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Abstract. We prove that the Green’s function of the Anderson tight binding
Hamiltonian decays exponentially fast at long distances on Z, with probabili-
ty 1. We must assume that either the disorder is large or the energy is
sufficiently low. Our proof is based on perturbation theory about an infinite
sequence of block Hamiltonians and is related to KAM methods.

1. Introduction
1.1. General Background
In this paper we analyze the Schrodinger operator (Hamiltonian)
H=H(t)= —A+r, (L.1)

where A is the finite difference Laplacian on Z’, and v={v(j)} is a random
potential. We shall consider the case in which the u(j) are independent (e.g.
Gaussian) random variables with mean 0 and variance y. The Hamiltonian (1.1)
was introduced by Anderson [1] to model the dynamics of a quantum mechanical
particle — the electron — moving in a random medium. The random medium may
be thought of as a crystal with impurities of random strength v(j). The variance y
measures the overall strength of the impurities or of the disorder. In this model the
electron interacts only with the impurities. Electron-electron interactions and
thermal effects are neglected.

Let p, ="y, be the time evolution of a wave function v, supported near the
origin, e.g. p,(j)=conste™ V. In order to describe the long time behaviour of our
particle, consider the spread of v, as measured by

0= ), xPw ). (1.2)
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The quantity r*(t) represents the mean square of the distance of the particle from
the origin at time f. In three or more dimensions and for small disorder 7y, the
particle is expected to diffuse with probability 1. In other words, except for a set of
potentials v of measure 0,

r*(1)=Dt,D>0. (1.3)

Here D represents the diffusion constant which depends on v and . In solid state
theory, D is proportional to the conductivity. It is easy to show that if we set v=0
or equal to a fixed periodic potential, r*(t)~constt?, hence there is infinite
conductivity for such a system. (A proof of this behaviour can be based on
analyzing the Heisenberg equations of motion.)

The main purpose of this paper is to prove that if the disorder y is sufficiently
large, then the diffusion constant D and the conductivity vanish with probability 1.
If the disorder is small we still prove the absence of diffusion for sufficiently low
energy E. This means that if the wave function yp, in (1.2) belongs to the spectral
subspace of states characterized by |H — E| <x, with |E| large enough and k=1,
then D= D(E)=0. See (1.15)~(1.18) for the precise definition of D and of D(E) used
in our paper.

Anderson [1] argued that, for large disorder, the particle is trapped or
localized near the origin, i.e.

72(t) < const, uniformly in ¢.

While our results do not imply localization, we hope that some variant of the
methods described in this paper will yield this result.

In one dimension, localization has been established for all strictly positive
values of y (see [2-5]). Moreover it is known that H has dense pure point spectrum
with eigenfunctions which decay exponentially about some point in space. The
simplest example of this phenomenon is given by the degenerate case H=uv:
Clearly r*(t) <const,and the eigenfunctions are simply (Kronecker) delta functions.

In three dimensions and for weak disorder, the spectrum of H is expected to
consist of a band of absolutely continuous spectrum filling out an interval (m, m’),
outside which the spectrum is dense pure point. The numbers m,m" are called
mobility edges. Recently, Kunz and Souillard [6] have established the existence of
absolutely continuous spectrum when Z" is replaced by the Cayley tree. They have
also proven results on the typical decay rate of eigenfunctions for energies near the
mobility edges.

The main estimates of this paper concern the decay of the Green’s function

G(E+ig,v;x,y)=[H—E—ic] ' (x,y), (1.4)

for large y, or for |[E—2v|> 1. Roughly speaking, we establish exponential decay of
G in |x —y|, provided v is excluded from a set of measure o|x — y|~?. The constant p
can be made arbitrarily large by increasing |E—2v| or y. The diffusion constant
D(E) and conductivity have expressions in terms of the Green’s function, known as
the Kubo formulae. The methods we use to derive estimates on G are related to
those of the KAM scheme for handling small divisors. In fact, small divisors
appear in the resolvent because eigenvalues of H come arbitrarily close to E. We
also rely heavily on techniques we have developed to prove phase transitions in the
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1/r? Ising model [7] and in the two-dimensional Coulomb gas [8]. However, no
knowledge of these papers is assumed.

Our proof is based on perturbation theory about an infinite sequence of
“block” Hamiltonians. The “blocks” correspond to regions of Z® on which the
potential is singular, in the sense that the “block” Hamiltonian has eigenvalues
close to E. In order to decouple a “block” of singular sites, Dirichlet boundary
conditions are imposed, thereby decoupling H along the boundary of the region.
The regions are chosen depending on the particular configuration v. We in-
ductively use information obtained for small blocks to obtain results for larger
blocks. As the block size increases, the eigenvalues, E,, of the block Hamiltonian
are permitted to get closer to E. The divergence arising from small divisors
(E—E,)~ ! will be offset by small factors arising from the Green’s function over
long distances proportional to the length of the block.

Finally we remark that our analysis applies not only to the Gaussian but to a
wide class of distributions. What is important for our analysis is that the density of
states g(E) defined by (1.11) be bounded and small.

1.2. Definitions and Notation

The state space for a quantum mechanical particle moving in Z" is given by [,(Z") -
the space of square summable functions f(j), je Z". The kinetic energy operator of
such a particle is the finite difference Laplacian which is the bounded operator on
1,(Z") defined by

> (- fG). (1.5)

irli—jl=1

(41)0)

Thus, the Hamiltonian H(v), given by (1.1), is a self-adjoint operator defined on the
domain of the potential v. Hence the Green’s function (the matrix elements of the
resolvent) of H, given by (1.4), is well defined for 0.

Let specH =0(H) denote the spectrum of H, ¢,,(H) the pure point spectrum,
and o (H) the continuous spectrum of H.

The random potential v belongs to the probability space

Q= ‘]_[V (R, dA(u())), (1.6)

where dA(v) is a probability measure on the reals with a bounded density with
respect to Lebesgue measure. We set

dP(v)= 1;[ (). 1.7)

Note that the group of translations acts ergodically on Q and leaves the spectrum
of H invariant. Consequently it can be shown, see [3], that with probability one

o(H(v))=[0,4v] +suppdi, (1.8)

and that ¢,,(H(v)) and o (H(v)) are independent of v, dP-almost everywhere.
Let A be some subset of Z*. We define 4, to be the finite difference Laplacian
with zero Dirichlet data on the boundary 04 (= the set of links connecting sites in
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A to sites in the complement, ~ A, of A). Let
H, (v)=—-4,+vy,, (1.9

where y , is the characteristic function of A. This operator acts on the Hilbert space
L(A). If A is finite [,(A)=C", where |4| is the number of sites in A, is finite
dimensional, and the spectrum of H ,(v) is discrete. This permits us to define
N 4(E,v) as the number of eigenvalues of H ,(v) less than, or equal to E.

By a simple argument involving the ergodic theorem (see e.g. [9])

1
lim —

lim N (. 0)=N(E) (1.10)

exists and is independent of v, almost surely. Under our assumptions, the density of

states
dN(E)
= 1.11
oE)="— (111)
exists as a bounded function. In fact, Wegner [10] has shown that (see
Appendix C)

A
oE)= supd—@, (1.12)
o dv
and
o(E)>0, for Eeo(H). (1.13)
di . .. .
If 7 has certain analyticity properties, e.g.
A
dd(v)‘ =(2my)” M2 exp[—v?/27], (1.14)
U

then o(E) is analytic in E when either y> 1, or [E—2v|>1 (see [9]).
Next, we turn to the formal definition of the diffusion constant and the
conductivity, as given by Kubo (see e.g. [11]):
. 2¢?
o(E) D(E)= hm% Y [xI?+ [ dP@)|G(E + e, v:0, x)|2, (1.15)
el0 x

D= [o(E) D(E) dE, (1.16)

and the conductivity is given by
o(E)=e’o(E) D(E),

where e is the electric charge.
To relate the time-independent definition of D(E), D, in terms of the Green’s
function of H, to the time-dependent definitions (1.3), we choose

vo(i)=04(,0),
and note that if f(t)/t— D, as t— oo, for some function f(¢) defined on [0, c0), then

0

D=1lime? | e~ (1) dt, (1.17)

€l0 0
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and formally,

o0 2 : 2
sf’-je*8'|(e—itﬂw0)(x)12dt=%jdElG(EJr?,v;o,x) de.  (118)
0

It is not hard to show that if D, as given by (1.15), (1.16), vanishes, an ergodic mean
of r*(t)/t vanishes [i.e. existence of the limit of #*(t)/t, as t— o0, is not required in the
above arguments].

Before summarizing our main results we recall, for completeness, a convenient
sufficient condition for the existence of point spectrum, essentially due to Ruelle
[12]1:

If f() is a non-negative function on [0, c0) and e=T"! then
1 T e 1
[ fydt<e | e f(t)dt
Th 0

§e8}oe_“f(t)dt. (1.19)
0

Let &, denote the projection onto the spectral subspace of H corresponding to
o(H), and let P . be the projection onto wave functions which vanish in
{xeZ’ :|x|<R}. Let h(R) be a positive function, with h(R)— + o0, as R— co. Then,
using (1.19) and results of [12, 3],

. .17 ;
[6p]7 = lim lim — | | P ge ] dt
R0 T->w To

<e lim Time [ e P 5 ze” "pll* dt
R—o €0 o -

<e [im (1/h(R))1iTns?e‘“|\ 1/ h(lxl e tHy||2 4t (1.20)
el0 0

R—
By arguments similar to the ones used to obtain (1.18) we conclude from (1.20) that
in order to show that, for dP-almost every v,

o(H)nI=o0,,(H), ie. o (H)NI=0,

for some interval I, it suffices to show that

ey h(|x|) [ dE | dP(v)|G(E + ig,v;0, x)|*

remains bounded, as ¢|0. This, however, will not follow from the results proven in
this paper, no matter how [ is chosen.

1.3. Main Theorems

We now summarize the main results of this paper. Let 6 be a measure of the
disorder given by
6~ =sup(dA(v)/dv). (1.21)

1 We thank B. Simon for explaining to us Ruelle’s criterion in the form stated here which is
essentially in [3]
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Theorem 1.1. 1) For large disorder 6, D(E)=0, for all E.

2) If dA(v) is given by the Gaussian distribution (1.14) (0= |/ 2ny) then there is a
finite constant E, such that D(E)=0, for |[E—2v|>E,.

Remarks. (1) Theorem 1.1 holds in arbitrary dimension v. Our estimates for E,
approach 2v as 7] 0 since the density of states g(E) goes to 0 for |[E—2v|>2v as y]0.
(2) A result analogous to Theorems 1.1 and 1.2 holds for a large class of
distributions dA(v) briefly described in Appendix C.
Theorem 1.1 is a simple corollary of the following more general result.

Theorem 1.2. There ure constants 7(p, m) and E(y, p, m) such that, for every m<
and every p<oc,
Prob{v:|G(E +ie,v;0,x)| eV~ g0} 21— C,/N”, (1.22)

uniformly in ¢=0, for some finite constant C,, provided o~ Y<J(p,m) or |E—2v|

= E(y, p,m) (when d/. is Gaussian), respectively.
Remark. We have used (and shall use) the convention that
ProbV= [ dP(y)=P(V), (1.23)
v

where V is some measurable subset of Q.
Next we show that Theorem 1.2 implies Theorem 1.1. We define

Vy={v:|G(E+ie,v;0,x)| <e™™ ¥ g0}, (1.24)
By Eq. (1.15) .
o(E) D(E) = 1im7f7 Y IxI? [ IG(E + &, v; 0, %)|? dP(v)..
£l0 x

We decompose Z' into annuli, 4, j=0,1,2, ..., where, for some constant R to be
chosen later,

Ao={x:|x|<R},

A;={x:RY7'<|x|<R2}, j=1,2,3,....

Then, using the definition of ¥}, we get

s

5
o(E) D(E)< lim = ) {ezemeP(VNj)

el0 TV ji=0

> leze_"‘""] +cv(R2f)””P(~VNJ)}, (1.25)

xeAj

where ¢, is a constant (& volume of the unit ball in R”), and in the second term on
the right side of (1.25) we have used the trivial upper bound

e?|G(E+ie,v;0,x)|*<1 ;

the sequence (N )2, can be chosen at convenience. Clearly

Y |x|?e ™ <conste” ™HRY | for j>1, (1.26)

x€A j
and, by Theorem 1.2,
P(~Vy)=1=P(Vy )< C,/N?, (127)
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for any p< oo, provided |E| or 0 are large enough. We now choose
N;=5R2.
It follows from (1.25)~(1.27) that

9(E) D(E)< lim const {z;z (e"“ SRR 24 Y e 8””')
j=1

el0

j=

+ 3 R "’C,,S"} .

J

If we choose p>v+2, let ¢ tend to 0 and R tend to > we conclude that
9o(E) D(E)=0. Since ¢(E)>0, for EespecH, see (1.13), it follows that D(E)=0.

In the proof of Theorem 1.2 we shall take advantage of the fact that it is really
enough to prove inequality (1.22) for the Green’s function of the Hamiltonian in a
finite volume. Let A be some finite sublattice, and let G 4(z,v;x, y) be the Green’s
function of the Hamiltonian H ;= — 4 ,+ vy ,. In Appendix B we show that, for all
e=*0,

|G (E +ie,v;x, y)| S C,e”m@ 31 (1.28)

for some constant C, which is finite for £ %0, and some m(e) proportional to ¢, both
independent of v and A. From this and the resolvent equation it follows that, for
e=+0,
jim G(E+iev;x,y)=G(E+igv;x,y), (1.29)
1z

uniformly for x in finite subsets of Z".

Theorem 1.2 follows from (1.29) and the following result, (see Appendix B for
some details):

Theorem 1.2,. There are constants Mp,m) and E(y, p,m) such that, for m>0 and
p<0,
Prob{v:|G (E+ie,v;0,x)| <" g0} 21— K,/N?, (1.30)

uniformly in ¢£0 and in A, for some finite constant K, provided o ' < /(p, m),
or |E—=2v| = E(7, p. m).

The proof of Theorem 1.2, is the main goal of our paper.

The organization of our paper is as follows:

In Sect.2 we sketch the basic strategy of the proof of Theorem 1.2, and
introduce an inductive scheme, extending over a sequence of increasing length
scales, on which that proof is based. We reduce the proof of Theorem 1.2, to some
estimates on the Green’s function of H ;= — 4, +vy ., where A is an arbitrary finite
sublattice having certain properties. Those estimates hold under inductively
defined conditions on v. Furthermore, we state estimates on the probability that a
potential v satisfies those conditions.

In Sect. 3 we prove our basic (deterministic) estimates on finite volume Green’s
functions. Sections 2 and 3 really form the core of this paper.
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In Sect. 4 we prove some purely combinatorial results concerning subsets of Z*
which we shall need in our probability estimates. The results and the ideas of the
proofs are closely related to results and arguments which appeared in [7, 8].

The basic probability estimates are stated and proven in Sect. 5, and in Sect. 6
the proof of Theorem 1.2, is completed.

Some auxiliary results are collected in several appendices.

2. An QOutline of the Basic Strategy

In this section we develop and inductive method which permits us to prove results
concerning the decay of the Green’s function in a finite volume 4, for a class of
“nonsingular” potentials which will turn out to have dP-measure close to 1.

We choose an energy E, to be kept fixed in the following, and define a sequence
of singular sets §;=S(E;v) contained in Z" which depend on E and on the choice
of the potential v. The sets S; have the property that

S02S5,28,2..., (2.1)
with () S;=S, =0 with probability one.
Thé set of singular sites S, is defined by
So=1{x€Z’ :|v(x)— E+2v|= N(E,9)}, (2.2)

where N(E, )= |—2—| when d is gaussian and |E| is large, and N(E,d)=45"?
whenever the disorder J given by (1.21) is large. The sets S,, k=1,2,..., will be
defined inductively.

Let G 4(E; x, y) denote the Green’s function of H ;= — 4+ vy ,, where 4, is the
finite difference Laplacian with 0 Dirichlet boundary conditions on 04. We set

G,(E;x,y)=0, unless x and y belong to 4.
It is easy to show that if AnS,=0 and N(E,d)>2v then
|G ((E+ie;x,y)|Se ™ VeeR,

where m(E)=In(N/2v), x,y in A4, (see Appendix A). As i increases, S; consists of
increasingly singular points (sites) of v, in the sense that eigenvalues of “block”
Hamiltonians, associated with certain subsets of S;, are permitted to get closer
to E. In Sect. 6 we prove that the probability that S, intersect some fixed, finite
region goes to 0 rapidly with i.

The main purpose of this section is to give a precise definition of S,
i=0,1,2,..., and to state decay estimates for the Green’s function G (E;X,Y),
assuming that AnS, =0, for some k<oo. We then present an estimate on the
probability of choosing a potential v with the property that for a given subset 4
and an integer k, ANS,(E;v)=0. These results suffice to prove our main result,
Theorem 1.2,,.

We now present our inductive definition of S,, k=1: Assume that

Sy25,28,2...25,
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have already been defined, with S, given by (2.2). We define
Si 1 =S;~8¢, (with A~B=A\B), (23)
where
st

ucss,

is the subset of “gentle singular sites of strength i” of S;. SY is a maximal union of
components C; satisfying the following condition.

Condition A (i).
(a) diam C*<d,=exp[K,(5/4)1=r;_, ; (2.4)
(b) dist(C%, S;~ CH = 2r,=2d7'"* ; (2.5)
(c) dist(specH, E) = eV, (2.6)
for all a.

Here specH, is the set of eigenvalues of the “block Hamiltonian”
H,=— A,+uvyp, (D some finite region), and the set C7 is defined by

C7={x:dist(x, C})<4d,} . 2.7

In Condition A(i) and in the following, diamC is the diameter of CCZ", and
dist(4, B)=infla—b|, acA,beB,

and |-] is the Euclidean distance.
Definition. A set A is k-admissible iff

6AmC_;‘=0, j=0,1,....k. (2.8)
A set is admissible iff it is k-admissible, for all k.

We now describe some ideas underlying our analysis of the Green’s function,

G ,(z;x,y), where A4 is some k-admissible subset of Z', k=0, 1,2, .... Our estimates
are based upon quantum mechanical perturbation theory, where the perturbations
are chosen to be the operators which couple components of sets of singular points
to their complement in A. In order to give a more precise description of our
perturbation expansion we establish some more notation: Let B be some subset of
A, and let y=0B be the set of links (nearest neighbor pairs) connecting sites in B

to sites in ~B. We assume that yCA4. We define I' to be the operator
corresponding to y, whose matrix elements are given by

L Gpey (i—jl=1)
I'(i,j= 2.9
() {0, otherwise. 29)
Note that the Hilbert space, [,(A4), associated with 4, is a direct sum
,(A)=1L(B)®l,(A~B),
and, correspondingly, the Hamiltonian H , is given by

H,=H,®H,_ ,—T. (2.10)



160 J. Frohlich and T. Spencer

Thus I' is the operator coupling the system in B to the system in 4 ~ B. We define

Gp4=Gg®G 5. (2.11)
The first resolvent identity says that
G =Gyt GplGy, (2.12)
or
Guz;x,y)= GB/A(Z 3%, y)+ Z GB/A(Z 3%,)) G257, y). (2.13)
G, Jey

Our perturbation expansion is generated by iterating this identity, using different
decompositions of 4 which depend on v. It will be quite important to note that if
X€B,

Gpa(z3%,))=Gpz;x, ),

and Gg(z;x,j) vanishes unless je B; furthermore Gy, 4(z;x,y)=0, unless x and y
both belong to B or to A~ B, etc.

In the next section we prove the following decay estimate on the Green’s
function by iterated use of the resolvent identity.

Theorem 2.1. For |E—2v|+6 sufficiently large and arbitrary real ¢ there is a
constant m=m(E, 6)>0 such that if A is a k-admissible subset of the lattice Z’, and
AnS, ;=0 then

|G J(E+ie;x, )| Sexp[—mlx—yl],

provided |x—y|Z+r,=%d,,,. The constant m(E, &) is independent of k and A.
Moreover
m(E,0) =z 3In{N(E, 9)}

Jor |E=2v|+ 0 sufficiently lurge. [ Recall N(E, o) is defined after Eq. (2.2).]

Note that this result which is proven in Sect. 3 is purely deterministic, i.e. it
holds for each potential v with the property that 4 is k-admissible and
Sii(E;v)nA=0.

Our next task will be to estimate the ¢ P-measure of the set of potentials, W, ,,
defined by

W, ={v:AnS(E;v)=0}. (2.14)

In (2.14) the potential v ought to be chosen in such a way that A is k-admissible,
and we are really interested in estimating the conditional probability

Prob(W, ,]4 is k-admissible) .

This conditional probability can be estimated in terms of P(W, ,), for arbitrary, but
v-independent subsets A. Moreover, bounding P(W, ,), for v-independent subsets A,
can be reduced to estimating the probability that a component of SYE;v) in the
sense of Condition A(j) contains a given site x of the lattice, e.g. the origin; (j= k).
Thus, let

V. ={v:SUE;v)ax}. (2.15)
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In Sects. 4 and 5 we shall prove combinatorial and probabilistic results which yield
the following theorem, proven in Sect. 6.

Theorem 2.2. For large disorder 0, or — if dA is the Gaussian, given by (1.14) — for
large |E — 2v|, there exists a positive constant k(E, 0), with k(E, 8)— + o0, as 6— oo or
|E|— o0, such that

Prob(V, ;)= [ dP(v)

VX:J
<exp[—k(E,é)Ind;_,]
=exp[ — k(E, 8) K,(5/4)Y~1]. (2.16)

Now suppose that the diameter of the region A in Theorem 2.1 is bounded by
diam A <r, =exp(K,(5/4)*1). (2.17)

Let i = k. It follows from Condition A(i), (b) that at most one component of SY(E; v)
can intersect A. It then follows from Theorem 2.2 by straightforward arguments
that

1—Prob(W, )< » > Prob(V, )

J=k |x|Sri

<t Y exp[ — KE, 8)Ko(5/4y~ ']

i=k

<exp[—Kk(E, 0) Ko(5/4)]=d; "5, (2.18)

by (2.16) and (2.17). Here k(E, §) is a constant which tends to + oo, as 6, or |E|, tend
to oo.

If we now combine Theorem 2.1 with Theorem 2.2 and (2.18) we arrive at the
following basic probability estimate for the decay of the Green’s function in a finite

region. See Sects. 5 and 6 for a proof.

Theorem 2.3. Given any finite, positive number p, there exist constants A, E, such
that, for

0™ = sup(dA(v)/dv)£4,, or |[E—2|ZE,,

the following event, &,, holds with probability at least 1—177:
&, is the set of all potentials v with the property that there exists an admissible
region A such that 0€ A and

/2 < min dist(0, b) < max dist(0, b) <,
bedA bec A
and
|G ((E+ig,v;x, y)| Se ™1,

provided x and y are in A, and |x—y|=1**. The decay rate m=m(E,d) is as in
Theorem 2.1.

Remark. The constraint |x— y|=1** can be replaced by |x— y|=°, for arbitrary
o>0.
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In the proof of Theorem 2.3 (see Sects. 5 and 6) and in the considerations below
we also use the following elementary lemma which is proven by using bounds on
the density of states; see Appendix C (and Appendix A for additional
information).

Lemma 2.4. Let d(v)/dv be bounded. Then, for an arbitrary finite subset, A, of Z"
and an arbitrary k<1,

Prob {v: dist(specH ,(v), E)<k} < |/ 2x o(E, d)|1],
where 9(E, 8)—0, as |E|, or 0 tend to + oo.

The end of this section is devoted to proving that Theorem 2.3 and Lemma 2.4
imply our main result, Theorem 1.2, (Sect. 1):
First, we assume that
[x|=N/2, (2.19)

where N is the positive number specified in Theorem 1.2,. Let (4));-¢ ; ,,. bea
sequence of admissible sets for which Theorem 2.3 holds, with

I=1,=2|x|-4. (2.20)

We set y;=04;, and let I be the corresponding boundary operator coupling the
systems in 4; and in ~ A4, To simplify notation we set

G=G,, G;=G,.

[Note that, for j large enough, 4,2 4, and all sites in ~ A belong to ~ S, since
v(j) = + oo, for je ~ A.] By iterating the resolvent identity (2.13) we have

G(E+ie,v;0,x)=[Gy+ Go[,G, + G, [,G,[,G,+ ...](E+ie,v;0,x). (2.21)

Notice that the matrix elements of G, in the series on the right hand side of (2.21)

are evaluated at sites which are separated by a distance of at least
=2x|47 7+ 5 20x|4 = 5 x| 4. (2.22)
By Theorem 2.3 we know that if ve &, then
|G{(E+ie; z,2')| Sexp[ —m(E, 6) |z—2|], (2.23)

provided |z— 2| 23 =(2|x|4/)**. By (2.22), this condition is satisfied in all terms
on the right hand side of (2.21). Thus, it is easy to see that the series on the right

hand side of (2.21) converges, for every potential ve ﬁo &, and is bounded by
=
IG(E +ie,v;0, x)| < Ke™™EI |
for |x|= N/2, where K is some constant independent of E, N and of ve ﬁo éﬂj.
=
0 e,
j=0

We now estimate Prob : We choose an arbitrary, positive integer p and

require that
0" '<A,, or |[E-2ZE,,
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where lp and E, are the constants introduced in Theorem 2.3. Then
0 0
()6 } =P|() }
j= 0 J R

Prob é,
Jj=0
=1-P U(~é”,,.)}
J

21— Y P[~6,]

21— 1
J
=1—constly?21-K,N~7”,

and we have used (2.19) and (2.20) in the last inequality. This proves Theorem 1.2,
under the assumption that |x|=N/2.

If[x|<N/2weset [;=N-4"1j=0,1,2,.... Let | - | denote the operator norm.
By Lemma 2.4 we know that the inequalities

|Go(E +ie,v;0, )| S [|Go | < e™™'?

N
ée(N_lxl)v |x|§ 77 (224)

hold with probability

[ —2¢ ™4 4| 8(E, 5)=1—2(8N)"e "™ *3(E, §) . (2.25)

In (2.24) and (2.25) it is not required that A, be admissible, since in Lemma 2.4 it is
not assumed that A is admissible. (In fact, admissibility of a set A is irrelevant,
whenever one needs only a norm estimate on G ,.) We denote by & the event that
inequality (2.24) holds. Thus by (2.25)

P(6'") = 1 —2(8N)'e " *G(E, 0), (2.26)

with m=m(E, 0) as in Theorem 2.1.

It is still assumed that the regions 4, j=1,2,3,..., are admissible. The
resolvent expansion on the right hand side of (2.21) can now be estimated by using
(2.24) and Theorem 2.3, provided the potential v belongs to the subset

EN N é“,].
j=1 "
Furthermore
P(ﬁ"o)m[ﬂ é”IJD >1—P(~&0)— Z P(~é”,J)
Jj=1 j=1
K/I
=1— N—i, (2.27)

if [E—2v| or ¢ is large.
This completes the proof of Theorem 1.2,,.
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3. Decay Estimates on Green’s Functions

In this section we prove inductively a family of inequalities for G ,(E +ie,v;x, )
indexed by distance scales |x— y|~d, =exp[K,(3)*], for admissible 4 such that
ANnS,=0. Let 4, indicate the following inequality:

(S |G (E +ie,0;x,y)| Se” ™1, (3.1)
for |x—y|=td,=%r,_,, assuming that A is (k— 1)-admissible, and
AnS, =0.
The exponential decay rate (“mass”) m, is given by
m,=In (N(ff\: 5)) - iio Cd; %, (3.2)

for some finite constant C, with N(E, o) us in (2.2).

We note that the sequence (m, ), is decreasing and that if we choose d, = e*°

large enough
m= lim m, 25 1In(N(E, §))>0, (3.3)
k— o0

provided |E| +]/(5 1s chosen sufficiently large.

It is quite easy to prove .#,, see Appendix A. We shall prove .#, by induction.
These inequalities together with (3.3) imply Theorem 2.1.

We now assume 4, i=0, 1, ..., k and propose to establish .7, ,.

Since A is chosen in such a way that

ANS,  =AN(S,~S)=0, (3.4)
we see that 4, holds for admissible subsets of
A~(SInA). (3.5)

We now consider those components C§ of S which belong to A. By (3.4) and (3.5),
these sets represent the only “new singularities” of the potential v which might
obstruct the validity of .7, ;. [If AnS?=0 then AnS,=0, by (3.4), and 4, ,
follows trivially from £.] We shall prove ., ,, by using ., on
G 4~ (52 (E+ie;x, y) and putting back the couplings to S{n A perturbatively. The
convergence of our perturbative expansions can be controlled with the help of
Condition A(k), Sect.2, and our induction hypotheses.

We now start discussing the details of the proof. Let R} be a k-admissible
region containing a component C} of SY(E;v) and with the property that

sy S diamRE<3d, ¢
dist(0R%, C})>0, with C7asin (2.7) }
Since, by Condition A(k), (b),

dist(Cy, Sy~ CP 22r,=2d,, ¢, (3.8)
[see (2.5)], it follows that

and

REA(S,~ CH) =0,
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in particular,
RiNS, =0,

and R} is an admissible set. The existence of regions R} with the above properties is
checked in Appendix D. Our first technical result in this section is

Lemma 3.1. Let R=R] be as ubove, and choose d, and |E|+ ]/ 6 sufficiently large,
independently of k. If
Ix—yZidisss
then
|GR(E+ie,v;x, y)| < exp[ — (my— plx — ], (3.9)
where
w=45d; Y*m.

Proof. Let C=C%, C=C? [see (2.7)], and let B be a (k— 1)-admissible set such that
R~ B is (k— 1)-admissible, as well, and

Co>B>C,

dist(0B, {x, y}) 24, (3.10)

dist(~ B, C)=3d,.
Since |x— yl >1d, ., at most one site, x or y may be contained in any one of the
sets C, B, C, while the other one is at a distance > d, from C. The existence of a set
B with the above properties is verified in Appendix D. We set

3=0C, y=0B, and Q=R~B.

The geometrical situation envisaged here is depicted in Fig. 1.

We define ' and T to be the operators corresponding to 7 and 7, respectively
[see (2.9)]. To prove (3.9) we now distinguish the following two cases:

(1) xeQ, yeQ; and

(2) xeB, yeQ,
[the case ye B, xeQ is clearly analogous to (2)]. We first study (1): By using

~rx = diay

Fig. 1



166 J. Frohlich and T. Spencer

the resolvent identities (2.12) we obtain
GrE+ie;x, y)=[Go+Gol'GRI'Gy1(E +ie; x, y), (3.11)
since, for x and y in Q, the term
[Gol'GyrI(E+ie;x, y)
vanishes (I" couples Q to B!). Since Q is (k— 1)-admissible and @S, =0, .7, implies
IGQ(E—H‘s;u, w)| Sexp[—mylu—w|], (3.12)

provided |u—w|=1d,. By (3.10), inequality (3.12) can be applied to estimate Gy in
both terms on the right side of (3.11). To complete our estimate of
I[LGoI'GrI'Gol(E+ie; x, y)| we appeal to the following

Sub-Lemma 3.2. Let u and w belong to B. Then
|GR(E +ic;u,w)| <2exp |/d,. [ (3.13)
Assuming (3.13), and using (3.12), we see that Eq. (3.11} yields the bound

IG(E+ieix, | Se~™x 4y gmmdlsmul vl oV

(u,u')ey
(w, wey

Se ML 4 2y 2e T VY (3.14)

and we have used the fact that
' —w|<diamB<7d,,

by (3.10) and Condition A(k), (a). In (3.14) (u,v') and (w,w') are bonds (nearest
neighbor pairs) belonging to y=0JB, with u, we @, and [y| is the area of y. If we set

9d,my ~1/4
ERUDTATEE
we see that, for |x —y|=4d, ., and d,, |E| +]/5 so large that ]/Iémkdk,
IGR(E+ie;x, y)| < exp[ — (m, — p)lx— y[].

We now come to the discussion of case (2), i.e., xe B, ye O : We use the resolvent
identity
Gr=Ggrt Grl'Gypr;

which yields
Gr(E+ie;x,y)=[GrI'GoJ(E+ie;x, ),
because [see (2.11)]
Gor(E+ie;x,y)=0, for xeBC~Q, yeQ,
and

Gor(E+ie;w,y)=Gy(E+ie;w,y), for yeQ.
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Hence, using Sub-Lemma 3.2 to bound |G4(E +i¢; x, u)|, x, u in B, and .#, to bound
|Go(E +ie;u/, y)| (which is possible, since
ly—u|=|y—x|—diamB=%d,  , —7d,>d,,
for d, large enough), we obtain
IGRE+ie;x, )| S Y. |GR(E+ie;x, u)| |Go(E+ie:u, y)|

(u,u')ey

< 2|y|eVd_ke—mk(Ix—yl — 7dx)
= exp[—(my—p)lx—yl].

This completes the proof of Lemma 3.1.
We now turn to our

Proof of Sub-Lemma 3.2. By alternated application of the two resolvent identities
Gr=Ggr+ GC‘/RI:GR
=Ggr+Gprl'Gy
we obtain the expansion
GrE+ie;u,w)=[Ge+Gel Gyp+ Gel'GypI'Ge+ .. J(E+ic;u,w).  (3.15)

Note that since I' and u, w are all contained in C, Ger=Gg in all terms
contributing to the right side of (3.15). Factors Gz on the right side of (3.15) are
estimated by using the norm bound

IGE+ie;u,w)| S || GHE +ie; -, )| S &, (3.16)
for u and w in C. This bound follows from Condition A(k), (c), see (2.6), i.e.,
dist(specHg, E)= eV,
Next, we observe that, in all non-vanishing terms on the right side of (3.15), we have
Gpr=0r~5=Gy,

since I C Q. These factors can be estimated by using the induction hypothesis .#,,
since

dist(7,y) = d, >1d, , (3.17)

and (R~ B)nS,=0. [To show (3.17) we recall that, by (2.7) and (3.10),
dist(y,y)=24d, —dist(~B, C) = d, .]
Thus, applying 4, to G, we find
(FGol)(z,2) e =71, (3.18)
By (3.16) and (3.18), the series on the right side of (3.15) can be bounded by

—%dkﬂ/ﬂ)—l

em(l—lﬁllvle""“"”v"_")‘léeVTk(l—e <2eV,
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if |E| +1/5 1s large enough and d, is chosen sufficiently large. This completes the
proof of Sub-Lemma 3.2, and hence of Lemma 3.1.
We now use Lemma 3.1 to complete the induction step,

S, implies S, | (3.19)
Thus, let A be some k-admissible region, with
ANS,=0.
We may also assume that
diamA4=1i4,, ,;
otherwise ., , is empty [see (3.1)]. Furthermore we may assume that
AnS{+0,
since otherwise .#, , ; follows trivially from #,, as already remarked. If
diamA4<3d,, ,,

S, follows directly from Lemma 3.1, by setting R=A4 in Lemma 3.1 [see (3.7)].
Thus we may assume henceforth that

' 3
diamA4>3d, , .

To establish .#, , ,, we shall combine Lemma 3.1 with a method closely related to
one used in [13] to prove exponential clustering of spin-spin correlations in
statistical mechanics. We need the following easy geometrical result which is
proven in Appendix D.

Lemma 3.3. If d, is chosen sufficiently large then, given any site pe A, there is a
k-admissible region R,C A such that

dist(p, OR ~ 0A4) =3, , ;. (3.20)
diamR, <3d,., ;. (3.21)

and
dist({x, y},0R ) = d, 1+, (3.22)

where x and y are two sites in A, with [x—y|=1d,, |.

Lety,=0R, and let I', be the corresponding operator (coupling R, and ~R,).
We shall iterate the resolvent identity

GE+ie;p,y)=[Gg, +Gg,I',G,J(E+ie;p,y)
=Gy (E+ie;p,y)+ 3, Gg(E+icip,u)

(u,u')eyp

-G (E+ie;u,y). (3.23)

(See Fig. 2 for a graphical representation of a typical term.)

In order to prove £, [see (3.1) and (3.2)], we begin by setting p=x. The
factor G ,(E+ie;u', y) on the right side of (3.23) is expanded by iterating (3.23) with
p=1u/, etc. This process is repeated infinitely often. The resulting series expansion is
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Fig. 2

rapidly convergent, and the remainder term, after n iterations, tends to 0, as n— x,
whenever ¢#+0, because the matrix elements of all Greens’ functions
Gy, (E+ie;p(),p(i+1)), j=1,2,..., appearing in the iteration of (3.23), are
evaluated at sites which are separated by a distance of at least id,, . If
R, ;NS =0 then the bound

|G, (E + i p(j), plji+ 1) S e~ milrd=pU DI, (3.24)

with m; =my, follows directly from .#,. If R ; contains a component C of Sf then
(3.24) follows from Lemma 3.1 with R=R ,, and m;=m,— p, (where y, is as in
Lemma 3.1).

In order to estimate the sum of products of these Green’s functions, let

p(j)

M= — .
Using (3.24), we bound the n'™ term in our expansion by

ﬁ e~ mMkIp() = p(j+ 1) (3.25)

{p(2),...,p()} j=1
with p(1)=x, p(n+1)=y. Setting
L;i=1p()—p(i+ 1)1,

li,...,1, are constrained by the following conditions:

Z ljzlzlx—ylgédkﬂ, (3.26)
ji=1
and
%dkﬂgljg%dkﬂ, for j=1,2,...,n—1. (3.27)

These conditions follow from (3.23), and from (3.21) and (3.22). We note that, by
(3.26) and (3.27),

né(ZZ/dk+1)+1§7l/dk+l‘ (3.28)
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By summing (3.25) over all values of n and taking (3.26)—(3.28) into account, we
obtain the following upper bound for the expansion resulting from our iterations
of (3.23):

GAE+ie;x, IS Y e ™ (constd,, )"

Iz]x—yl|

Sexpl—my . lx—yl], (3.29)
with
m,,  =my —Tvin(constd, , ,)/d, . ,
>m,—50myd, M,
provided d,, is chosen sufficiently large. In (3.29) it is assumed, implicitly, that the

remainder term, after » iterations of (3.23), tends to 0, as n— co. That remainder
term can be bounded by

n
e~ mklpt) = p(+ 1)l

{p(2),...,p(n)} j=1

|G Il < (constd, , ;e "+ /2yt~ 1

which tends to 0, as n— oo, for arbitrary ¢<0, provided d, is chosen sufficiently
large.

To summarize, we have proven that for every k-admissible region A with
ANS,, =0 and arbitrary sites x, y in 4 with the property that [x—y|=%d,, ,

IGA(E+ie;xa)’)lée‘"’kﬂlx—yl}

3.30
My, =m,—50myd, Mt (3.30

with
Thus .4, , ; holds [see (3.1) and (3.2)], and the induction step is finished. The proof
of Theorem 2.1 is therefore complete.

Remark. The condition that A and R, be admissible regions is important, because
0R, and 04 are required not to intersect S} for Lemma 3.1 to apply.
In the remaining sections we estimate the probability of the event that

AnS, =0,
where S, =S,(E ;v) depends on the potential v. This will yield Theorems 2.2 and 2.3.

4. Entropy — Combinatorial Bounds

In this section we establish some general combinatorial results which provide
estimates on the number of subsets DCZ" which contain the origin and have
prescribed “volumes,” in a sense that we shall make precise. These results play an
important role in the proof of our basic probability estimates stated in Theorem
2.3 (see Sect. 6). Let Z'(n)=2"Z", n=0. With each site ke Z*'(n— 1) we associate a
cube c,(k) with sides of length 2" parallel to the lattice axes and centered at k. Each
such cube is called an n-cube. [For n=0, Z'(—1)=7Z", and a O-cube is a site in Z".]
We note that two adjacent n cubes overlap in a rectangular region of width 2"~ 1,
for n=1. Using this fact it is easy to show
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Proposition 4.1. Every finite subset D CZ" is entirely contained in a single n-cube, c,,
provided that 2" =2 diamD.

By %, we denote an arbitrary collection of n-cubes and define |4, to be the
cardinality of 4,. Given a subset D CZ" we define ,(D) to be a minimal family of
n-cubes [i.e. |%,(D)| is minimal] which cover D. We define the “volume” of D on
scale 2" to be

V(D)=|%,D), (4.1)
and the total volume
no(D)
VD)= Y. VD), 42)
n=0

where ny(D) is the smallest integer such that 2"® >2 diam D.

Theorem 4.2. If N(V) is the number of subsets D CZ' such that V(D)=V and Oe D
th

° N3 (2-3) <k, 43)
for some constant K.,

Remark. Note In N(V) is related to what in physics is called entropy.

To prove this theorem, let us first consider the family & of sets D containing
the origin with specified n-volumes: V,(D)=V,. Let N({V,}) be the cardinality of &#.
Now consider a collection €, of n-cubes such that |%,|=V,. We think of €, as
specifying our set D “on scale 2".” Let N(%,, V,_,) be the number of covers %%_,
subordinate to %, (i.e. each cube of €% _, is covered by some cube in %,) such that
|(g:—1|= Voo a=12,...,N(% V;z—l)'

n’

Proposition 4.3.

N(©,,V,_)S(2:3")" 1. (4.4)

n

This bound clearly implies that
N({V,H =323, (4.5)

where the factor 3" arises from counting the number of covers %, , (n,=ny(D),)
consisting of a single n,-cube which encloses the origin. Since there are less than 2"
choices of sequences (V,), n=0,1,2,... for which ) ¥, =V, Theorem 4.1 follows.

Proof of Proposition 4.3. Given a cube ce%, and a collection %%_, as specified
above, let N be the number of (n— 1)-cubes in % _, contained in c. Clearly

Z Ne=V,_y.

c€bn
We now ask how many collections %%_, are there for which N%=N, with
Y N.=V, ;. Note that there are 3" possible positions of an (n— 1)-cube inside
some arbitrary n-cube. Thus the answer to the question posed above is that the
number of collections with specified N*=N_ is bounded by

3v
<3Wn-1

cebn c

Now summing over the 2"~ choices of {N_} ., we see that (4.4) follows. [J
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Remark. These bounds are very crude and can be improved with more effort. This
might be important in other applications, e.g. to expansions in statistical
mechanics.

In order to obtain probability estimates for the components D= C? of sets of
singular sites, introduced in Sects. 2 and 3, it is convenient to define a family €,(D)
of “isolated” cubes. [Cubes in %,(D) will turn out to cover subsets of D on which
our eigenvalue condition (2.6) is violated.] More precisely, let 1 Sa<2,and M =2
be specified constants. We define

€ =% (o, M)
={c:ce ¥, dist(c, )= M2*", for all c'€¥,,c *+c}, (4.6)

no
vi=lg), V=Y V.
n=1

Theorem 4.4. For a<2,M < co there are finite constants K (o, M) and K'(a, M)
such that, for arbitrary collections €,, n=0,1,2, ..., with the properties described
above,

V=Ko, M)Vy+K'(o, M)V,
Moreover, K'(1, M)=2.

Remarks. For v=2 a variant of this result has been proven in Sect. 3 of [8]. The
arguments given there combined with Proposition 4.1 prove Theorem 4.4 for v=2.
The extension to arbitrary dimension v is immediate. (See also [7] for a discussion
of this and related results when v=1.)

Sketch of Proof of Theorem 4.4. Let y(n) be defined to be the integer part of
1 . . .
&(n—l—logz[ZM +3]ﬁ]). The basic observation required in the proof is the

following inequality: For n>1+log,[2M +3 ]ﬂ],
V, 23V, + Vi (provided V., =2). 4.7

y(n)’

To prove (4.7) we define €, =%, ~%,,, for all m, and note that, given an arbitrary

cube ce %, one can find a cube '€, ¢’ +c such that

dist(c, ') < M2/,

By the definition of y(n) and Proposition 4.1, ¢ and ¢’ can be covered by a single
cube in %,. More generally, if c,, ..., c; are [ cubes belonging to €7, such that for
each je{1,...,1} there is a o(j)=*j with the property that

dist(c;, ¢ ;) < M2,

then one shows quite easily, using Proposition 4.1, that [1/2] cubes in €, suffice to
cover {cy,...,¢;}, where [I/2] =integer part of //2. However, it will require |%",,)|

different cubes in %, to cover all cubes in €. Hence

V=16, S31C 0| + €0 <3V + 7,

y(n) y(n) >

which is inequality (4.7). Given n, we can iterate (4.7) N(n) times, where N(n) is the
largest integer for which y™(n) = 0. (Here y™ denotes the m-fold composition of the
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function y with itself.) Using the trivial fact that V,, SV, for all m >0, we obtain by
iterating (4.7)

N(n) N(n) 1 m—1
V,< <§> Vo+ ; (5) Vi - (4.8)
By summing inequality (4.8) over all values of n=<n, and using simple properties of

y and N(n) which are discussed in detail in Sect. 3 of [8], Theorem 4.4 follows. [In

i lOg n 0 N(n) o0 1 1/logaa
particular, since N(n)~ (log2a> +const, Y. <§) gconst< Y (;) ) con-
2 n=1 n=1

verges, provided oc<2.} O

In certain applications to high- and low-temperature expansions in statistical
mechanics it would be useful to have better constants in the bounds proven in
Theorems 4.2 and 4.4.

5. Probability of Occurrence of Singular Sets
5.1. Statement of the Main Theorem

Let D be some finite subset of the lattice Z". With D we associate a subset V;, ;C€,
of potentials, v, as follows:

Vp,j={v:D is a component of SYE;v)}, (5.1)

where S%(E;v) is the set of “gentle singular points of strength j,” as constructed in
Sect. 2.
The purpose of this section is to establish an upper bound on

P, ;= [ dP(v)=Prob(V, ). (5.2)

Vb,,

Thus, let ve V), ; and suppose, first, that
diamD=d;_,. (5.3)

Since D is a component of §¢ and §;CS;_,, D clearly satisfies Condition A(j-1), (a)
and (b). Since the sets, SY,i=0, 1, 2, ..., of singular points of strength i are always
chosen to be maximal, D would be a component of §4_, if Condition A(j-1), (c)
were satisfied. Thus, since D¢SY_,, it follows that

dist(spec Hp(v), E)y<e V-1 (5.4)

for all ve V), ;, with D satisfying (5.3). Here D ={xeZ" dist(x, D) <4d;_,};see(2.7).
Second, if

diamD>d;, (5.5)

then V}, ; is clearly empty, and hence
P, ;=0. (5.6)
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Let x5 ; be the characteristic function of the set of potentials
{v:dist(spec Hplv), E)y<e VT, diamD<=d;_ ,}.

and let y,, be the characteristic function of the set, ¥, of potentials defined by
{v:3i such that D is a component of SY(E,v)}. (5.7)

Clearly V), ;CVp. Our discussion can now be summarized by the following
inequality :

{25 ) xp(0)dP), if diamD=d,_,

Py £ Pp=[yp)dP(w), if diamD>d;_, (5.8)
0, if diamD>dj.
If diamD<=d;_,, P, ; can be further estimated by
Py S (P5 ) 2PY2, (59)
where
Py = 1up (0)dP(). (5.10)

Inequality (5.9) follows from the first inequality in (5.8), by the Schwarz inequality.
We have thus reduced the problem of estimating P, ; to estimating Pj, and Pj; ;. By
Lemma 2.4, if |[E—2v| or ¢ is sufficiently large then

P52 20(E. 9)0d;_ )" exp(—/d;_, /2), (5.11)
where g(E, )—0 as |E|— o0 or 0—oco. Thus it remains to estimate P,
Theorem 5.1. If |E—2v| or ¢ is sufficiently large

P, < exp[ — ko(E, 6)Vy(D)— K(E, 8)V'(D)], (5.12)

where Vy(D) and V'(D) are as defined in Sect. 4, and k, k' are constants which tend to
+ 00, as |E|— oo or 6— 0.

In Sect. 6 we shall combine the inequality in Theorem 5.1 with the entropy
estimates of Sect.4 to complete our probability estimates for the decay of the
Green’s function, G(E+ie,v;x,y), announced in Theorems 1.2 and 1.2, of the
introduction.

5.2. Proof of Theorem 5.1

Let us first recall that €(D) C% (D) is the set of isolated n-cubes ¢ with the property
that ce @(D) iff

dist(c, &)=z 2-2073",

for all ¢e % (D) with ¢=c. (We have set M =2, a=5/3; see Sect.4 for definitions.)
The aim in Theorem 5.1 is to associate a small factor e ~* with each isolated cube ¢
in €, n=1. Roughly speaking, isolated subsets of D are extremely unlikely,
because on all such subsets the eigenvalue condition (2.6) must be violated. Lemma
2.4 can be used to show that this occurs with low probability, since ke V.
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(Note that if the eigenvalue condition were satisfied then cnD would itself be a
component belonging to SY, m <, because of our maximality condition.)

In order to make the above ideas more precise we shall first bound the
characteristic function of ¥}, by a product of characteristic functions. To define
these characteristic functions let j(n) be the smallest integer such that

djy = exp[K ("] 22" (5.13)
If ce (D) we set
cnD={x:dist(x,cnD)<4d,,}, (5.14)
and define x, (v) to be the characteristic function of
{vldist(spec H=5(v), E) < exp — |/d, } - (5.15)

When n=0 we set 6,(D)=D and identify ce ¢’ with a site in D. We define z, , to
be the characteristic function of the set

{v:fo(c)—(E—2v)| = N(E, )}, (5.16)
where N(E,J) is defined after (2.2). Let
I(Ky)={0}u{neZ:n=K,/In2}, with K, as in (2.4). (5.17)

Note that j(n)=1 for all 0nel(K,). We adopt the convention that an empty
product is defined to be | and that y, (v)=1 for n¢l(K).
In Sect. 5.3 we shall prove the following lemma.

Lemma 5.2. For y, . defined as above

o= 1T [l %dv. O (5.18)

©
n=0 cebn(D)

Assuming this lemma we shall prove Theorem 5.1 by using Holder’s inequality
together with the statistical independence of g, ., for disjoint ¢’s. In fact, if ¢, and
c,€%,(D) then

ciNnDne,nD=0, if ¢, #*c,,
because

dist(c,"D,c,nD)=2-25/3"—94,
22,2(5/3»1_9.2(5/4)'1

=0, if K, is large enough.

This implies the independence of y, ., ce %, (D). Hence

{11 % dPw)= [T [, (0)dP@). (5.19)

ce€n(D) cebn(D)
Next we combine Lemma 5.2 and (5.19) with the Holder inequality
|§ fgdPI=(J1 /1" dPY (flgI"'* ~"dP)' 7", (5.20)
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0<r<1, and use the obvious fact that y?=y, ¢>0. This yields

§ oty ()dPw) = f{ ﬂ fl }dP(v)

—'<_—[ I_[ fXO,ch]l_r.[J‘{n 1—[ Xn,c}dp}

cebo(D) n=1 ce€n(D)

<.

=TI T1 L, aPY™ ™" (5.21)

n cebn(D)

by successive applications of (5.19) and (5.20).
Proof of Theorem 5.1. By the definition of y, ., (5.15), and the fact that d;, = 2", we
see that Lemma 2.4, with k= exp(— 1/27), implies

[ 2, dPY"0 " S B(E, "0 [eADI™ " 2exp[(r—1)(r)/2V/2].  (5.22)

We now choose r=0.8 > 1/]/2. Note that the right side of (5.22) is small when » is
large. When n is small we use the fact that g(E,d) is small for |E| or ¢ large.
Therefore cach factor in the product on the right side of (5.21) yields a small factor,
for each cube in %,. and Theorem 5.1 follows.

5.3. Proof of Lemma 5.2
Let j(n) be given by (5.13), and cn D by (5.14). For each ce % (D) we propose to

show that
dist(spec H=5(v), E)S exp(— )/ d},) (5.23)

for all ve V), with V}, as in (5.7). From this Lemma 5.2 clearly follows. Since

ce%,(D), we have
diam(D) = dist(c, € (D) ~c) = 2-23/3"

22265/ 2 2. 434 (5.24)

and we have used (5.13).
Let i(n) be the largest integer such that

dyy = exp[Ko(5/4)™] <206/, (5.25)

Then, by (5.24) and (2.4), we see that D can be a component of S{(E;v) only for
some value of k satisfying
k>i(n).

If j<k, and C7 is a component of SY(E ;v) different from D then, by (2.5),
dist(cn D, Cj) =z dist(D, C9) 224319, (5.26)
and if j>k
dist(cn D, C) = dist(D, S, ~ D)
22d, > 2dy, . >2-20" 224308 (5.27)

j(n)
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Inequalities (5.24), (5.26), and (5.27) imply that cn D satisfies Condition A(j(n)), (a)
and (b). Now recall that the sets SYE;v) are required to be maximal. Thus if cnD
satisfied Condition A(j(n)), (c) it would be a component of S%,(E;v). Since
j(n)<i(n)<k, (5.23) now follows.

It should be pointed out that, for each ce €'(D), the integer j(n) and the validity
of (5.23) do not depend on the potential v, as long as ve V},.

6. Proofs of Theorems 2.2 and 2.3, Conclusions

In this section we use the results of Sects. 4 and 5 and Theorem 2.1, proven in
Sect. 3, to complete the proofs of Theorems 2.2 and 2.3. We recall that it has been
shown in Sect.2 that our main technical result, Theorem 1.2, of Sect. 1, follows
from Theorem 2.3 and Lemma 2.4. A proof of Lemma 2.4 and related matters are
contained in Appendices A and C.

The main points which remain to be discussed are the following:

(1) Let 0€(0,1) and I>1 be given. Let k be the largest integer for which

S 6.1)

We must estimate the probability, P(/,0), that there exists a (k— 1)-admissible
region A containing 0 such that

1/2 < min dist(0, b) < max dist(0, b) =1, (6.2)
beoA bedA
and with the property that
ANS(E;v)=0. (6.3)
For such regions it follows from Theorem 2.1 that
IG(E+ie,v;x,y)| Se mx, (6.4)
with
m=m(E,0)z5In(N(E, ),
provided

k=2 l" 2 1d,. (65)

Theorem 2.3 follows if we can show that given any p<oo, there is a finite
constant c, , such that, for |E]| +1/5§ Cpoos

P(Lo)=1—1. (6.6)

Our proof of this estimate proceeds as follows:

First we notice that, with probability 1, there exists a (k— 1)-admissible region
A satisfying (6.2). This is shown in Appendix D.

Thus it is enough to estimate the conditional probability, P,, that
ANnS,(E;v)=0, given that 4 is a (k— 1)-admissible set satisfying (6.2). But P, can
be bounded below by the probability P,(/) that uny set A which satisfies (6.2) docs
not intersect S,(E: v). Clearly

P, ()= 1 —const!” max (1—=P, ) (6.7)

=
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where P, , is the probability that x¢S,(E;v). Since the distribution dP(v) of
potentials v is translation-invariant,

min P, , =P, ,. (6.8)

[NES

Next, we bound P, , from below by
Poy21— 3 pi—Dos (6.9)
i=k

where p;=Prob(l;, ;) is the probability that Oe SY(E;v). Here
V. ={v:SYE;v)ax},
see (2.15), and p, is the probability that

s.= () 8=~ (U 1)
k=0
is non-empty.
Thus, we must show
(2) for arbitrary finite regions A

Prob{v:S, =S (E;v|)=0}=1,

ie. p,=0; and
(3) given an arbitrary g < co, there is a finite constant c, such that
p;<d;* (6.10)
if |E|+]/02¢,

Remarks. 1) We note that (3) clearly yields Theorem 2.2.
2) From (6.9), (2) and (3) it follows that

Py ,=z1—constd, ?, ¢>0,

(because p;<d; *=exp[— qK,(5/4)]). Now, recall that k is the largest integer with
the property that

1
Sdk

I\

I, e, d.,=d)*=5.
Thus
4

Py =1~ constl™57, (6.11)

By the definition of P(l, 0), (6.7), (6.8), and (6.11), it now follows that
4
P(l,6)=1— const]" "5
g 1 - l—p )
. = . 5 ,

for any finite p.1f [E|+]/0=c,. with ¢> %(p—l—v). This proves our basic lower

bound on P(l, 0), see (6.6). Thus the proof of Theorem 2.3 is complete.
We now turn to our proofs of (2) and (3); see (6.10). Point (2) is settled easily:
Since A is assumed to be a finite region, Conditions A(i), (a) and (b) of Sect. 2 will
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be satisfied for i large enough. Thus for S to be non-empty it is necessary that E is

an eigenvalue of H,=—4,+vy, Since specH, is discrete, this event has

probability O.

To settle (3) we use the results in Sects. 4 and 5: To begin, note that
p;=Prob(}; )= Y Pp ;s (6.12)
Ds0
where P, ;is the probability that the set DCZ" is actually a component of SY(E;; v).
Thus we need an estimate on Py, ;. Such an estimate has been established in Sect. 5.

Let V(D) and V'(D) be defined as in Sect. 4; see (4.2) and (4.6). Then, by (6.12) and
inequality (5.8),

o0
P,é Z PDJ

V=1 D30

VD)=V
o0

< \1/2p1/2
<y Y Py )PP+ Y Py (6.13)
V=1 D30 D=0
VD)=V VD)=V
diamD=d;- diamD2=d; -

where P has been defined in (5.10) and P, in (5.8). The second inequality in (6.13)
follows from (5.8). By (5.11),

Py <20(E,8)(9d;_,)e Vh-12=d (E, ),
and by Theorem 5.1, (6.14)
Pp=exp[—ko(E, )Vo(D)— K'(E,0)V'(D)],
if |E| -|—]/5 is large enough. [Here V(D) =|D| is the number of sites in D.]
Next, we use Theorem 4.4, with =3 and M =2, to conclude that
V(D)= K,V,(D)+ K'V'(D),
so that, by (6.14),
P,<exp[—K(E,V(D)], (6.15)

for some constant K(E, ) which tends to + oo, as (|[E|+ d)— co. It is an immediate
consequence of the definition of V' (see Sect. 4) that

V(D)= constIndiamD. (6.16)
Thus, by (6.13)6.16),
p;= Zdjj(E,5)”2e_K‘E"”V/2N(V)+ Y o e KEIVN(Y),

v V 2 constind,

where
N(V)=#{D:D=0,V(D)=V}.
By Theorem 4.2,
N(V)<e&Y
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Thus

1
pj é ‘Dj(E, 5)1/2 2 e(KV—‘Z‘K(E,é))V + Z e(KV—K(E,b))V . (6 17)
Vv

V 2 constlnd;

By (6.14) and (6.17),
pjg(l/dj)q(E,é)’

with g(E, §)— o0, as |E|+d— co. This proves (3).

The proofs of the results announced in Sects. 1 (Theorems 1.1 and 1.2) and 2
(Theorem 2.3) are now complete.

To conclude, we wish to mention some interesting open problems.

1) It appears to be rather straightforward to extend our analysis to systems
with off-diagonal disorder, or to the problem of wave propagation in a random
environment on Z*, provided the disorder is large (or the energy is constrained to a
suitable region).

2) It would be interesting to improve our methods in such a way that not only
absence of diffusion (for large disorder or at low energies), but localization, in the
strong sense of the word, is obtained, i.e.

specHNI=0,(H)NI+0

if I is chosen to be a union of intervals located at sufficiently large values of |E|
(and if the disorder is large, I 1s the whole real line). A proof of this requires
mastering more serious small divisor problems. While we have envisaged a
tentative strategy to get at such results we do not know of any complete analysis.

3) As the reader has noticed, estimates on the density of states are an
important ingredient of our analysis. It would be interesting to improve the
present estimates on the density of states (see [9,10]) and, for example, establish
bounds on and smoothness properties of g(E), for E in the region where extended
states are expected.

4) 1t would be interesting to prove general upper bounds on the diffusion
constant D(E), for arbitrary E. This will probably require new ideas.

5) It may be possible to apply our methods to almost periodic Schrodinger
operators on Z". In particular one might consider a limit periodic potential with
random coefficients. A primary problem in an analysis of almost periodic
operators will be control over the density of states.

Appendix A: The Path Expansion for G

In this appendix we expand the Green’s function in the off diagonal matrix
elements of — 4 to obtain a formal series for G (E). The terms of the series are
indexed in a natural way by paths w which represent a sequence of nearest
neighbor pairs of lattice sites in Z'. If D is the diagonal operator

- i)~ 1
Dij—(2v+vj—E—ze) 5ij,
and J denotes the off diagonal elements of 4, i.e.

Jy=1 if Ji—jl=1, ijed,
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and 0 otherwise. Then formally, see [1, 14]
G (E+igv;x,y)=[D"1'—J] *(x, )

i LD(IID)"](x, y)

n=0

2 13, (A1)

w:x—y jed

where w ranges over nearest neighbor paths starting at x and ending at y which are
constrained to lie in A. Also, nj(w) denotes the number of times w visits the lattice

. ) 1
site je A. Note that if S;nA=@ then lDiléN’ N=N(E, o) [see (2.2) for the
definition of N(E,J)] and

l n,lw) 2 ‘¢ njlw)
GAEx I Y Tl (~——) 5 i—)

o) .
w:x—y jed 2v+te

(Rl 1 n ()
w:x—y jed (2‘] +£’>

[x=yl

(—4+¢e) ' x,y) (A2)

2v+¢
N

2v+e
N

[IA

vt < 1. [This is possible if an appropriate definition of

with ¢ chosen such that
N(E, d) is made.]

In general, it is clear that the factors D;; may become arbitrarily large, and (A.1)
will not be absolutely convergent. This is the problem of small divisors. Our
strategy is to selectively expand the off diagonal matrix elements of 4, depending
upon v. In this way we obtain a convergent series.

Representation (A.1) is also useful for estimates on the density of states, see

(1.11),

o(E)= lim #m | dP(v) G(E + i¢,v;0,0)
£—0

=limsm ) []{DHdiw).
e=0 ®:0-0 j
If dA(v)) is, for example, the Gaussian given by (1.14), then by deforming the
contour of integration so as to avoid the zero of D; ', it is easy to show that if
|E—2v| is large or y is large then

1§ DA S @),

where a=a(E, y)—0 as either |E—2v| or y become large. Thus if |a]<(2v)™! the
integrated series converges and ¢(E) is bounded and analytic in E. Similarly one
can prove that the average Green’s function decays in |x — y| for large |E|. In order
to make this argument rigorous it is important to first take ¢ large so that the series
(A.1) is manifestly convergent. We then let ¢—~0 after integration. Moreover one
can obtam with some extra effort good bounds on ¢(E) as |E —2v|— o (see [9, 14]
for details).
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We remark that the above analysis breaks down if one tries to estimate the
average of the absolute value of the Green’s function because deformation of our
contour is no longer possible.

Appendix B: Proof of (1.28)

Let U(a) be the multiplication operator on [,(Z') given by ¢“J. By direct
calculation we see that
U(—a)H ,(v) Ula)=H 4(v)+ Q 4(«) ,

where Q ,(u) 1s a bounded operator independent of ¢ which has an analytic con-
tinuation 1n a satisfying
1Q 4la)|| = Clal (B.1)

for aeC” and |a| £ 1. If we choose |a| = % then

U(—a)G (E+ig)Ula)=[H,— E+ieQ ()] " (B.2)

is a bounded operator on [,(Z") with norm less than 2¢~'. Now observe that the
x, y matrix element of (B.2) which equals

¢ETIG (E+ie;x,y)
must be bounded in absolute value by 2¢™ 1. This completes our proof of (1.28).

Remarks. A similar result holds if there is a gap in the spectrum of H, with ¢
playing the role of the width of the gap.

In the above we have relied on the so-called Combes-Thomas argument (see
[15] and references therein).

Appendix C: Bounds on Density of States

Proof of Lemma 2.4. Let y ,(x, E) be the characteristic function of the set
{v|dist(spec Hy(v), E) <k}, (C.1)

and let N (E,v) be as in (1.10). Following Wegner [10],

[ x4k, EYAP < [ [N (E 45, v)— N 4(E —x, v)]dP
d
N,(E, v)dE'dP
= J;lqu A(E',v)
-y— | LngE vaeap

i 1B -Elsx 4U;

<) su ( ) JONAE, v)dE ] di(vy), (C2)

k*j

where

ONAE, v)=N4E v )= NyE, ") (C3)
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and v =v, for k+j, and v; >v; denote the endpoints of the support of di
(possibly + c0). Note that the integrands above are all nonnegative and that we
have used the relation N(E,v)=N(0,v— E). Since v; is a rank one perturbation of
H ,(r) it follows from the minimax principle that the eigenvalues of H ,(v) are
interlaced A, £/, <A, |, hence 0=6 N=1,ae. inv (since the A, are distinct with
probability 1). Thus

[ x4, E)< 2671 A]. (C4)

This establishes Lemma 2.4 if § is large.
If |E|is large, N 4(E, v)= I only if for at least one j, [v,— E+2v =< 2v which occurs
with probability less than
|A] | dA(v). (C5)
|V —E+2v|<2v
When dA(v) is Gaussian, then the integral is small for large E. Lemma 2.4 follows
by taking the geometric mean of (C.4) and (C.5).
d)t(v) .

Remark. We have used only the fact that I is bounded and that for large |E|
v

(C.5) is small. If we assume that A(v;) is Gaussian then the factor ]/2x which
appears in Lemma 2.4 may be replaced by 2«. This follows from the method of
Appendix A (see also [9]).

Appendix D: Admissible Sets
Lemma. Let D,D> D, be rectangular regions such that

dist(D, ~D,)=10d,. (D.1)
If dg is sufficiently large, then there is a k-admissible set A such that D,>ADD,.

Remarks. The admissible sets needed in Sects. 3 and 6 are given by the above
lemma after a suitable choice of D, and D,.

The proof of this lemma is nearly the same as the argument which appears in
Appendix E of [&].

Proof. Let B _
Ci={xeZ’:dist(x,C}) =2}, (D.2)
and let
u=|J .
a, j<k

Now consider the components of U (defined in the usual nearest neighbor sense)
which meet 0D, — call them U’. We claim that

diam(U%)<10d,, (D.3)

where r is the largest integer such that U?> C;‘, for some . Let 4 be defined as the
union of D, and (] U”. Clearly (D.3) implies that ACD,.

B
We shall establish (D.3) by induction on r. Clearly (D.3) holds if r < 1 using (2.4)
and (2.5). Now let U# and r>1 be given and let C*, i=1,2,...,m denote those c:
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contained in U?. We define Q” to be the components of

m

Ub~ ) Cx.

i

By induction,

diamQ"=<10d, _,

which is much less than

dist(C*, C»)=2d,, , —8d,—4

for d, large. In the last inequality we have used (2.5), (2.7), and (D.2). Therefore
each Q7 can meet at most one C*. Since U’ is connected, it follows that U’
contains exactly one C (i.e. m=1). Therefore if d, is sufficiently large,

diam U? <diam C** +20d, _,
<9d,+4+20d,
<10d,. O
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