2 dxdt.

Thanks to (5.8), we can find a constant C depending on t1 such that
∫ t2

t1

∫

RN

∣∣∣∣
∂

∂t

(
αN(m+1)/2G(α−NVα)

)∣∣∣∣
2

dx ≤ C.

Moreover, assumption (NL4) and the uniform bound in L∞ of Vα imply
∣∣∣∂tα

N(m+1)/2G(α−NVα)
∣∣∣
2

=
∣∣∣αN(m−1)

2 G′(α−NVα)∂tVα

∣∣∣
2

=
[
α

N(1−m)
2

G′(α−NVα)
f ′(α−NVα)

]2 ∣∣∂t

(
αNmf(α−NVα)

)∣∣2

= αN(1−m)f ′(α−NVα)−1
∣∣∂t

(
αNmf(α−NVα)

)∣∣2

≥ c0

∣∣∂t

(
αNmf(α−NVα)

)∣∣2 ,

for some constant c0 depending on the function f and on the initial mass. Therefore
we can recover an L2-estimate for the time derivative of αmdf(αNVα(x, t)) and the
proof is completed.

As a consequence of the previous lemma, by Sobolev embedding, we recover

αNmf(α−NVα(x, t)) ⊂⊂ L2
loc,x,t.

Now, we prove that assumption (NL5) implies in particular, for all M > 0,

lim
α→+∞

sup
0≤v≤M

∣∣αNm[f(α−Nv)− Cα−Nmvm]
∣∣ → 0, as α → +∞. (5.9)
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To see this, let us fix a positive ε > 0. Then, thanks to (NL5) there exists a α0 such
that

∣∣αNm[f(α−N )− Cα−Nm]
∣∣ <

ε

Mm
,

as α > α0. Let us set α1 := α0M
1/N . Then, for all α > α1 and for all 0 ≤ v ≤ M we

have αv−1/N > α0, which implies

∣∣αNmv−m[f(α−Nv)− Cα−Nmvm]
∣∣ <

ε

Mm
≤ ε

vm
,

for all 0 ≤ v ≤ M , and this yields

sup
0≤v≤M

∣∣αNm[f(α−Nv)− Cα−Nmvm]
∣∣ < ε,

for all α > α1, which proves (5.9).
Thanks to (5.9) and thanks to the uniform estimate ‖Vα(·, t)‖L∞ ≤ M , M de-

pending only on the initial mass (which is a consequence of the L1-L∞ regularizing
property), in view of the compactness of αNmf(α−NVα(x, t)), we can extract a se-
quence αn → +∞ such that

{
Vαn

(·, ·) → V∞,

αmd
n f(α−NVαn

) → CVm
∞,

almost everywhere in (x, t), for some V∞ ∈ L2m, as n → +∞. We observe that, in
principle, the sequence Vαn may depend on the time interval [t1, t2]. We can construct
the desired sequence by standard diagonal procedure.

Finally, we prove that all the limit points of the family {Vα(x, t)}α>2 must coin-
cide. Let ψ be a test function on [t1, t2]×RN . By definition of distributional solution
of the equation in (5.6) we obtain, for all α > 2,

−
∫ T

0

∫

RN

αmNf(α−NVα)∆ψdxdt+
∫

RN

Vα(x, T )ψ(x, T )dx−
∫

RN

Vα(x, 0)ψ(x, 0)dx=0.

By taking the limit as α → +∞, by means of the dominated convergence theorem
and in view of lemma 5.4 and by the uniform bound in L∞ for Vα, we obtain

−
∫ T

0

∫

RN

CVm
∞∆ψdxdt +

∫

RN

V∞(x, T )ψ(x, T )dx− δ0(ψ) = 0,

which means that V∞ is the only measure valued solution to the porous medium
equation vt = C∆vm with a Dirac mass as initial datum, i.e., the corresponding
Barenblatt solution (see [30] for uniqueness of solutions with initial datum a measure).
Then, we can state the following assertion

Vα(·, ·) → V∞(·, ·) almost everywhere in (0,+∞)× RN .

Then, there exists a t0 such that 0 < t0 < 1 such that

Vα(·, t0) → V∞(·, t0) almost everywhere in RN .
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Let us then compute the distance between Vα(·, t0) and V∞(·, t0) in L1. For R > 0
we have

∫

RN

|Vα(x, t0)− V∞(x, t0)| dx

=
∫

|x|>R

|Vα(x, t0)− V∞(x, t0)| dx +
∫

|x|≤R

|Vα(x, t0)− V∞(x, t0)| dx

≤
∫

|x|≤R

|Vα(x, t0)− V∞(x, t0)| dx +
1

R2

∫

|x|>R

|Vα(x, t0)− V∞(x, t0)| |x|2dx.

(5.10)

The first term in the last line above tends to zero as α → +∞ by uniform bound in
L∞ for the Vα and because of the dominated convergence theorem. The second term
is bounded by 2θ0/R2, and therefore it is arbitrarily small for large R. This proves
that

‖Vα(·, t0)− V∞(·, t0)‖L1(RN ) → 0 as α → +∞.

So far we did not require any extra assumption on the initial datum vI in (5.6)
more than vI ∈ Mθ0 . As announced previously, let us then perform the special
choice for the initial datum vI ∈ L1

+ ∩ Cb(RN ), vI strictly positive and such that∫
RN vI(x)|x|4dx < ∞. Then, the corresponding rescaled solution Vα(vI) will be con-

tinuous with respect to t. Moreover, in a similar fashion as in (5.10), we can easily
prove that Vα(vI) belongs in C([t0,+∞);L1(RN )) for any α > 2, so that we can apply
a continuous dependence result stated in [7], by taking t0 as initial time. Such results
imply that, Vα converges to V∞ as α → +∞ in C([t0,+∞);L1(RN )). In particular,
such convergence holds pointwise at t = 1, that is

Rα(vI) → v∞ := V∞(·, 1) almost everywhere in RN .

Thanks to our choice of vI , we can perform the following estimate for the fourth
moment of Vα. Integration by parts and assumption (NL4) yields

d

dt

∫

RN

Vα(x, t)|x|4dx=C(N)αNm

∫

RN

f(α−NVα(x, t))|x|2dx≤C(N)
∫

RN

Vm
α (x, t)|x|2dx.

Then, after a change of variable we have
∫

RN

Vα(x, 1)|x|4dx ≤ 1
α4

∫
vI(x)|x|4dx + C(N)θ0,

which implies a uniform bound of the fourth moment of Rα(vI) with respect to α.
Thanks to this, we can recover a tightness property of the family Rα(vI). Namely,
for R > 0 we have

∫

|x|>R

Rα(vI)(x)|x|2dx ≤ 1
R2

∫

|x|>R

Rα(vI)(x)|x|4dx,

and the left-hand side converges to zero uniformly with respect to α > 2 as R →
+∞. We recall that such tightness property plus the weak convergence in the sense
of measures of the family Rα(vI) to V∞(·, 1) (which is a trivial consequence of the
convergence almost everywhere and of the uniform bound in L∞ of Vλ) are equivalent
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to the convergence of Rα(vI) to V∞(·, 1) in the W2-topology (see [39, Theorem 7.12]).
We have thus proven that

W2(Rα(vI), v∞) → 0 as α → +∞. (5.11)

Finally, (5.5) with vI as initial datum together with (5.11) imply W2(v∞α , v∞) → 0
as α → +∞, and therefore, by triangulation

lim
α→+∞

W2(αNv(α·, αλ), v∞) = 0. (5.12)

Therefore, we have proven the following

Theorem 5.6. Given f satisfying assumptions (NL1)–(NL5), for any solution
v(x, t) to the Cauchy problem

{
vt = ∆f(v),
v(x, 0) = vI(x),

(5.13)

with vI ∈ L1
+(RN ) having finite second moment, the following limiting relation holds

W2(αNv(α·, αλ), v∞) → 0,

as α → +∞, where v∞ is the Barenblatt solution to the porous medium equation
vt = C∆vm, with C and m as in assumption (NL5), evaluated at time t = 1.
Moreover v∞ is characterized as the unique limit with respect to the W2-distance as
α → +∞ of the family v∞α of fixed points of the renormalized flow map

vI 7→ RαvI(x) = αNv
(
αx, αλ

)
,

with v(x, t) solution to (5.13) with initial datum vI .

Remark 5.7. We remark that, even though the above theorem holds only in case
f behaves like a power near zero, nevertheless we do not need to assume any extra
hypothesis on the perturbation term f(v)− Cvm more than being faster than vm as
v tends to 0. In the existing literature about this topic, as well as in our Theorem 4.3
in the previous section, the perturbation term need to behave like a power vn with
n > m (see for instance [8]).
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[6] P. Bénilan, Opérateurs accrétifs et semi-groupes dans les espaces Lp, (1 ≤ p ≤ ∞), France-
Japan Seminar, Tokyo, 1976.

[7] P. Bénilan and M. G. Crandall, The continuous dependence on ϕ of solutions of ut−∆ϕ(u) = 0,
Indiana Univ. Math. J., 30, 161-177, 1981.

[8] P. Biler, J. Dolbeault and M. J. Esteban, Intermediate asymptotics in L1 for general nonlinear
diffusion equations, Appl. Math. Lett., 15, 101-107, 2002.
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