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Abstract. In this paper we study the ground state energy of a classical gas. Our
interest centers mainly on Coulomb systems. We obtain some new lower
bounds for the energy of a Coulomb gas. As a corollary of our results we can
show that a fermionic system with relativistic kinetic energy and Coulomb
interaction is stable. More precisely, let HN(oc) be the N particle Hamiltonian

where Δ{ is the Laplacian in the variable xi e R 3 and jRl5..., RN are fixed points
in R 3 . We show that for sufficiently large α, independent of AT, the Hamiltonian
HN(oc) is nonnegative on the space of square integrable functions φ(x 1 ? . . . , xN),
antisymmetric in the variables xb lrgz^JV.

Introduction

Consider the N particle Hamiltonian H*(cή defined by

ί = l
i-RjΓ\ (l.i)

where Δ{ is the Laplacian in the variable xt e R 3 and jRl5 ...,RN are fixed points in
R 3 . We prove the following:

Theorem 1.1. Let Hζ(oc) act on the space of square integrable functions φ(x l 5 . ..,xN)
on R3 i V, antisymmetric in the variables xu l^i^N. Then there exists a universal
constant a such that
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Theorem 1.1 may be regarded as the stability theorem for a relativistic system
with Coulomb interactions. In our proof we require α^r 102 0 0. This is clearly an
absurdly high value for α, and indeed for Theorem 1.1 to be relevant to physics the
result should hold for some α< 137, [2]. Daubechies and Lieb [2] have proved a
result analogous to Theorem 1.1 but with just one electron and many nuclei. In
striking contrast to our theorem, their result holds for α ̂  π/2. Hence it seems quite
possible that Theorem 1.1 does indeed hold for some α< 137.

The first problem of the type of Theorem 1.1 was considered by Dyson and
Lenard, [3, 7]. Let H#(α) be the Hamiltonian obtained from H^(a) by replacing
(— A j )1 / 2 by (— A ), 1 rg i ̂  N. Dyson and Lenard showed that for every a > 0 there is
a constant C(α) > 0 such that Hχ(oc) acting on the space of antisymmetric functions
ψ(Xi, ...,Xjv) satisfies

tf£(α)^-C(α)JV. (1.2)

The Dyson-Lenard proof is very complicated and the constant C(α)
correspondingly bad - of the order of 1014 when α = 1. In 1975 Lieb and Thirring
[10,16] produced a new proof of (1.2) with a much better constant - of the order of
10 when α = l. Their method was to bound Hχ(a) below by the Thomas-Fermi
Hamiltonian and then use the fact that the no binding theorem of Thomas-Fermi
theory immediately implies stability of the Thomas-Fermi Hamiltonian. In 1975
Federbush [4] also obtained a new proof of (1.2). His approach is still quite
complicated but, as was pointed out in [4], the advantage of his method is that it is
more flexible than either the Dyson-Lenard approach or that of Lieb-Thirring.
More recently Fefferman [5] has obtained some theorems converse to the Dyson-
Lenard theorem. He shows that in some sense a wave function which achieves the
lower bound in (1.2) must be made up of about N atoms.

In this paper we exploit the techniques developed by Federbush to prove
Theorem 1.1. In fact the key Lemma 3.1 is taken from his paper [4]. We
concentrate on obtaining good lower bounds on a classical Coulomb gas. Then
Theorem 1.1 is obtained as a corollary of these results. We begin by considering the
simplest of classical gases and eventually study the classical Coulomb gas with
variable density. Our aim is to emphasize that our lower bounds on the Coulomb
gas are merely a combination of some simple estimates on a gas with constant
density together with certain localization procedures. As a final preliminary
remark we note that Theorem 1.1. implies that (1.2) holds for all α > 0. The reason is
that

α' Σ (-4)^<x £ (-Ad1/2-aL2N/4<*'9 α,α'>0. (1.3)

This has been pointed out in [15].
We consider the ground state energy of a classical gas. Suppose the gas consists

of AT particles in R 3 interacting under a potential ^(x) which we assume is positive
definite. The positions of the particles are described by a probability distribution
function P(x l 5...,:%) with one and two point functions ρ(x), ρ(x,y) defined by

N

Q(x)= ΣiP(xw >>Xi-DX,Xi+u '>XN)dXi, (1.4)
i=l

N

Q(χ>y)= Σ ίP(χί, .,Xi-ί,χ,χi+1,.. 9χj-1,y,Xj+1,χN)dχij. (1.5)
ίΦj=l
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The energy of the N particles with distribution P is then given by

=iίί Q(x> y)Φ(x — y)dxdy. (1.6)

Now let us confine the N particles to a cube A in such a way that the density
N/Yo\A = ρ is fixed. Let £# be the infimum of <f (P) taken over all P supported in
AN. Then we define the ground state energy of the gas at density, ρ, <ί(ρ), by

ί(ρ)=liminf£N/ΛΓ. (1.7)

Our first result here is to show that

lim Γ<ί(ρ)-iρ J φ(x)dx] = - i^(0), (1.8)
<?-oo|_ IR3 J

for potentials φe l}nΠ°. The identity (1.8) was essentially proved in Lewis et al.
[8]. Here we prove it in a slightly different manner which relates to our subsequent
work. Results of the genre of (1.8) were first obtained by Lieb [11].

Next we wish to consider a Coulomb gas so φ(x) = l/\x\. In this case the integral
in (1.8) is infinite, so we must subtract it off by using equal numbers of positive and
negative charges. Hence our Coulomb gas consists of N negative particles
described by a probability distribution P1(xί, ...,xN) and JV positive particles
described by a probability distribution P 2( xi> •> *N) Thus in this gas the negative
particles are independent of the positive. Let Qχ(x)9 Qχ(x, y) be the one and two point
functions corresponding to P1 and ρ2(x), Q2(x,y) be the one and two point
functions corresponding to P2. Then the energy of the Coulomb gas is given by

• (1.9)

Now confine the IN particles to a cube A with density N/YolΛ = ρ and assume P2

is a constant so the positive particles are assumed to form a uniform background.
Let EN be the infimum of S{PU P2) taken over all P1 supported in AN. Then the
ground state S{Q) for the Coulomb system is defined just as in (1.7). We shall show

t h a t f ( ρ ) ^ - 1 . 5 ρ 1 / 3 . (1.10)

The result (1.10) has already been obtained by Lieb and Narnhofer [13, 17] even
with a slightly better constant (1.45). Our approach is rather different and
generalizes to other singular potentials. The key property of the Coulomb
potential seems to be that it can be written as a sum

φ(x) = φ^(x) + φM(x)9 (1.11)

where the potential φ{1) is pointwise positive and has L1 norm I I ^ H i ^ ε 2 for any
arbitrary ε>0. The potential φ{co) is positive definite and has L00 norm |i^ ( o o ) | |0 0

^ C/ε, where C is a constant independent of ε. Evidently any function φ(x) which
has the property (1.11) must be both positive and positive definite and lie in the
space ΰw. It would be of interest to know if the converse were true.

It is not possible to prove (1.10) by using the fact that the first two integrals in
(1.9) are positive and just bounding the third integral. In fact if we do this and
assume Qι(x) = ρ we get the bound

3' (1.12)
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Thus this approach gives a bound which is a factor iV2/3 larger than we want. For
arbitrary distributions P l 5 P 2 , let us bound <ί(P l 5 P 2 ) from below by using the
positivity of the first two integrals of (1.9) and applying the weak Young inequality
to the third. We wish also to exhibit the factor JV2/3 which should be the price we
have paid for not taking into account the first two integrals of (1.9). We have the
following:

Lemma 1.2. Let p, q, α, β satisfy the relations

α + j 8 = l , pa + qβ = 4β9 (1.13)

P,q^l, (1-14)

paSU qβύU (1.15)

where if an equality holds in (1.14) then strict inequality must hold in (1.15). Then
there is a constant CPtq9 depending only on p, q such that

${P1,P2)^-Cp,qN
2^\\QA7\\Q-2\\t • (1.16)

Proof. Applying the weak Young inequality to the third integral of (1.9) we have

< f ( P 1 ? P 2 ) ^ - C | | ρ i | U | ρ 2 | | s , (1.17)

where r and s are related by

- + - = !> r,s>l. (1.18)
r s 3

Since the L1 norm of ρ1 is N we have by Holder's inequality that

\\QΛr£Nllr-"\\Qi\\F, (1-19)

where

α = (r-l)/(p-l)r, p^r. (1.20)

Similarly we have

WQiWaNV'-iΊlQtWΫ, (1.21)

with

β = (s-l)/(q-l)s, q^s. (1.22)

Suppose now that p, q, α, β satisfy the conditions of the theorem. Then we may
define r, s by (1.20) and (1.22). The condition (1.15) guarantees that p^r, q^s.
Assume for the moment that strict inequality holds in (1.14). Hence r, s > 1, and
from (1.13) it follows that (1.18) holds. Thus (1.16) follows from (1.17), (1.19), and
(1.21). Q.E.D.

In Sect. 3 we show that if we take into account the two positive integrals in (1.9)
then just as in the simple case already discussed we may drop the factor iV2/3 in
(1.16). Thus we have

Theorem 1.3. Let p, q, a, β satisfy the conditions of Lemma 1.2, and CPtq be the
constant occurring in the lemma. Then there exist universal constants Cx and C2 such
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that

ί ( P 1 , P 2 ) ^ - [ C 1 C p > β + C 2 ] | |ρ 1 | | 5 β | | ρ 2 | | f . (1.23)

In the appendix we obtain the values C1 = l035 and C2 = l0162. These are
clearly very bad values for the constants since two cases of Theorem 1.3 are already
known with much better constants. The cases known are for p = q = 4/3 with Pί

= P 2 and for q = 1, which implies p>3/2. In the former case the result is Lieb's
exchange energy inequality [9]. Lieb and Oxford [14] obtained the value 3.36 for
the constant. In the latter the result is due to Lieb and Thirring [10, 16] and the
constant is also of the order of 10 when p — 5/3.

In Sect. 4 we obtain another lower bound on the Coulomb gas which is rather
different from Theorem 1.3. It is given by

Theorem 1.4. There is a universal constant C such that

(1.24)

The value for C we obtain in the appendix is given by C = 10x 9 8. Theorem 1.4 is
in a sense a version of Theorem 1.3 corresponding to the critical values q=l,
p = 3/2.

It is a short step from Theorem 1.4 to the proof of Theorem 1.1. Suppose the
probability distribution Px is obtained from a fermion wave function ψ, so

P1(x1,...,xN) = \ψ\2(x1,...,xN). (1.25)

A theorem of Daubechies [1] tells us that the energy of a perfect fermion gas with
wave function ψ is bounded below by a constant times the second term on the right
in (1.24). A second lemma tells us that the energy of this gas is also bounded below
by a constant times the first term in (1.24). This lemma was proven for us by Barry
Simon. The corresponding result for the Laplace operator was obtained by the
Hoffmann-Ostenhofs [6]. Putting these two results together with Theorem 1.4
proves Theorem 1.1.

2. The Case of Fixed Density

We turn to the proof of (1.8). Our main lemma, which will also be of importance
later is the following:

Lemma 2.1. Let k(x, y) be a positive definite kernel and P(x 1 ? . >,XN) be an N particle
probability distribution with one and two point functions ρ(x), ρ(x,y). Then

Jί fe(x, y)Q(x, y)dxdy ^ \\ k(x9 y)ρ(x)ρ{y)dxdy- J k(x, x)ρ(x)dx . (2.1)

Proof. Define numbers eb 1 ̂  i ̂  IN, by

et=l, l^iSN; e~-l, JV+l^ι^2iV. (2.2)

Since k(x, y) is positive definite we have

2N

Σ e^μx^x^O. (2.3)
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If we integrate (2.3) against the product P(xu . ..,xN)P(xN + 1,..., x2N) we obtain the
inequality (2.1). Q.E.D.

Lemma 2.2. Let S{Q) be defined by (1.4). Then we have

£(ρ)^iρ$Φ(x)dx-^φ(O), (2.4)

provided the function φ(x) is positive definite and in l}nΠ°.

Proof. We take fc(x, y) = φ{x — y) in Lemma 2.1. Thus we have

^ i ί j φ{x-y)ρ{x)ρ(y)dxdy-{Nφφ). (2.5)
ΛΛ

Let Λh be an h neighbourhood of A, so

Λh = {x:d(x9Λ)^h}. (2.6)

The if χΛh is the characteristic function oϊAh we have by the positive definiteness of
Λh the inequality

Γί ί φ(x-y)Q(x)ρ{y)dxdy] [_\\ φ(x-y)χΛh(x)χAh(y)dxdy~]
IΛΛ J

^ [if ̂ (x - y ) z , h W ρ ( y ) ω y ] 2 . (2.7)

Hence from (2.5) we have that

δ{P) ^ i ϋ ί ̂ (x - y)z^hWβ(y)dχdy]2/[ίί ^(x - y)iΛh^)iΛh(y)dχdy-] -$Nφ(p) .(2.8)

Now for any δ > 0 we can choose ft independent of N, A such that for any ye A

J ^(x)dx-(Sg ί ^ ( x - y ) d x ^ ί ^(x)dx + (5. (2.9)
R 3 yl h IR3

By choosing δ small enough in (2.9) we see from (2.8) that for any η>0 we have

*(Q)^iQlΦ(x)dx-iφ(O)-η. (2.10)

Letting fy-»O proves the lemma. Q.E.D.

Lemma 2.3. With $(ρ) as in (1.4) we have

(2.11)

Proof Let i/;1(x), ...,ψN(x) be N orthonormal wave functions and form the
Hartree-Fock wave function

ψ(xl9...9xN)=-7=detψi(xJ). (2.12)
]/JV!

Then if we take P = \ψ\2 it is well known that the two point function ρ(x, y) is given
by

κ,y) = ρ(x)ρ(y)- Σ (2.13)

Now given the cube A with JV/VolΛL = ρ, we divide A into N equal subcubes and
define the ψi(x) as constant functions supported on the subcubes. In this situation
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=zρ and as ρ—>>oo the ψi(x) are supported on increasingly smaller cubes. Thus,
using the fact that φ(x) is continuous at x — 0 we obtain the result (2.11). Q.E.D.

The previous three lemmas prove (1.5). The use of the Schwarz inequality in
(2.7) is taken from Lewis et al. [8]. Next we state a lemma which appears trivial but
is yet important.

Lemma 2.4. Suppose the potential φ(x) is poίntwίse positive. Then we have ${ρ) ̂  0.

Observe that Lemma 2.2 applies for potentials which are positive definite while
Lemma 2.4 applies for potentials which are pointwise positive. To prove (1.10) we
use both of these lemmas by writing the Coulomb potential as a sum (1.11) of a
positive potential and a positive definite potential. There are many ways of doing
this. We choose the following:

and so we have

\l\x\ = φψ{x) + φ^\x), (2.15)

where

A ^ [ J p \ > (2 16)

oo 1

(2.17)

Evidently we have

XQ), (2.18)

where $ψ(ρ) is the ground state energy per particle corresponding to φγ\ and
similar ${™\Q) corresponds to φ{™\ From Lemma 2.4 we have

S^\ρ)^-2πρλ, (2.19)

since we must take into account the attraction from the background charge. From
Lemma 2.2 we have

4^fe)^- l/(4π/ l ) 1 / 2 . (2.20)

In (2.20) the infinite integral in (2.4) is subtracted off by means of the background
charge. Thus we have

£(ρ)^ -2πρλ- \/(4πλ)1/2 . (2.21)

If we optimize (2.21) with respect to λ for λ >0 we obtain (1.10).
It is easy to see from the above procedure how to generalize the result (1.10) to

other singular potentials. Although the method employed in [13] to obtain (1.10)
also uses a splitting similar to (1.11), this fact is not mentioned as the important
principle involved.
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3. The Coulomb Gas with Variable Density

Here we turn to the proof of Theorem 1.3. The method is just like the proof of (1.10)
except that we need to vary the parameter λ in (2.21) as ρ varies since λ is
proportional to ρ~2/3.

There are two important localization lemmas involved. The first is Lemma 2.1
and this lemma is already required in the proof of the exchange energy inequality
[14]. The second localization lemma is needed in the case when Pλ Φ P 2 and is
taken from Federbush [4].

Lemma 3.1. Let Xi(x), i e if, denote the translates of an arbitrary C00 function with

compact support over the lattice <£ in IRA Then there is a constant C > 0 such that the

kernel -\χ-y\ Γ V / w ^ /o i\

is positive definite.

Proof The Fourier transform of e~ ! x | is a constant times (1 + fe2)"2. Now we have

ίί f(χ)e~^x~y^f(y)dxdy= I |/(/c)|2(l -\-k2) ~2dk. (3.2)

Hence we need to prove that
If \ 2

(3.3)
y l + f c 2 ' v π J

Thus it is sufficient to show that for an arbitrary function g(x) we have

>l • (3.4)
ί

The inequality (3.4) however follows from the fact that the χt are translates of a
function with compact support. Q.E.D.

Now let f(x) be a nonnegative function to be chosen later and put

00

where χ(t) is the Heaviside function χ(t) = 1 if t > 0, χ(ί) = 0 if ί ̂  0. Observe that k^
is analogous to ^ ( o o ) in (2.17) except that instead of (2.14) we are using the
representation ^

l/|x|= ] e~u^du. (3.6)

Let k^x, y) be given by
ki(x,y) = \x-y\-ί-ko0(x,y), (3.7)

so kx like φ{1) in (2.14) is point wise positive while k^ like φ{co) is positive definite. We
apply Lemma 2.1 to obtain

l9 P2) ̂ i Π k^x, y)Q1(x)Q1(y)dxdy

-ίί Qi(x)Q2(y) [fcoo(̂ ^ y) + fciOc, y)~]dxdy

+ 2 Π fcoo(^? ̂ i W

. (3.8)



Ground State Energy of a Classical Gas 447

Hence if we use Lemma 3.1 we have

where

0

Σχi(ux)χi(uyXρ1(x)-ρ2(x)-]ίρ1(y)-ρ2(y)¥xdy, (3.10)
ise

(3.11)
\χ~-y\

h=S fWlQiW + QiWVx. (3.12)

We define the function f(x). First we assume N is large so that Theorem 1.3 is
not just a corollary of Lemma 1.2. We put

(3.13)

and define f(x) as the largest number λ such that

ί (3.14)

where iV0 is a number to be fixed for all large N later. Thus f(x) is an average value
of the one third power of the density at x.

We consider the sets

9 n = 0, ± 1 , . . . . (3.15)

F o r each x e Enlet Bx be the ball with center x and radius 2~in + 1). Then it is evident
that

i ρ(y)dyS2N0, (3.16)

2"- 2 </(j ;)^2" + 1

? yeBx. (3.17)

The balls ^ x cover the neighbourhood of En with radius 2 ~(π + 2 ) so we may choose a
subcover which have finite intersection number smaller than some universal
constant. Let us denote the subcover by Bn i 51 :g i ̂  κ (ft). We say that a ball B = BnΛ

belongs to the set £f if

(3.18)
B

where Co is a universal constant to be given in the following lemma.

Lemma 3.2. There is a universal constant Co and a constant K such that

hύK ΣjJ{y)Q(y)dy. (3.19)

Proof. Evidently we have

oo κ(n)

2 " + 1

n= - o o i = 1
ύ Σ Σ 2 " + 1 ί ρ(y)dy. (3.20)
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F o r the ball Bni, let B*Λ be the ball concentric with Bni but with radius 1/2" ~1.

Then from (3.14) we have

ί Q(y)dy^2N0. (3.21)

Observe that

f(y)>2n~\ yeB*Λ. (3.22)

Since the sets BnΛ have finite intersection number, l ^ z ^ / φ i ) , so also do the sets
B* b l ^ z ^ κ(n). Let the intersection number of the B* t be smaller than 2y~1, where
y is some universal constant, y ̂  1. Then we may choose a universal constant C o

such that one of two possibilities holds: Either there is a set # „ - i j , Bn>j,. ..9Bn + yJ

in £f which intersects B*\u or the integral of ρ(y) over the set

oo κ(m)

U U BmJ (3.23)
1

is larger than the integral of ρ(j/) over BnΛ.
We therefore conclude that

Σ ί ^ω^y^^ " Σ Σ ί Q(y)dy
i=lBn>ι m = n~l BmίJeS^ B W j J

+2y_x « κg) j

where v4 is a universal constant depending on y.
Now if we multiply (3.24) by 2n +1 and sum with respect to n we have - denoting

by / the right side of (3.20) - the inequality

Σ ίf(yMy)dy+ii- (3.25)
Beόf B

The result follows from (3.25). Q.E.D.

Lemma 3.3. Let p, q, α, β satisfy the conditions of Lemma 1.2. Then there is a
constant C(N0) depending on No and a universal constant K such that

I | ρ 2 | | f + κ Σ \f(y)Q(y)dy. (3-26)
ey B

Proof. We write the integral

55Qψ)eMe-fi*)\*-y\dxdy= ff + Π . (3.27)
\x y\ l | \ \

Since the sets BnΛ cover a neighbourhood of En with radius 2~(n + 2) and for x e En

we have f(x)>2n~1, it follows that the integral in (3.27) over |x — y\< 1/8/(x) is
bounded by

Σ Σ ί J ψίψdxdy. (3.28)
π = - o o i=lBn>iBn!ί \X — y\

Since the sets βw>1 , — oo < n < oo, 1 ̂  z ̂  κ:(n), have finite intersection number we can
apply the Young inequality to each term in (3.28) just as in Lemma 1.2, using the
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fact that
J ρ(y)dy£2N0. (3.29)

Bn,i

Then a further application of the Holder inequality with exponents 1/α, ί/β yields
the first term in the right side of (3.26) as a bound on (3.28).

To deal with the second integral in (3.27) we define for integers r= 1,2,...,

<*r=Sf(x)Qi(x) ί Q2(y)dy* (3.30)
\χ-y\<r/f(χ)

Evidently the second integral is bounded by

00

7 f l l + Σ are~r+x. (3.31)

Let Unί(r), lίgi<Ξκ;(n)5 be the ball concentric with Bnί but with radius
(r+ 1V2""1'. Then, in view of (3.15), we have that

Or^ Σ 2n + 1 Σ ί βxCx)^ ί Q2(y)dy. (3.32)
«=-oo i=lδ n ι , Unji(r)

Next, observe that the sets Unti(r), l!gzgκ:(n), have finite intersection number
smaller than a universal constant times r 3 and that UnJ can only intersect E} for j
which satisfy

2 ^ 2 M ~ 7( 2) (3.33)

Let the set SHtitk be defined by

Sπ,u = ί/:B f c J πl7 I I i i + 0}, (3.34)

and R be the smallest integer such that

2 * ~ 1 ^ r + 2. (3.35)

Then it follows from (3.33) and (3.17) that if

k<n-R, (3.36)

then Sn>itk is empty. Furthermore, by the finite intersection property of the sets
Un>i(r), l ^ z ^ f φ i ) , it follows that any integer;, l ^ ^ κ (k), occurs at most a
universal constant times r 3 in the disjoint union

κ{n)

U S Λ t i t k . (3.37)
ί=l

From (3.36) we have that

00

ί Q2(y)dyύ Σ Σ ί Q2(y)dy. (3.38)
Un,ι(r) k = n-RjeSn!i,kBk!j

Hence for any integer m0 we have

m o — 1 oo κ(n)

arί Σ Σ 2«+1 Σ ί Qx(x)dx Σ ί ρ 2 (y)^

00 K(«) 00

+ Σ Σ 2"+2iV0 Σ . Σ ί e(y)dy, (3.39)
n = — oo i — 1 k — mo + njeSn^i^Bh^j
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where in the second sum we have used (3.29). From (3.37) we see that the second
sum in (3.39) is bounded by

oo κ(k)

cr3N02-m° Σ Σ2k+i ί Q(y)dy, (3.40)
k = - oo j = 1 Bu, j

where c is a universal constant. Now from Lemma 3.2 we have that (3.40) is
bounded by

κcr3N02~m° Σ Sf(y)Q(y)dy. (3.41)
BeS? B

Next we show that

Σ 2" + 1 KΣ ί βi(χ)dx Σ ί Q2(y)dy
n=~oo i = l ΰ Π ) , j e S n , i , n + t B n + t,j

^C(N0)r323^^\\ρi\\^\\ρ2\\γ9 (3.42)

where the constant C(N0) depends only on JV0. To do this first observe that the
cardinality of Snjtn+t is bounded as

| S Λ f i f n + t | ^ c 2 3 ί r 3 , (3.43)

for some universal constant c. Now the sum in (3.42) is bounded by
κ(n)

C(N0) Σ 2 " + 1 Σ Γ ί QAxtfxΎ" Σ Γ ί <
n=-co i=l\_Bnti J jeSntlfn + t[_Bn + t,j

£C(JV0)2-3««-1> Σ ΣϊίQάxYdxΎ Σ Γ ί Q2(y)qdyΎ
n= —ao i=l\ Bn i /eS« , n + t \ Bn + t ,

L n> ι J J n , ι , n + t | _ " n t t , ; j

^C(N0)2-3««-1>'Γ Σ Σ? Σ ί e i W p ^
[ _ n = — oo ί= 1 i e S n ; l ) n + t β n ) l

Γ αo κ ( ι ι ) Ί i S

• Σ Σ Σ ί QiiyYdy]
\ _ n = - o o i = 1 j e S n i i f n + t B n + t,j J

r^^-^llρ^lfllρ^lf. (3.44)

Now if we choose m0 such that

JV o 2- m o ^l, (3.45)

we can bound ar as in (3.26). Then summing with respect to r as in (3.31) yields the
result. Q.E.D.

Lemma 3.4. Given a constant K we can choose the number No such that

h-κ Σ U(y)e(y)dy^~C(N0)\\ρίr/\\ρ2\\f. (3.46)
B<=S? B

Proof. We first define the lattice if of Lemma 3.1. A vector i e i f if 128/ is a vector
with integer components. Thus any point x e R 3 is less than a distance 1/128 from
some point of if. Let φ(x) be a C°° function which is such that 0 :g φ(x) ̂ l , x e R 3 ,
and

ψ(x)=l if M^9/64; ^(x) = 0 if |x |^5/32. (3.47)

Then the functions χt{x) are translates of φ(x) through the lattice ̂ £.
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We write lx in (3.10) as

J t = Σ ί du. (3.48)
n= — oo 2n~ 3

Next consider a ball #„ k, 1 ̂ k^κ(n), which has radius 1/2"+1. Then there is a
vector ie<£ such that z/2*~2 is less than l/2" + 5 from the center of Bnk.
Furthermore

χi(2n-2x) = φ(2n-2x-ί) = φ(2n~2lx-i/2n~2^. (3.49)

Thus χ i (2 π " 2 x)=l if xeBnk and χ (2"~2x) = 0 if x£J3*fc, when B*k is the ball
concentric with Bnk but with radius 3/2"+ 2 . One can also easily see that if

2n'2^uUΪ~ύύ^\ (3.50)

then there is an ί e 5£ - which may vary with u - such that xt(ux) =\\ϊxeBnk and

χi(ux) = OiϊxφBlk.
Now suppose B = Bn fc e 9*. Then, in view of (3.18) we can assume without loss

of generality that

ί ρ i 0 / ) ^ J V o / C o . (3.51)
B

If we also have

1 ρ2(y)dy^N0/2C0, (3.52)

we shall say B e ̂ ' . If we fix n and let fc vary, 1 ̂  fc ̂  κ(n), then it is clear by the finite
intersection property of the B* k that any i e <£ which occurs with xt(ux) = 1 for
xeBnk, occurs only finitely many times. We therefore conclude that for u
satisfying (3.50) there is a universal constant C such that

- « ] Σ Xi(

. (3.53)

Now if we use (3.48) and choose JV0 large enough we may conclude from (3.29)
that

i i ^ Σ ϊf(y)Q(y)dy. (3.54)
β 6 y B

It remains for us to deal with B $ £f'. In that case we see that

Σ ϊf(y)Q(y)dyS Σ 2"+ 1 J Q(y)dy
y\y B B = B n ! ^ ^ "

oo κ(n)

n=-ook=l \_B%,h

(3.55)

for some constant C(N0) depending on No. Now we can estimate the last sum in
(3.55) just as before to obtain (3.46). Q.E.D.

Finally we observe that Theorem 1.3 follows from (3.9) and the previous
lemmas.
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4. Stability of the Relativistic System

We turn to the proof of Theorem 1.4. We define the operator H1 to be

H^i-Δf12, (4.1)

and assume that QX{X) is such that Qι(x)1/2 is in the domain of Hί. First we show
that

l/2\

+ ^ Σ Sf(y)Q(y)dy (4.2)
β ey B

To show (4.2) we must estimate (3.42) somewhat differently. We divide the sets
B = Bn i into two kinds. We say B e si if

hi(x)dx^l. (4.3)

We write (3.42) as
Σ + Σ (4.4)

Best Bφjtf

Then we see that

Σ SC(N0)23tr3 Σ 2 " S Σ ί Qi(x)dx
Bejrf n-~oo ί=l Bn;ie<β? Bnjl

w=-oo i=

(4.5)

on using Holder's inequality and the finite intersection property of the balls Bn t.
We have also

oo κ(n)

Σ ^ Σ Σ Σ 2" ί Q2(y)dy
n = — o o i— 1 j e S n , ι > n + t B n + t , j

1 + 1 ί Q(y)dy τ (4.6)
n = — oo i =

where c is a universal constant. Hence, on using Lemma 3.2, we have that

r* Σ ί fiy)Q(y)dy, (4.7)
r ( 0 ) ί

where K: is a constant independent oΐN0. Thus on summing (3.31) we shall get the
estimate (4.2) provided we can deal with (3.28).

To do this we use the Fefferman-Phong technique [5]. Let Qo be a large cube in
R 3 and make a dyadic decomposition of Qo. For a function u e L2(β0) and a dyadic
subcube Q of Qo, let ύ(Q) be the projection of u onto the functions which are linear
+ constant on the 8 subcubes of Q and orthogonal to the functions linear
+ constant on all of Q. Then if uel3(Q0) is orthogonal to functions linear
+ constant on all of Qo we have

u= Σ w(0 (4.8)
(KQo
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Now from [5] we see that if u is in the domain of Hλ then there is a constant C such
that

(u,HίU>^C Σ (d iamρΓMWδ)! ! 2 . (4.9)

For a ball Bn t - with radius 1/2"+1 - let B% t be the ball concentric with Bn t but
with radius 3/2"+ 2

5 so the balls B* t have the finite intersection property. Suppose
Bn j is contained in β 0 . Then Bn t is covered by a finite number of dyadic subcubes
of <20, each with the same diameter ~ 2 ~ " and contained in B*Λ. Let Q be one of
these subcubes and PQ be the projection operator onto linear + constant on Q.
Then we know from [5] that

^ c Σ (diamβO-Ίj/ρΛGOII2, (4.10)
Q'CQ

for some constant C independent of y and β.
It is easy to see that

^ j ρ i (x)dx, (4.11)

with C independent of Q. Hence if BnΛ is covered by cubes β l 5 . . . , β L , we conclude
that

ί ί Qf)Q2^ dxdy^CT ί ρi(χ)Λc ί
Bn,ιBn}l \X — y\ B%tl B*;i

+ C(N0)Σ Σ
J^lQ'CQ

where here we have used (3.29).
Next we sum (4.12) with respect to n, i with BnΛ C Qo. We may estimate the first

sum just as was done in (4.7). To estimate the second sum in (4.12) observe that by
the finite intersection property of the sets B* t that any dyadic cube Q we have
chosen to cover Bn t occurs only a finite number of times as we vary n, i. The result
(4.2) then follows from (4.9).

To complete the proof of the theorem we shall replace the right side of the
inequality (3.46) by

(4.13)
R 3

We easily observe that, instead of the estimate (3.55) we have

SC(N0) J Ql(x)^3dx. Q.E.D. (4.14)
R 3

Finally we complete the proof of Theorem 1.1 by bounding below a fermion gas
in terms of the density. Let HN be the N particle Hamiltonian

HN= Σ ( ~ ^ ) 1 / 2 (4.15)
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acting on wave functions ψ(xx,...,xN). Here Ai is the Laplacian in the xi variable.
The following lemma is due to Daubechies [1].

Lemma 4.1. Let ψ be a normalized Fermion wave function in the domain of HN and
with one point function ρ(x). Then there is a constant C independent of N such that

<ψ,HNψy^Cl Qixf'^dx. (4.16)
R3

We are indebted to Barry Simon for the proof of the following lemma. The
corresponding result for the Laplace operator has been proved by the Hoffmann-
Ostenhofs [6].

Lemma 4.2. Let ψ be a normalized wave function in the domain of HN and with one
point function ρ(x). Then

2 > . (4-17)

Proof Let the kernel fe(x, y) be defined by

N _

k(χ,y) = Σ $ψ(χu ...iXi-uXiXi+u...,χN)ψ(χu...,Xi-uy,χi+u.. ,χN)dXi
i=l

(4.18)

Then it is easy to see that k(x,y) is a positive definite kernel and

fc(x,x) = ρ(x). (4.19)

Since k is positive definite we have from Schwarz's inequality,

|fc(x, y)\ S k(x9 x)1/2k(y, y)1/2 . (4.20)

The key observation is that the operator exp( — H^) has positive integral
kernel

* Γ H l W ) (4.21)
Thus if we put

N

^2v(0 = Σ < ( 'φj e x P(~(~^i) 1 / 2 0ψ)5 (4.22)

and let

F(ί) = <ρ 1 / 2 ,exp(-Jί 1 ί)ρ 1 / 2 >, (4.23)

we see that

FN(0) = F(O) = N. (4.24)

Now for t > 0 we have from (4.20),

^ JJ e~Hit(x, y)k(x, x)ll2k(y, y)1/2dxdy = F(t) . (4.25)

We conclude therefore from (4.24), (4.25) that

- dFN/dt\t = 0 ̂  - dF/dt\t = 0. (4.26)
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However the left side of (4.26) is just the left side of (4.17) and the right side of (4.26)
is just the right side of (4.17). Q.E.D.

The strategy in the proof of Lemma 4.2 has been adopted from Lieb [12]. The
proof of Theorem 1.1 now easily follows from Theorem 1.4 and the previous two
lemmas.

Appendix: Computation of Constants

Here we compute the constants given in Theorem 1.1, Theorem 1.3 and Theorem
1.4. First we define the balls Bn h 1 ̂  i ̂  κ(ή), n = 0, ± 1,.... For each x e En, let ωx

be the ball with center x and radius 2 ~{n + 3 ). Let ωn> b 1 ̂  i ̂  κ (n), be a maximal set
of disjoint balls ωx. We define Bn t then as the ball concentric with ωni but with
radius 2~(M + 1). It is easy to see that the balls Bnh l^ΐ<Ξκ;(n)5 cover the
neighbourhood of En with radius 2~(n + 2). In fact by definition of the ωni every
point x e En is a distance smaller than 2~{n + 2) from the center of some ωnΛ. Thus
any point in the 2~(M + 2 ) neighbourhood of En is a distance smaller than 2~{n + ί)

from the center of some ωnΛ. The point is therefore contained in Bni.
We compute the intersection number of the balls BnJ, 1 ̂  ί^κ(n). Suppose x is

in r balls Bn t Then the r disjoint balls ωni are contained in the ball with center x
and radius 5 2~~(n + 3). It follows therefore that

4 π [ 2 - ( M + 3 ) ] 3 ^ | π [ 5 2~(" + 3 ) ] 3 . (A.I)

Hence the intersection number of the balls Bn b 1 ̂ i^κ(ή), is at most 125. Now
suppose x G IRA Then xeEm for some integer m. In view of (3.17) the point x does
not lie in any ball Bni with \n — m\ > 1. Hence x lies in at most 3 125 = 375 balls.
Thus the intersection number of the balls Bn b 1 ̂  i ̂  κ(ή), n = 0, ± 1,... is at most
375.

We consider Lemma 3.2. With the balls Bni defined above we may take for C o

and K the values

C o = 8.45 10 1 7; κ = 7.5 10 6. (A.2)

In Lemma 3.3 we obtain, with Cpq as in Lemma 1.2,

C(N0)= 1.5- l03N2

0

/3Cp,q+ 1.7- 1 0 7 i v 7 , (A.3)

and the universal constant K in (3.26) is

κ = 1 . 1 . 1 0 1 4 . (A.4)

In Lemma 3.4 we take φ(x) be

^(x) = G(10-64|x |), (A.5)

where G(t) is the function defined by

G(t) = 3θ\s2(s~l)2ds, O ^ ί ^ l ,

(A.6)
G ( ί ) = 0 if ί < 0 , G ( ί ) = l if ί > l .
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For the function φ(x) and the lattice S£ defined in Lemma 3.4 we find the constant
C in Lemma 3.1 to be given by

C=1.8 1CΓ6. (A.7)

It is clear that the value of K we wish to take in the statement of Lemma 3.4 is a sum
of the values of K given in (A.2) and (A.4). With this value of K the number No turns
o u t t o b e JV0 = 5.6 10 4 6 . (A.8)

The constant C(N0) in the statement of Lemma 3.4 is given by

C(ΛΓ0)=1.5 1027JVo1/3. (A.9)

We may now compute the constants Cί and C2 in Theorem 1.3. With No given
by (A.8) we find from (A.3) that

Ci-8 .4-10 3 4 ; C2 = 3.7 10 1 6 1 . (A.10)

Next we compute the constants in Theorem 1.4. First we consider the
inequalities (4.9) and (4.10). It is in fact sufficient to use only functions which are
piecewise constant on the subcubes of Qo. To compute the constant in (4.9) we need
to construct a function similar to G(t) in (A.6), but with four continuous
derivatives. If we use a construction similar to G(t) we obtain for C in (4.9) a value

C=1.8 10~ 1 9. (A.11)

The proof of (4.10) in [5] requires the use of the Muckenhoupt A^ condition.
Here we give a direct proof from which we can compute the constant in (4.10).

Lemma A.I. Let Qbea cube in R 3 and u(x) be a function on Q which is orthogonal to
the constant function on Q. Then there is a universal constant C such that

l^Άdx^c Σ (diamβO-ΊlώCδOII2. (A. 12)
Q\X-y\ Q'CQ

Proof. We have
and therefore u = $<«&>, (A.13)

, Λ , Λ + 2 s i x . (A.,4,
Q\χ-y\ Q> \χ-y\ Q'DQ" \χ-y\

where Qr 3 Q" means strict inclusion of Q" in Q'. For each subcube Q" let rQ« be the
distance from the center of Q" to y. Evidently if rQ"^(diamβ") then there is a
universal constant C such that

^ / Φ ' χ E δ / / ( A 1 5)
We define sets Sk5 fc = 0,1,. . . as follows:

^o = {Q" -rO" < (diamQ")\ ,
(A16)

Notice that we may find a constant C such that for any integer n,

# {Q" e Sk: diamβ// = 2n} ^ C23fe. (A. 17)
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Next we write the double sum on the right in (A. 14) as

Σ = Σ Σ (A.18)
Q'DQ" k = OQ"eSk

For Q" e Sk, Q" C Q' it is easy to see from (A. 15) and the orthogonality of w(β') and
ύ(Q") that

^C2"2fc(diamβ/)~3/2(diamβ//)1/2P(6/)ll ll"(β")ll (A-!9)
\x — y\

Thus we have

Q''eSk ~

^C2-2 k[Σ(diamβ0ε(diamα/)"1 - εP(β/)ll2]1 / 2

by the Schwarz inequality, for any arbitrary ε.
It is clear from (A. 17) that if we take ε with 0 < ε < 2 that the sum in (A.20) is

bounded by

On summing (A.21) with respect to k we obtain the result of the lemma. Q.E.D.

We may calculate easily a value for the number C in (A. 12) for which we obtain

C-9000. (A.22)

This is the constant we need for (4.10). We can now calculate the constants C(N0)
and K in (4.2). In our calculation the coefficient of ρi(x)4/3 is a fourth power oϊ No

while the coefficient of <ρj/2, ϋΊρ J/2> is linear in JV0. In view of the high value of No

we have we may take

= 3 l09Nt, (A.23)

while the value of K may be taken as in (A.4). Then, taking Â o as in (A.8) we obtain
from (A.23) the value C = 101 9 8 for the constant in Theorem 1.4. Since the constant
in Daubechie's theorem is greater than 10" 2 we may take a = 102 0 0 in Theorem 1.1.
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