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Abstract. The authors prove that the maximum norm of the vorticity controls
the breakdown of smooth solutions of the 3-D Euler equations. In other words, if
a solution of the Euler equations is initally smooth and loses its regularity at
some later time, then the maximum vorticity necessarily grows without bound as
the critical time approaches equivalently, if the vorticity remains bounded, a
smooth solution persists.

The motion of an ideal incompressible fluid is governed by a system of partial
differential equations known as the Euler equations. For two-dimensional flow,
solutions of the Euler equations with smooth initial data remain smooth for all
time. However, in three space dimensions several numerical investigations ([2,3,11])
predict very different phenomena. In particular, these computations suggest that
solutions of the fluid equations which at first represent smooth flows may develop
singularities, and furthermore that this breakdown of regularity signifies the onset
of turbulent behavior. Qualitative arguments and numerical experiments indicate
that the formation of singularities is related to the concentration of vorticity on
successively smaller sets ([3,4]). In this note we establish a mathematically rigorous
link between the accumulation of vorticity and the formation of singularities for
the 3-D Euler equations: we show that, if a solution is initially smooth and loses
its regularity at some later time, then the maximum vorticity necessarily grows
without bound as the critical time approaches. Therefore, it is not possible for
other kinds of singularities (such as those in the deformation tensor or even milder
singularities) to form before the vorticity becomes unbounded. In other words, the
maximum norm of the vorticity alone controls the breakdown of smooth solutions
for the 3-D Euler equations.

Euler's equations for the motion of an incompressible, inviscid fluid in free
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space are known to have regular solutions for some time interval depending on
a norm of a initial data. A concise treatment of the existence theory for these
equations, as well as the Navier-Stokes equations of viscous flow, can be found
in [6 or 5, Sect. 14]. In describing the solutions it is convenient to use the Sobolev
space HS(U3\ consisting of functions whose distributional derivatives up to order
s are in L2(U3),s being a positive integer; the norm of u in Hs is denoted by |w|s.

Euler's equations of incompressible fluid motion are

ut + (wV)u + Vp = 0, V w = 0, (1)

where u = u(x, t) is the velocity field and p = p(x, t) is the pressure. The local existence
theorem for Euler's equations can be stated as follows: Suppose an initial velocity
field u0 is specified in H\ 5 ^ 3 , with | u0|3 ^ JV0, some No > 0. Then there exists
To > 0, depending only on Nθ9 so that Eqs. (1) have a solution in the class

u e C ( [ 0 , Γ ] ; H s ) n C 1 ( [ 0 , Γ ] ; H s - 1 ) (2)

at least for T = T0(N0). (For the fact that To depends only on Nθ9 see [10 or 13].)
Of course, such a theorem gives no indication as to whether solutions actually
lose their regularity or the manner in which they may do so. The property derived
here is that, if the solution fails to be regular past a certain time, then the vorticity
ω = V x u must necessarily become unbounded.

Theorem. Let u be a solution of Euler's equations as described above, and
suppose there is a time 7^ such that the solution cannot be continued in the class (2)
to T = T^. Assume that T^ is the first such time.
Then

j |ω(ί)|LcoΛ=oo,
o

and in particular

The proof of the Theorem which we give below also has the following
immediate consequence:

Corollary. For some solution of Euler's equations, suppose there are constants
Mo and T^ so that on any interval [0, T] of existence of the solution in class (2),
with T < Tφ the vorticity satisfies the a priori estimate

Then the solution can be continued in the class (2) to the interval [0, 7^].
Similar statements hold for the Navier-Stokes equations; the arguments below

apply equally well in this case.
We first claim that
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If not, then \u(t)\s ̂  Co for some Co and all t < 7 .̂ By the local existence theorem
stated above, we can start a solution at any time tγ with initial value u ^ ) , and
this solution will be regular for tι^t^t1 + T0{C0), with To independent of tv If
tι > T^ — To, we have then extended the original solution past time 7 ,̂ contrary
to the choice of T#.

To prove the theorem, we will assume

T*

J|ω(ί)|LcoΛ = M 0 < o o , (4)
o

and show that

K ί ) l H . ^ C 0 , ί < T , , (5)

for some Co, contradicting (3). Usually such bounds are obtained from inequalities
which allow exponential growth. In this case our inequality leading to (5) will be
slightly nonlinear but will still prevent arbitrarily large growth in a finite time.

We first estimate ω(t) in L2. Taking the curl in (1) leads to the vorticity equation

ωr + u Vω = ω Vw. (6)

We recall the important fact that
((M V)W,W) = 0, (7)

at least for weH1, where parentheses denote the inner product in L2 = H°; this
follows from integration by parts and the fact that V u = 0. Thus if we multiply (6) by
ω and integrate, we have

ή ω | 2

2 = ( ω Vu,ω). (8)

at

The velocity u is determined from ω by the relation

M = - V x ( V " V (9)

Therefore the Fourier transforms of Vu and ω satisfy (Vw) (ξ) = S(ξ)ώ(ξ), where S
is a matrix which is bounded independent of ξ, and consequently \Vu\L2 ^ C|ω|L2.
Applying this to (8) gives

where m(ί) = |ω(ί)L«j s o t n a t

or

Ht)\L2^MM0)\L2 (10)

with Mx =exp CM0.

Next we derive an energy estimate for (1) in terms of |Vw|LOO. Let α be a
multi-index with |α| ^ s , and let υ = D%u. Applying Da

x to (1), we have for v the
equation

vt + wVυ + Vq= - F9 (11)
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where q = D*p, and

F = Da{u Vu)-wVD*u. (12)

We will estimate F using the calculus inequality

\g\Hs-1) (13)

wi th/= u and g = Vu. This inequality is well-known iϊfeHsn C 1 and geHs nC
(see [8 or 12]), but we need it here with geH8'1 nC. The simple proof of (13)
in the appendix of [8], based on the Gagliardo-Nirenberg inequalities, can be
combined with a passage to the limit to show that it remains true in this case,
even though the individual terms on the left in (13) may not be in L2. Substituting
in (13) we have \F\L2 ^ C\Vu\LOO\u\Hs.

We now proceed formally, multiplying (11) by v and integrating to obtain

We have used (7) and the orthogonality of gradients and vector fields of divergence
zero. Summing over α with 0 ^ |α | ̂  s, we now have

π,
so that

(14)

The steps leading to (14) can be justified by regarding v as the weak solution of
a linear equation (11) in the class C([0, T] L2) and arguing as for linear hyperbolic
equations. (We approximate v(0) by smooth initial data, derive an L2 energy
estimate, and pass to the limit, using the uniqueness of weak solutions.) Weaker
forms of (14) were derived earlier in [10,13], and this sharper version was given
in [9, pp. 62-63].1

To complete the argument we use a time-independent estimate for |Vw|Loo in
terms of bounds on ω and slight dependence on a higher norm of u,

(1 + log>(3)|ω|Loo + |ω|L2}. (15)

Here C is a universal constant and log+ a = log a if a ^ 1, log+ a = 0 otherwise.
This estimate is based on the relation (9) between u and ω. It was derived in the
two-dimensional case by the second author in other work [7]. In view of (4) and
(10), we can write (15) as

| V u | L ^ C { l + m(ί)log(M3+e)}. (16)

Here and below, C, denotes a constant depending on M o and 7^.

1 Such estimates are valid for general symmetric hyperbolic systems—see [14]
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Now let y(t) = \u(t)\s + e. Combining (14) and (16) we have
t

y(t) g y(0)exp C J{1 + m(τ)logy(τ)}dτ,

and if z(t) = log j/(ί),

z(t) ̂  z(0) + C J {1 + m(τ)z(τ)}dτ.
o

It follows from GronwalΓs inequality that z(ί) is bounded by a constant
depending on M o , 7^, and | w0 | s, and (5) is established. The proof of the theorem
is now completed except for the

Proof of (15). The relation between ω and u, as expressed in (9), is given
explicitly by the Biot-Savart Law:

Λχ-y)
4π*\x-y\3u(x) = - — J -—-ϊxω{y)dy = J K(x9 y)ω(y)dy.

We introduce a cut-off function ζp(x\ satisfying ζp(x) = 1 for |x| < p, ζp(x) = 0 for
\x\ >2p, and |Vζp(x)| S C/p. Here p ̂  1 is a radius to be chosen suitably small
later on. We introduce a factor ζp(x — y) + [1 — ζp(x — v)] under the integral sign
and split Vu(x) into two terms, the first being Vw(1)(x) = j ζp(x — y)K(x — y)Vω(y)dy.
Since \K(x — y)\ ̂  C\x — y\~2,K, as a function of v, belongs to LP({y: \x — y\ < 2p})
for p < 3/2. For convenience we take p = 4/3. By Holder's inequality,

|V«(1)(x)| g \K\L4/3\Vω\L4 S Cp1/4 |Vω| t4,

both norms being taken over {\x — y\<2p}. By Sobolev's inequality

so that

\Vu^\SCp^\u\Hί. (17)

We are left with

Vφc) - Vu{1\x) = I V{X(x - j/)(l - ς ( x - y))}ω(y)dy = W2) + Vι/(3),

where Vu(2) is the integral over p ̂  |x — y\ ̂  1, and Vw(3) over |x — j/ | > 1. For Vw(2)

we estimate the two terms in the gradient separately and use

\VK(x-y)\^C\x-yΓ3 (18)

to obtain

- P P

or

|Vw(2)(x)| ύC(— logp + l)MLco. (19)

Finally, (18) implies that VK is L 2 for \x-y\> 1, and we can estimate Vι/(3) by
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the Cauchy-Schwarz inequality

|Vw ( 3 ) W|^C|ω| L , (20)

Combining (17), (19), (20) we have

IVî oo ^ C{p^\u\3 + (1 - logp)|ω|Loo + |ω|L2}. (21)

If |w|3 ^ 1 , we take p = l ; otherwise we choose p so that the first term is 1,
i.e., p = \u\ϊ4, and (21) becomes

\Vu\L00 ^ C{1 + ( 1 +41og |w | 3 ) |ω | L 0 0 + |ω | L l } .

In either case (13) holds.

The inequality (15) is reminiscent of a somewhat different estimate in [1], which
bounds a function in U° in terms of the Hn/2 -norm and the logarithm of a higher
norm, n being the space dimension.

Reemark. With only minor changes, the same proof applies to periodic fluid
flow. In fact the proof of (15) is even simpler since the kernel expressing u from
ω has the same local behavior while the contribution from Vw(3) in (20) is absent
in the periodic case. However, a more involved proof using additional ideas seems
necessary for fluid flow in bounded domains.
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