Communications in
Commun. Math. Phys. 93, 461481 (1984) Mathematical
Physics

© Springer-Verlag 1984

Ergodic Properties of the Lozi Mappings

P. Collet and Y. Levy
Centre de Physique Théorique, Ecole Polytechnique, F-91128 Palaiseau Cedex, France

Abstract. In this paper, we construct the Bowen-Ruelle measure for the Lozi
mapping, an almost everywhere hyperbolic difftomorphism of the plane. We
also derive some of its properties which are similar to those of an axiom A
system.

I. Introduction

The Lozi mapping T is a homeomorphism of R? given by

()=

For some values of a and b, Lozi [Lo] observed complicated behaviour for the
trajectories of this system. For b=0.5 and a=1.7 one observes numerically a
strange attractor, which is very similar to the attractor of the Henon map [He].
The main advantage of the Lozi map over the Henon map is that one can prove
hyperbolicity without much effort. This is the main reason why so little is known
for the Henon map, where hyperbolicity is believed to occur only on Cantor-like
sets of parameters. Our opinion is that the Lozi mapping is an intermediate stage
between the Axiom A dynamical systems and more complicated systems like the
Henon map. As we shall see below, its dynamical structure is more complicated
than in the Axiom A4 systems, although some detailed ergodic properties are the
same. The Lozi map is rather similar to Sinai’s billiards, and in this article, we shall
use this analogy. In particular, the discontinuity of the differential allows the
uniform hyperbolicity as in the billiards case. A proof of hyperbolicity for the Lozi
map was first given by Misiurewicz [M]. He also derived many important
consequences which will be described below.

This article is devoted to the investigation of the metric properties of the Lozi
map. In the next paragraph, we briefly describe some properties of the map which
will be needed later on. Most of them were known before. In the third paragraph
we construct an invariant measure; its ergodic properties (absolute continuity with
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respect to the Lebesgue measure in the unstable direction, ergodicity, K-property,
Bowen-Ruelle property, Bernoulli character) are derived in Sect. I'V.

Similar results were obtained by Rychlik [Ry] using a different proof. We
learned that Young [Y 1] has proven similar results for piecewise C? hyperbolic
maps.

II. Notations — General Properties

We set some notations which will be of constant use in this paper. .# is the Borel
g-algebra of IR. If A4 is a measurable subset of R?, .#, is the corresponding factor
sub c-algebra. [ and m are the 1-dim and 2-dim Lebesgue measure. d is the
Euclidean distance in IR?. We shall sometimes use the notations + and F. We
adopt the values of [M] for a and small values for b. For a partition ¢ of the space
X, &(x), xe X is the atom of ¢ containing x. Let S; =0y, Sg =0x=TS; ;
St =T*"SF, ne N, are finite broken lines. Note that T*"is singular on S,7, ne N.

The fields of stable (unstable) directions E*(-) [E*(-)] are defined outside
U s, < U s; ) (cf. [M]). If 6%(x) and 6"(x) are their angles with respect to the x

n=0

nz0
axis, we have continuous fraction expansions for tan#°(x) and tan 6*(x) which are

given by

—b

0 o T D) —tanfi(T 1y’ AnEI=a e F

tanf"(x) =

b
tan0%(Tx)’

where &(x) is the sign of x. These formulae express the fact that E(-) and E*(-) are
invariant fields. If b/a is small enough, the above continuous fraction expansions
are convergent. We shall denote by A(x) the expansion factor in the direction E*(x),
Le. this is the length of the image by DT, of the unit vector in the direction E*(x). It
is easy to verify that

[a? 4 b? +tan?(0"(x)) — 2ae(x) tan 0%(x)] '/
(1 +tan?0%(x))'? '

Let W*(x) [respectively W*(x)] be the global stable (respectively unstable)
manifold of x. The maximal smooth component W.(x) [Wa.(x)] of W¥(x)
[W*(x)] containing x will be called the local stable (local unstable) manifold of x. x
splits Wi (x) into two “semi local unstable manifolds.”

Let X be the fixed point of T with positive coordinates. Z is the intersection of
the positive x axis with W (X). We shall denote by F the triangle defined by the
points Z, T(Z), T*(Z) (see [M]). 2 will denote the strange attractor of T which is

0

equal to () T"(F) [M]. We shall denote by 4 and 4, the infimum and the
0

Mx)=

+ o
supremum of A(x) for x in the set F\ U SiE:A>0.
— 00
It is now easy, using the continuous fraction expansion, to verify the following
lemma

Lemma IL1. Let x and y in F be such that for 0<j<q, T/(x) and T'(y) are on the
same side of S,. Then
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i) The angle between WS (x) and WS.(y) (if they are defined) is bounded by
A(x)

b
27
byt
O éz@ '

We also observe that the angle between two local stable manifolds is between

2 2n
?n and — 5 if a<2, and the angle between a local stable and a local unstable

manifold is greater than —753

ii)

We now introduce a set H which is more convenient for our purposes than the
set F. This set was already used by Misiurewicz but we recall here its properties.

Lemma I1.2. For b small enough, there is a polygon H such that
i) THCH,
i) QCH,
iii) The boundary of H is contained in T'Wih (X)O Wi (X) for some q>0.
iv) T"FCH for some positive .

Proof. We adopt the notations of [M]. H, is the triangle X ZP, where P =W (X)
~(Z,T(Z)) and H= U T"(H,). (T is denoted f in [M].)

In Proposition 2 of [M] it is shown that there is a positive integer p such that
H= L_jo T"(H,).

Moreover, in the same Proposition 2, it is established that
TPFCH and THCH. Q.E.D.
We shall use the following mixing property derived by [M].

Proposition IL3. (Q, T) is topologically mixing, i.e.: if A, BCIR?* are open, then
(AnQ%0, BnQ+0) = AN,n>N=T"AnBNnQ+0).

We investigate now the absolute continuity of the unstable foliation. Let W*
and W? be two local unstable manifolds in Q. We define a map P= Py, from
W' to W? by

X€E Wl _)P(x) Ioc(x)m W2 lf V[/Igc(x)m W2 4: Q) .

P is defined on Z(P)={xe WY W (x)nW?+0}.

Proposition IL4. Given W' and W? as above there is a constant L, >0 which is ¢(1)
such that for any Borel subset A of W', AC2(P),
(1 =Ly (dW*, W) A S IP(A) = (1 + Ly (d(W*, W) P)I(A).

The proof is given in the appendix.
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III. Construction of Invariant Measures

Let Ly =Wjs.(X). We know from Misiurewicz’s work [M] that Q is the closure of

(J T"L,. Therefore, it is natural to try to obtain an invariant measure by iterating
nz0

the Lebesgue measure supported by L,. We define a sequence (u;),. , of probability
measures on A, (4, has supportin T"L,) by uy(A)=UT "AnLy)/I(L,) for A € M,,.
The sequence (4,),. defined by
1 n—1 ,
HUn= Z j;o l’t]

is a sequence of probability measures on .#,,. As Q is compact one can extract a
subsequence which vaguely converges to an invariant probability measure p
(cf. [B]). Let AF denote the stripe of width ¢ around S§.

In order to obtain some properties of the measure y, we shall first estimate the
u,-measures of A,

1
Klog l) (K is the integer

appearing in Lemma 111.2), there is a positive real number &, such that for 0 <e=<g,,
we have u(AF)<e, YneN.

We give the proof for A,=A,. We shall first give some geometrical
considerations. For ne N, T"L,, is a segment or a broken line. Let J, be the set of
maximal smooth components contained in T"L,,. For M € J,, the endpoints of M
belong to §,US, for some p,q 1 <p,q=<n+2. We define k(M) by k(M) =inf(p, q).
For M belonging to J,, we shall denote by R,(M) the element of J, _, containing
T~?M for pe Z. We now define recursively a finite sequence of integers k(M) by

ko(M) =0,
ky(M)=k(M),
ki (M)=k(M)+ k(Rki(M)(M)) as long as Rk,(M)(M) + L.

We shall write k; instead of k(M) when there is no ambiguity. We now prove a
lower bound on k(-).

Proposition IIL1. For any positive number < <1 -

Lemma I11.2. Assume b is small enough, there is an integer K >4 and 0 >0 such that
if MelJ,,  M)<0, and MnSy +0, then k(M)>K.

Proof. For b small enough, there is an integer K >2 such that 0 <p <K implies
(So nF)nS, =0.
Let 0= inf d(S,NF,S, nF), then if (M) <0, we have k(M)>K. Q.E.D.
K

0<p=

We now come to the basic estimate. It is enough to prove the assertion for y,,
. . 1
neZ. The proof is recursive. Let T be a number such that 0<t<1— Klogi' The
estimate is obvious for 4, since I[(Ly)>1; for u,, n< —2 and ¢ small enough,
t(A4;)=0. From now on, we assume the bound has been already proven for ),
—1=Zp<n.
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Let 9, 0<g<1 be such that

1
(1 _Q)<1_ Klogl) >

1
Klogi~

Let E,={MeJ,(M)>4¢}. If MeE,, M is a straight segment of T"L,,
therefore

Note that such a g exists since t<1—

(T"(4,0M) _UA0M) _4e
(T"M) M) —de¢ °

since I(A,n M) = 4¢ (we have used the fact that the contraction coefficient by T~ " is
constant along M). Therefore,
> (T "(A,NM))<e' ¢ Z l(T "M)<e'"°(L).

MeE;
We now define a subset E, of J, by
E,={MeJ,FdieN, k(M) <cllogel, (R, (M))>4e2i~ K}

where ¢ is a fixed number satisfying

KlogZ
K(1—g)/log2>¢> (1 —o)/logh (note that 102% >1>.

For M e E, let 6(M) be the smallest integer i such that
I(R, (M) > 4e2) k0D

Let p be a positive integer, and let M be an element of J, _ , such that MnSy +0.
We shall denote by N(M, p) the number of elements M of J, such that T"?M is
included in M, and oy 2 p-

Let
L,= sup sup N(M,k).

P
O0Sk=p MeJn-i
MnSo*0

Note that L, is a non-decreasing sequence. We shall now give an upper bound for
L, For M as above let M, (respectively M) be the segment Mn{(x, y)|x <0}
[respectwely Mn{(x,y)|x=0}]. Assume moreover that the subset E;(p) of E2
defined by E,(p)={MeE,|T "MCM,, keanZp} is non-empty. [If E;(p) is
empty, then Eg(p) is not empty or L,=0.] Let g be the smallest positive integer
such that T'M,; NS, 0. There are two cases.

Casel.q<p.Then TM, e Ju— p+qandforany M e E, (p), we have R, (M)=T'M
for some integer i. Moreover, k(M) =p—q <p =k, This implies i < (M), and

I(TIM ) < 4ee) kM)
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If ¢, is small enough, we have 4¢2 < 6, and we can apply Lemma II1.2 to conclude
that ¢> K. Therefore,
card(E(p)) =card {M € E,|T ?**"M C T*M{, ko1 2p}
<card{M e E,(p)|T"**MC T*M,, ko= p—K}
sup _sup N(M’, ky=L,_ g
0sk=p—K M'eJn x
M'ASo*0

Case 2. q=p. In this case we have T?M, e J,, and card E,(p)= 1. Similarly, we
define Ex(p) by

lIA 1

ER(p)Z{MGEllT_pMCMRa ka(M)-P}

and we obtain as before card Ex(p) =1 or card Ex(p) < L, _ . Therefore, N (M, p)
=card E;(p)+card Ex(p) <sup(2,2L,_x), and we obtain the bound

L,<2' Pk,

Let now p be an integer such that 0< p<c|loge|. Let M e J, _ - Wenote that if there
is an M e J, for which T~?M C M, and k, =P, we have MmSO #+0. For such an
M, we have

(T P(A,nM))SA7P,  l(A,nM)<4ed™?,
and from (M) > 42, ? [since p=k,un(M)], we deduce
Y UT P(A,nM))<4ch PL,<4e)™ P21 *P/K

MEEZ~
T-PMCM
ko(v)(M)=p ¢
1—90——log2 ~
<2 ° KTUAD).
If MeJ,and T"?MCM, 1\7I€—J,,_p, we have

(T "(A,nM)) KT "(A,nM))

(T "*PNM) (M)
Therefore,
S (T "A,AM) <2 K r-0-pnp)
beiflzcﬂ
ko(ay(M)=p
and
_ E(c|logel) B
> (T AnM)= ¥ ¥ > KT"(4.nM))
MeE, p=0 MeJy-p MeE; _
T-PMCM
ko) (M)=p

= 1og2 Elcllogs)) -
<2 KPS s (TN

p=0 MeJ,—p

IQK

<4e cllogsll(LO)

Let now E, be defined by E; =J,\(E, UE,). We shall assume E; %, otherwise, the
proof is finished. This implies n>c[loge|. For M € E;, let i be the unique integer
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such that
k(M) <clloge|<k;y ((M).

Note that k; . ; (M) exists if ¢, is small enough since I(L,) > 1. We now observe that
T~ ®iri=kR, (M)NSg +0, and

l(T—(kw l—ki)Rki(M)) < J " kis 1_‘ki)l(Rkl(M))§4892_ki+ 1

Therefore, T~ ® i+ "*R, (M)CAgpe;-+.... We shall now use the recursive
assumption. We have
)y l(T‘"(AgnM))=u;_p< U TP(A@M))-I(L@
MeE; MeE;
kr1(M)=p kivi(M)=p

= ,u;t—p(A4££’l‘P) : l(LO) .

Therefore,

S (T "AnM)S 5 (A=)

MeE3; p=c|loge
47¢0) —ct|logel|

1-17°

From g+clogi>1,1—¢>t,and 1 —p— %log2>r, we obtain u,(4,) <S¢ if e<g,
for &, small enough but independent of n. Q.E.D.

We fix now 7 as in Proposition III.1 and denote by (u,,), . @ subsequence of the
previous sequence which converges weakly to u.

Corollary IIL3. i) For ¢ small, ne N, ke Z, u,(T*A,) <&, n(T*4,) <&
ii) For N e N, we define HY = {x € Q: one (at least) of the endpoints of Wis.(x)

N
does not lie on | S,:’} There exist ¢>0 and o, 0<a <1, such that for ne N,
k=0

w,(HY) < co®, and p(HY) < co®.
ili) For ee R, we define H,={xeQ: one (at least) of the semi-loc unstable
manifolds is shorter than ¢}. For ¢ small, u,(H,)<¢", ne N, and u(H,) <¢".
iv) For xe€ Q, u({x})=0.
V) For x € Q, u({W*(x)}) = u({W*(x)}) =0.

Proof. The first part of i) follows from Proposition IIL.1, by the definition of u,; the
second part is a consequence of the weak convergence of (u,), for A, has smooth
boundary.

To prove ii) consider the line 4 passing through x € 2 in the unstable direction,
and let y be one of the endpoints of Wi (x).

By construction, either yeS; for some keN or y¢ [J S, but y is an

k=0
accumulation point of (J S;" 4. In the latter case, one can construct a sequence
k=0

(Vwneno Va € 4, such that, for some strictly increasing function k(- ), y, € S,Q?,,), nelN,
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k(n)

and moreover, |J S; does not cross 4 between y, and x. Then, T~*® is linear on
k=0

the segment [x,y,]CA4. As lim y,=y€eQR and Q is bounded, we can suppose

d(x,y,)<10, so that d(T~ ""‘)x S T)<10/2¥®, ¥YneN. Thus, x € ﬂ T A oz,

which is a set of y-measure zero, by i): almost surely, the endpomts of Wp.(x),
xeQ,licin |J S;. Suppose now yeS;, k=N. Then x € T*4,,,x whence ii) by 1)
k=0

with a=4""
With the same notations, suppose x € H,; then if yeS,", ke N, x e T*A4, s,

whence iii) by i) and the convergence of 3 A%
k=0

The proof of iv) is similar to the proof of Proposition IIL1: Let x € Q, and let &
be a positive number. Let B be the ball of radius ¢ centered at x. Let J, be as above.

We have
p(B) = ng (T™"(BAM))/I(L,) .

1

Let J= {MeJ,,]l(M)>sl+’} Jo=J\. If MeJ}, from (BAM)<2e, we

obtain

UBOM) _ ryr-npry.

KT™"(BAM))=K(T""M) 01 =

Therefore,

> (T "(BaM)Ze's ¥ (T "M)=<e'U(Ly).
MelJ;} Meld;f

For J, , we have

2 UT"BoM))= 3 KT "M)=p, (ME)J M) ~I(Lo)

MelJ,;

< p(He' 1) (L) Sc-I(Lo)- 67 by iii).

We obtain =
HB)SILo)(1+0)- 67

and get iv) if we let ¢—0.
We shall prove v) for W*(x), the proof for W*(x) is similar. It is enough to prove

that (W3.(x))=0, since W'(x)= U T IWE(T'x). Assume xeQ satisfies

w(Ws(x)) > p>0.Then, there 1sacouple ofintegersiand j, i +j such that T'W;S (x)
NTIWE(x)*+0, otherwise, we get a contradiction from u(T'W.(x))>f, VI=0.
Assume i>jand let k=i—j. Since T'is a bljectlon we have T*WE (x)nWE(x) +0,
and therefore, T*W (x) CWS.(x). Since Ty ) IS a contractlon this means

that W2 (x) contains a k periodic point P. Moreover, P= ﬂ THWS (x), and
therefore, y 1=
u{P})= lfllf T Wige(x)) = p(Wiee(x)) > B -

a contradiction with iv).
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IV. Ergodic Properties of the Invariant Measure

So far, the measure u is not unique. The uniqueness will be proven by showing that
u is the Bowen-Ruelle measure. We first investigate the properties of the
conditional expectations of u on the unstable foliation, making use of the sequence
(Un)nen In order to investigate and use these properties, we define two countable
partitions « and § which decompose €.

Let {* ({7) be the decomposition of p.a.a. Q into local unstable (stable)

manifolds. As { ™ is a partition generated by (J S,,itis measurable. We can define
nz0

the restriction u™ of u to the sub ¢ algebra .4 * C.4, of the sets { *-saturate. By
Corollary I11.3ii), for u a.e. Wye (", there are two maximal smooth components I,

and J, contained in U S for some N, =0 such that the endpoints of W, lieon I,
and J,. We then deflne the partition o by a(W,) = {We {* with endpoints on I Iy and

Jo}. Let {§ C{" be the union of the elements of {* with endpoints on U Se,
NeN. {y is a finite union of atoms of «; since, by Corollary inI%ii),
lim pu*({y)=1, « is a countable partition of {*.
N—)O%Ve now look for a partition of Q into parallelograms. Let Py (Py) be the
partltlons generated by U S, < C) S, ) . As S,/ is a broken line, folded only on
U S, a simple recursion argumne;li shows that the P5(x), x € Q, are convex sets.
Note that {* = 131_1’20 Pi. Let x e Q such that W =W (x) and W~ =W (x) have

positive length. Let N . (x) be the smallest integers such that the endpoints of W~
(W) lie outside Py« (x) [Py-x(*)]. It is easy to see that N, are finite; N, are
obviously measurable functions, so that we can define, for such an element x € Q
the atom f(x) by:

BE)=N; (N L (NANZHN ()N Py + ()N Py - (%) -
As usual, we define the unstable and stable fibers y*(x), y~(x) by
(%)= BN Wiee(x) ,
7 ()=BOINWie(x), ie. yT=Bv(*.
The set f(y) is a parallelogram in the following sense
3lzep(y), z=y )y,
3Zepy), =y )Ny ().

This is easily checked by using the convexity of Py (,,(x) and the fact that N* are
constant on atoms of Py, v {¥. By definition f is a countable partition of Q into
parallelograms.

We now come back to the properties of u. As {* is a measurable partition, we
can apply the usual theorem on disintegration (see [Ro] e.g.).

Namely, there is a p-a.s. unique family {uy,, We {*} of probability measures on
Q such that:

xepy) = %
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a) uy has p-a.s. support on W,
b) for Ae.#, the map W-puy(4) is in I} ,du*), and p(4)
= A tw(A)dp* (W), denoted p*(1.(A)).

For We(™, let Iy, denote the normalized 1 —d Lebesgue measure on W.

Proposition IV.1. The conditional expectations of u on the local unstable manifolds
are the corresponding 1 —d Lebesgue probabilities, i.e.: py =1y for p.a.e. Wel*.

Proof. As stated before, some subsequence (u,,.);cn Of (i,),ey cOnverges weakly to
u; we shall still denote it (u,),. . Let p, denote the restriction of y, to .4, neN.
By the geometrical properties of T, it is easy to show that for A e .#,, w1,(A)

= §+ Ly (A)dp,s (W)= u,f (1.(A)). It is enough to prove ,,IHEIO wi (L) =pu (L)) for

¢
feC%Q). Let fe C°(2). With respect to the Hausdorff topology t; on { ', the map
{* >R : W-I,(f)iscontinuous. We shall show that u,” converges weakly to u™ in
the sense of 1.

By Corollary ITL3ii), p ((*\(5), ke N and pu*(("\(y) are simultaneously
bounded by C - ¢" for some ¢ € 10, 1[ and some positive constant C. Let QC{™ be
an atom of . Since {y is a finite union of atoms of « the compactness of {5 would
follow from the compactness of Q. As two elements of {* cannot intersect, the
clements of Q depend continuously on, e.g. the vertical coordinate of their
rightmost endpoint. Since @2 is compact, the limit of a convergent sequence of
elements of Q is a segment contained in €2, thus, it belongs to Q : Q is compact. As 2
is totally regular, the hypothesis of Prokhorov’s theorem are fulfilled (cf. [B]), so
that (i, ), converges weakly to some probability measure on { *, which has to be
the restriction u* of u. Q.E.D.

We are now able to derive the ergodic properties of T.

Proposition IV.2. (2, T, p) is ergodic.

Proof. Take fe C%Q). By Birkhoff’s ergodic theorem, there is a set BCQ, u(B)=0
and a function felIl'(du) such that, if xeQ\B the limits f*(x)
1 N—1 . — .
= lim N 3> f(T*"x)existand f*(x)=f"(x) =f(x). What we shall prove is that
n=0

N-ow

f is almost surely constant. Let x,yeQ\B. As ,u(B)=u<ﬂ Hg) =0, the

conditional measures of Bu () H,) (i.e. the corresponding normalized lengths)

are zero on W (x) and Wi (y) for u x p-a.e. (x, y). Thus, by Proposition 11.4, it is
enough to find a subset A C Wjs.(x) of positive length and an integer N such that for
ze A, W .(z) crosses TYW(v), because f* (f ) is obviously constant on stable
(unstable) manifolds. Consider now f(x). Almost surely u(f(x)) >0, and thus, by
Proposition I1.4, I(y*(x)) > 0. By Corollary II1.3v), we can define x,, x, € f(x) by
demanding that the quadrilateral Q defined by {*(x,), {*(x,) be the smallest such
that p(Qnp(x)) = u(p(x)).

For some N, by Proposition I1.3, TNW“ (y) “enters” Q, and one of its smooth
components, that we shall call W, crosses { ~(x;) or { ~(x,) or both . Thus, we can
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define the canonical isomorphism P along stable fibers from W (x) into
W C TNW; (v), with a domain 2(P) of positive length. The proof is completed by
taking A=92(P).

Proposition IV.3. 1) For ne N*, (Q, T", w) is ergodic.
i) (Q, T, w) is a K-system.

Proof. The proof of i) is similar to the proof of Proposition IV.2 ii) follows from the
fact the Pinsker o-algebra IT of T is smaller than the g-algebra of the measurable
sets saturate by stable and unstable manifolds (cf. [P]). The proof of Proposition
IV.2 shows thatif f e I}(du) is constant along stable and unstable manifolds then f
is u-a.s. constant; thus, IT is trivial for u, whence ii).

In order to prove the Bernoullian property, we introduce some notations. We
define decreasing sequences (.#,%),.n, Where .4 is the sub o-algebra of the
elements of .#,, which are T*"{*-saturate. By Proposition IV.3ii) the g-algebras
lim ME =) MEare both trivial for u. We note u, the restriction of u to ;.

Proposition IV.1 about the conditional expectation of u with respect to .4,
will allow us to prove the following:

Proposition IV.4. (Q, T, 1) is isomorphic to a Bernoulli shift.

Proof. The proof is similar to [L1].

The canonical map (2,45 v My) 5 (CF %, M x My) given by P(x)
=" (x),{ (x)) is a.e. defined. Let v=po P! denote the image of u through P.
We have:

Lemma IV.5. v is absolutely continuous with respect to u* @u~, ie. v<u*@u-.
Proof. Let Ae My v My such that P(A)e My x M, . By definition, we have:

1 @u(P(A)= ng dﬂ(W)-;r( U WC“(X))-

xeAn

Suppose p* @u~(P(A))=0. Then, for some #;C{" of full measure:
Wew; = ﬂ_< U C_(X)> =0.

xeAnW

Suppose that, for some W’ ey ™, included in an element C of 8 of positive measure,
we have u(A|W’)=0. Then, by Proposition I1.4 and Proposition IV.1, we have:

M(Cﬂ U Cf(X)) >0,

xeAnW’
so that if W is the (" -saturate of W’, we have:

u‘( U C‘(X)>>0,

xXeANW
so that W¢ #{. Thus, u(4|W’)=0 almost surely and u(4)=0. Q.E.D.

We shall denote the measure ™ ®@u~ by u*. By Radon-Nikodym’s theorem,
there is a u*-integrable function h: {* x {~ >R ™, such that dv(x) =h(x) - du ™ (x).
If Ae .y x My and v(A4) >0, the conditional probability v, = v(- |4) is given, for
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a function f, by:

VA= D)V = 1" (b x )™ (b x4)
= (f-h)pui(h)
or, more briefly:
va=py(h-)/pgi(h).
We are now able to prove the weak Bernoulli property.

Lemma IV.5. (Q,.4,u, T) is weak Bernoulli, that is p and p* P coincide on
INCARE

Proof . As(M," v M, ),.n1s a decreasing sequence, the conditional expectation on
A of u with respect to /\ (M, v M) is given almost everywhere by :

I\ AE ) o
Ka = lim pg" v

n— oo
. H M X My
= lim vpes ",
n— o

by definition of v. Therefore,
Ha = lim (u~ Jecay (B (> )pcay - ()
As (Q, Mg, 1, T) is a K-system, the o-algebras /\ .#," and /\ .#, both coincide

nelN neN
with the trivial algebra mod u: the conditional expectations

are constant p-almost everywhere.

Thus, both ,u/"\w'T Y and (u™ oP)/"\
coincide. Q.E.D.

(M v M)
are p-a.e. constant and thus

The statement of Proposition IV.4 follows from Lemma IV.5 (cf. [L2] for
instance).
We prove now that y is the (unique) Bowen-Ruelle measure, id est:

Proposition IV.6. For g e C°(F) and m-almost any xe F,

_qnct
lim — 3 g(T*x)=u(9) -
Nk=o0

n— o

The proof follows three steps: We consider the points x of () T"L, such that,
nelN

1 N—-1
for some ge C°(F), we have not lim N > g(T"x)=pu(g), and prove that the
N— oo n=0
length of this set is zero (Lemma I'V.7). Then we notice that, for m-a.e. x € F one can
find positive integers p, n such that W .(T"x) crosses T?L, (Lemma IV.§). Thus,
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what we have to show is that, m-almost surely in F, this intersection does not fall in
the exceptional set estimated in Lemma IV.7.

. i . .
Let.o/ = {xe U T"L,3geC°(F)and lim I > g(T"x) does not exist or is
nz0 N n=0

-+

not equal to ,u(g)}.

Lemma IV.7. Vie N, u,(o/)=1(s/Ly)=0.
Proof. We first observe that .of = T/, and if x, y € T"L,, y € W .(x), then x € o7 is

equivalent to y e o/. This last property implies using Propositions I1.4 and IV.1,
that W—s u(o/|W) is a continuous function on ({*, 7). From ,u( U T"L0> =0, we

nz0

deduce u(.«/)=0. Therefore, using the Birkhoff ergodic Theorem, we have
0=u(ot)= A d(W)p(=/|W)= lim g{ v, (Wp(/| W)= lim ().

(T "/ ALy) (et ALy)
I(Lo) I(Lo)
Let #={xeF|Vn,peN, W (T"x)nT"L,=0}.

loc

, hence I(«/nLy)=0. Q.E.D.

However, p, (/)=

Lemma IV.8. m(¥)=0.

Proof. Let H and r be as in Lemma I1.2. This lemma implies #C |J T (% nH).

n>0

Therefore, it is enough to show that m(#nH)=0 since T~ ! is absolutely
continuous. For «>0 and ne N, let #2={x e H(WS.(T"x))<oa"}. We have

Ay =T""{ye T"H|[(Wso(y)) <o}

and using [M], we derive
m(ﬂ,f)ga(g) :

0
where § is a positive constant. Therefore, if « <b, we have with #*= () .42,
=0

m(M*)=0.
Let xe (H\A*)NY¥. We have x ¢ /7 for n large enough, but
Wi T"X)NT" "Ly =0,
therefore,
Wi (T"x)CT"H .

n

T "W (T"x) is a broken line of total length bounded below by </1_boc> . However,

loc
for (g) small enough, it is easy to verify that for y e H such that W (y) CH, then
@ does not intersect both S, and Sg. This implies that T "WS (T"x) is
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composed of at most 2!"21* ! straight segments. Therefore, since each segment has
a length at most one, we have

(T "(Wiae(T"x))) < 202171
1/2b e
We now choose a <b, such that oy <1 (this is possible since A >ﬂ). We have

QWAL (T (W (T")) = (x;) ’

which is a contradiction if » is large enough. Therefore, ¥ H C .#* and we have
m(¥nH)<m(M*)=0. Q.E.D.

We now come to the proof of Proposition IV.6.
We first observe that if x € F\.%, one can find an integer n, and p = n such that
S (T"X)NTPLy+0. We define a new set # by

B={xe F\Z[n,p,pzn, Wo(T"X)NT"LC./}.

If xe F\(X %), there is an ne N, and an integer p =n such that some point y of
e (T"x)NTPL, does not belong to 7. Therefore, if g belongs to C°(R?), we have

lim — Z g(Tix) = hm - Z g(T?*x)

m—+ow M j m— oo

= lim E Z 9(T’y)=pu(g) .

We shall now show that m(%)=0. Let %, be defined by
Bp={ye \LWee(NT Lo C A}
From #= () T "4,,itis enough to show that m(#,)=0 for every integer p.
p>n=0

From the definition of %, we have
gpc U ( 1f;c(x)ﬂF) .

xXeABNTPLg
Thus, an unstable segment W being chosen, we consider By, = ()  WS(x), and
prove m(%y)=0, using I(o/ "W)=0. xednW
Let oty = {x e "W|W(x)+ {x}}. It is enough to prove m( U 1oc(x)>
xedyw

=0. If the W} ’s were depending smoothly on x, this would be a consequence of
Fubini’s theorem. Instead we use Lemma II.1. Let £ >0 be given sufficiently small.
As (A n"W)=0, /W can be covered by a countable union of open disjoint

intervals of total length smaller than ¢. Consider one of these intervals, say I; let
n+1

¢ <ebeitslength. Letnowne IN*; | J S, splits I into at most 2" * 2 segments; if J is
0

such a segment, by Lemma II.1, the dispersion of the angles of {W5.(x), xe J} is
bounded by 2(b/4)", so we obtain

m <xké)1 VVMX)) S4B/ +I) .
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Thus, m ( U W]f,c(x)> < 16(2b/A)" +1(I) £ 16(2b/A)" +¢'. As nis arbitrary and 4> 2b,
xel
we get

m (xke)l Wlic(X)> <2¢,

so that
m( U W&(X)) <2,
xe AW

which proves that m(%y)=0.

V. The Hausdorff Dimension

Let us denote by y, and x_ the characteristic exponents of (Q, T, pu):
.1

Ay = nlnPw Elog | D, T"| for u.a.e. xe Q. Let h denote the p-entropy of T. In [Y 2]

Young proves that, if M is a compact surface, (M, f,m) an ergodic C*> dynamical
system with characteristic exponents y; =02 y,, the Hausdorff dimension of m is

. 1 1 . .
given by HD(m)=h,,(f) <X_ — y—> , where h,,( f) is the m-entropy of f. If the limit
1 L2
exists almost everywhere, HD(m) is defined by HD(m)= lirré logm(%(x, ¢))/loge,

where(x, &) ={y e M|d(x, y)<e&}. As we shall show this result remains valid in our
case, despite the fact that T is only almost everywhere C*. We have the following
theorem.

Proposition V.1. For u-a.e. x € Q,

1

lim log i(%(x, o))/loga=h <* — L) .

a=0 A &
In order to prove this, we merely adapt ideas of Ledrappier [L 3] to our case. We
prove separately two inequalities which lead to Proposition V.1.

1 1
Lemma V.2. lil’I(l) inflogm(%(x, a))/loga=h <X_ — —> U-a.e.
a—> + —
Proof. Let P denote the partition of Q defined by S=S4 US; . For simplicity, let
F (x) denote the quantities | D, T*!|, for x € Q. Note that F, is constant on each
side of S§. N
We first prove that, ¢ >0 being given, we can find for p-a.e. x € 2 an integer N(x)

and a number C(x, ¢) > 0 such that if n > N(x) and d(x, y) £ C(x,¢)-e ", then x and

y belong to the same atom of \7 T*P, where n, =[n/(u(F.)+2¢)]. Suppose

d(x, y)=d(x, S). Then x and y belong to the same atom of P, and d(Tx, Ty) = F . (x)
-d(x, y). If, moreover, d(x, y)<d(Tx, S)/F .(x), we deduce d(Tx, Ty) <d(Tx, S): x
and y belong to the same atom of T~ 'P, and d(T?x-T?y)<F ,(Tx) - F,(x)
-d(x, y). Similar arguments are valid for T~ ! and F _. Thus, we see that a sufficient
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ny
set of conditions to insure that x and y lie in the same atom of \/ T*P is that

—h-

k—1
d(x,y)éd(Tkx,S)/ 1—[ F+(zj)a Oékén— s
j=0

k—1
d(x,y)éd(T""x,S)/ F(Tx), 0=<k=n,
j=0

j=

(where the product is taken equal to 1 if k=0).

We have the two following estimates:

1) Let B(«*) be the neighborhood of S of diameter o*. We recall that u(B(a*))
<K-o™, where K,t are two positive constants. Thus, if a<1, the series

> u(B(c*)) converges. This allows us, through a measure theoretic result (see [L 3]
k=0

e.g.) to derive the existence a.c. of a measurable function C(x, ¢), 0 < C(x,¢) <1 for
p-a.e. x € Q such that for ke Z d(T*x, S)= C(x, e)e” ¥*, In particular, we get

d(T*x,S)=C(x,e)e "~ ¢, 0<k=Zn_,
d(T *x,8)=C(x,e)e "*'°, 0=<k=Zn,.

2) By the ergodic theorem, for g-a.e. xeQ, IN(x) such that if n_ > N(x),
n, > N(x), we have

kﬁlF+(Tix)§exp(n_(,u(F+)+,g)), 0<k<n_,
j=0
kI__TlF—(T‘jX)éexp(n+(u(F_)+s)), 0<k<n,.

Assuming ¢ is sufficiently small and setting N(x)= N(x) - u(F, + F _), we get, for
n> N(x),

d(T*x, S)/ T F o (Tx)2 C(x,6) - expl —n_(u(F 4) + 26)] = Clx 8) -,
ji=0
0<k<n_,
AT ", S)/ T F_(T7%)2 C(x,6) - expl = (u(F_) 4 26)] = Clx, ) -,
j=0
0<k<n,.

Then, B(x, C(x,c)- e ") C ( \V; T"P) (x) for n> N(x).

Using Shannon-Mac Milian-Breimann’s theorem (see [Bi]) we obtain for
u-a.e. xef,

. 1 1
>h-
hgllonflog,u(B(x, «))/loga=h <,u(F+)+2s + ,u(F_)+28> .

As ¢ is arbitrarily small, we have p-a.e.:

. . 1 1
lim inflog s(B(x, 0))/logar2 h- (u(F+) " W) '



Ergodic Properties of Lozi Mappings 477

n—1
We can reproduce the same arguments replacing T by T, S& by |J T**SZ, P by
\/ T*P, F, by |DT*"|. k=0

[kl <n

As lim [||D,T*"|du(x) =1, we get

1 1
lim inflog u(B(x, «))/1o agh-<—~——>.
lim inflog u(B(x, #))/log P

1 1
Lemma V.3. limsuplogu(B(x, a))/loga<h- <— — —> .
=0 X+ A=
Proof. Let P still denote the partition defined by S. We first prove that, ¢ >0 being
given, there is a constant K such that, for y-a.e. x € Q, we can find N(x) such that

n>N(x) = (\/ T"P>(x)cB(x,Ke‘"),

—n_

where n,=n/[ —yx_—¢], n_=n/[x, —¢l.

Let xeQ and let Q= < \/ T*P |(x).

—n_

We first exhibit “unstable and stable widths” w,. of Q. For y e Q, we draw the
line A = A(y) passing through y in the unstable direction, and note w, (y) the length
of AnQ; we recall that Q is a convex set. We set w, = supw_ (y) and define w_

veQ
similarly. As the unstable and stable directions are transverse, and as the S ; ,pEN,
and the S, , g € N, are also transverse, the minimum ball constaining Q has a radius
smaller than C-(w, +w_), where C is a constant. We now estimate w, ; we fix

y € Q such that w, (y)>w, /2. T"- is linear on A(y)nQ. Thus, the usual argument

n-—1
shows that 10>I(T"~(4A(y)nQ)=w.,(y)- T1 J*(T'y), where J* is the jacobian
i=0
n-—1

in the unstable direction. By the ergodic theorem, [] J*(T'y)=e" ®+ ~e-)
i=0

where ¢( -) is a function depending on y such that lim ¢(m)=0. As y is here fixed,
for n large enough, n_ is large enough and e(n_)<s. We get 10>w,(y)-e";

similarly, w_(y)<10-e™", and we get < \7 T"P) (x)CB(x, Ke™") with K=20- C.

v
Letting n go to infinity, we get

log u(B(x, a)) Sh( 1 N 1 ) '

A+e—E (-
Lemma V.3 now follows from the fact that ¢ is arbitrarily small, Lemmata V.2 and
V.3 end the proof of Proposition V.1.

We add the following result, which is the mere consequence of [L,S].

.
IIB_»S(I)J p loga

Proposition V.4. With the above notations, h=1y ..

Proof. One can check that hypothesis of [K, S are fulfilled, so that the result of
[L,S] applies.
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Appendix. Proof of Proposition 11.4

Lemma A.1. There is a positive constant L such that for any pair Wy, W, of local
unstable manifolds in Q, there is an gy, 0 <eo < 1 such that if 0<e<ey, one can find

2
an open subset s/, of Q with l(o/,nW,)< 78, and if x,x" € D(Pywiw2)\A
1—-4)/b/2
d(x,x") <é&?, then

(1 =L, D'®)d(x, x") Ld(Py1yAX), Pyiy2(x)) <d(x,x)(1+ L, D'3),
where D =d(W,, W,).

2 1
Proof. Let K be a real number such that — < K < —. We define &/, by

DNTC
oA, = GO(A{S{KmQ), where A, /=T 74, .
=
Every A,Jx; crosses W, at most 2/ times, therefore,
Ut n W) < § (Asys W)

1 4e
(K/l)J 1—2/K/1 ’

II/\

because the stable and unstable manifolds are transverse. We note p= Py 12
Assume x,x’ € Z(p),and x¢ .o/, and d(x,x)<e* Let §=d(x,x’). Let N be the
N+1 N

£6<2¢
+ +
0ZkZN, S, crosses W, at some point y between x and x". From d(x, y)<4d, we

deduce d(T*x, T*y) <)% . Therefore,
A(T*x, So) S04 < 6N <2eK N<2eK ™ F,

integer such that 2¢ . Assume that for some Kk,

which contradicts x ¢ .«Z,. Assume now that S, crosses W, for some k, 0<k=<N, at
some point which is on the segment (p(x), p(x”)). Since S; cannot cross a local
stable manifold, S, must have a corner inside the parallelogram
Q=(x,x’, p(x), p(x")). This implies that there is a point z belonging to this
parallelogram such that z € S, for some k’, 0 <k’ < k. By induction we obtain that
Q must intersect Sy, a contradiction since Sy is a straight line. Let j be an integer
such that 0<j< N. The above argument implies that TV ~/Q is a parallelogram.
Moreover, we have

N-j
(TN 9x, TN Ix)Z 648 9, d(TN ix, T ~(p(x))) <2 (%) D,
and

A(TN=Ix', TN “i(p(x))) <2 <§>N_jD R



Ergodic Properties of Lozi Mappings 479

since the angle between a local stable and a local unstable manifold is greater than

b
—. We have, therefore,

AT 0o, TV o) | 0( b )N—f D
| (T 0, TV (x) )
which implies

Id(?;lf(v;;(z_)gg, ;::jng;;’))) _ 11 <%ﬁ by our choice of N,

provided ¢, is chosen small enough (independently of N and J), and
1 |logD|
Jé_—T7
2 log(A%/b)

. We also have

d(T (p(x)), TV (p(x"))) / d(p(x), p(x)) I‘i:[f A
d(TV J(x), TV ~9(x")) dix,x) =1 "
where
A= d(T'(p(x)), T(p(x"))) / (T ' (p(x), T '(p(x)))
T d(T(x), T(x) d(T (%), T ()
satisfies

b N-1 b N-1
— — < < —
1 2</1> =A,=1+2</1> ,

1 |logD|

EWJ —log8, we have

according to Lemma I.1. Therefore, if j= [

N—-j I/D
IT 4,—1| £ %=, if D is smaller than Lz
=1 644

2 2

- . . b .
Combining the two estimates, we obtain the result for D < e with I/, =1. For

b o . .
D> FIVERRA apply T one time [this is enough since D < 0(1)b],and we can apply

the estimate unless W*' and W? cross S, in which case the estimation is performed
with respect to S,. Q.E.D.

We still note p=Pyipa.

Proof of Proposition I1.4. It is enough to prove the proposition with A = An%(p),
Aaclosed intervalin W' and I(4) > 0. Let ¢, be as in Lemma A.1, and choose & such
that 0<e<e, and e<Il(A)D'3. We observe that W \Z(p) is an open subset.
Therefore, there is a sequence (U, ), Of disjoint open intervals such that

w2)= U U,.
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In the following, for a,be %2(p) we shall denote by p(Ja,b[) the segment
1p(a), p(b)[ (although p is not everywhere defined on Ja, b[, this definition makes
sense because p is order preserving).

Let V,=p(U,). From (W;)< oo and I(W,)< oo, we deduce that there is an
integer N, such that

WUp<e, 3 IV)<e, IV)<e® if k=N,.
N k=N1

k=N
Ni—1

Let A/'=A\ U U, We have I[(4)<I(A)<I(A)+e and I(p(4)) <I(H(A)). The set
k=0

k=N,

o = Wzrmfsu( U Vk> is an open subset of W, such that

¢<4¢ if b is small enough.

2
1—41/5//1) -

We can find a sequence (V). of disjoint open intervals of W, such that

()< <1+

=0

k=0
Let N, be an integer such that
I(V)y<e* if k=N, and Y I(W)<e.
k=N,

Let
~ - No—1
A”=P‘1<P(A’)\ U Vk>
k=0

we have [(A") £ U(A") and I(p(A")) S I(P(A")) S UP(A”)) + 4¢. p(A”) is a finite union of
closed intervals of W, whose endpoints are in Z(p ~ *)\«Z.. Let I =[u, v] be such an
interval. We claim that there is a finite sequence (u);—, .., such that
i) ug=u, u,=v,

11) uj € @@_ 1\&{8)>

i) d(uj,u;,)<e

This is obvious from the above construction. From Lemma A.2.1, we have

Ip l[uj’ Ujy D= +E1D1/3)l[ujs Uj4 V7, 0<j=q—1,
which implies
I~ M)+ LDAI) and  KA")=(1+LDVHIH(A")) .

Therefore,
I(p(A) S UH(A)) S UF(A") +4e < (1+ L, DP)(A") +4e

<(1+LD'P)(A) +4c<(1+L,D)(A) +(5+L,D")e
<(1+L;D'®)I(A), where L,=2L +5.
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The inequality in the other direction is obtained by interchanging W,
and W,. Q.E.D.
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