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Abstract. We prove that the Green's function of the Anderson tight binding
Hamiltonian decays exponentially fast at long distances on Zv, with probabili-
ty 1. We must assume that either the disorder is large or the energy is
sufficiently low. Our proof is based on perturbation theory about an infinite
sequence of block Hamiltonians and is related to KAM methods.

1. Introduction

/./. General Background

In this paper we analyze the Schrodinger operator (Hamiltonian)

H = H(v)= -Δ + v, (1.1)

where A is the finite difference Laplacian on Έ, and v = {v(j)} is a random
potential. We shall consider the case in which the υ(j) are independent (e.g.
Gaussian) random variables with mean 0 and variance γ. The Hamiltonian (1.1)
was introduced by Anderson [1] to model the dynamics of a quantum mechanical
particle - the electron - moving in a random medium. The random medium may
be thought of as a crystal with impurities of random strength v(j). The variance y
measures the overall strength of the impurities or of the disorder. In this model the
electron interacts only with the impurities. Electron-electron interactions and
thermal effects are neglected.

Let xpt = eίtHψ0 be the time evolution of a wave function xp0 supported near the
origin, e.g. ψo(j) = conste~'J''. In order to describe the long time behaviour of our
particle, consider the spread of ψt as measured by
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The quantity r2(t) represents the mean square of the distance of the particle from
the origin at time t. In three or more dimensions and for small disorder γ, the
particle is expected to diffuse with probability 1. In other words, except for a set of
potentials v of measure 0,

r\t)^Dt,D>0. (1.3)

Here D represents the diffusion constant which depends on v and ψ0. In solid state
theory, D is proportional to the conductivity. It is easy to show that if we set v = 0
or equal to a fixed periodic potential, r2(t)^ const ί2, hence there is infinite
conductivity for such a system. (A proof of this behaviour can be based on
analyzing the Heisenberg equations of motion.)

The main purpose of this paper is to prove that if the disorder y is sufficiently
large, then the diffusion constant D and the conductivity vanish with probability 1.
If the disorder is small we still prove the absence of diffusion for sufficiently low
energy E. This means that if the wave function ψ0 in (1.2) belongs to the spectral
subspace of states characterized by \H — E\^κ, with |£ | large enough and /c^l,
then D = D(E) = 0. See (1.15)-(1.18) for the precise definition of D and of D(E) used
in our paper.

Anderson [1] argued that, for large disorder, the particle is trapped or
localized near the origin, i.e.

r2(t) ^ const, uniformly in t.

While our results do not imply localization, we hope that some variant of the
methods described in this paper will yield this result.

In one dimension, localization has been established for all strictly positive
values of y (see [2-5]). Moreover it is known that H has dense pure point spectrum
with eigenfunctions which decay exponentially about some point in space. The
simplest example of this phenomenon is given by the degenerate case H = υ:
Clearly r2(ί)5^ const, and the eigenfunctions are simply (Kronecker) delta functions.

In three dimensions and for weak disorder, the spectrum of H is expected to
consist of a band of absolutely continuous spectrum filling out an interval (m, m'),
outside which the spectrum is dense pure point. The numbers m,m' are called
mobility edges. Recently, Kunz and Souillard [6] have established the existence of
absolutely continuous spectrum when Έ is replaced by the Cayley tree. They have
also proven results on the typical decay rate of eigenfunctions for energies near the
mobility edges.

The main estimates of this paper concern the decay of the Green's function

G{E + iε9v;x9y) = lH-E-iε]-1(x9y)9 (1.4)

for large y, or for \E— 2v| P1. Roughly speaking, we establish exponential decay of
G in |x — y\, provided v is excluded from a set of measure a\x — y\~p. The constant p
can be made arbitrarily large by increasing \E — 2v| or y. The diffusion constant
D(E) and conductivity have expressions in terms of the Green's function, known as
the Kubo formulae. The methods we use to derive estimates on G are related to
those of the KAM scheme for handling small divisors. In fact, small divisors
appear in the resolvent because eigenvalues of H come arbitrarily close to E. We
also rely heavily on techniques we have developed to prove phase transitions in the
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1/r2 Ising model [7] and in the two-dimensional Coulomb gas [8]. However, no
knowledge of these papers is assumed.

Our proof is based on perturbation theory about an infinite sequence of
"block" Hamiltonians. The "blocks" correspond to regions of Έ on which the
potential is singular, in the sense that the "block" Hamiltonian has eigenvalues
close to E. In order to decouple a "block" of singular sites, Dirichlet boundary
conditions are imposed, thereby decoupling H along the boundary of the region.
The regions are chosen depending on the particular configuration υ. We in-
ductively use information obtained for small blocks to obtain results for larger
blocks. As the block size increases, the eigenvalues, E/? of the block Hamiltonian
are permitted to get closer to E. The divergence arising from small divisors
(E — E^1 will be offset by small factors arising from the Green's function over
long distances proportional to the length of the block.

Finally we remark that our analysis applies not only to the Gaussian but to a
wide class of distributions. What is important for our analysis is that the density of
states ρ(E) defined by (1.11) be bounded and small.

1.2. Definitions and Notation

The state space for a quantum mechanical particle moving in Έv is given by 12{%V) —
the space of square summable functions f(j)JeΈv. The kinetic energy operator of
such a particle is the finite difference Laplacian which is the bounded operator on
12{T) defined by

(Δf)(j)= Σ (/(0 -/(/))• (1.5)
U\i-j\=l

Thus, the Hamiltonian H(v), given by (1.1), is a self-adjoint operator defined on the
domain of the potential v. Hence the Green's function (the matrix elements of the
resolvent) of H, given by (1.4), is well defined for εφO.

Let specif = σ(H) denote the spectrum of ϋ , σpp(H) the pure point spectrum,
and σc(H) the continuous spectrum of H.

The random potential v belongs to the probability space

Ω= ΠOM^O))), (1.6)

where dλ(v) is a probability measure on the reals with a bounded density with
respect to Lebesgue measure. We set

dP(υ)= T\dλ(v(j)). (1.7)

Note that the group of translations acts ergodically on Ω and leaves the spectrum
of H invariant. Consequently it can be shown, see [3], that with probability one

σ(H(υ)) = [0,4v] + suppdλ, (1.8)

and that σpp{H(v)) and σc(H(v)) are independent of υ, dP-almost everywhere.
Let A be some subset of Έ. We define ΔΛ to be the finite difference Laplacian

with zero Dirichlet data on the boundary dΛ (= the set of links connecting sites in
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A to sites in the complement, ~ A, of A). Let

HA(υ)=-ΔA + υχA9 (1.9)

where χΛ is the characteristic function of A. This operator acts on the Hubert space
12(A). If A is finite /2(/t) = (C'y1', where \Λ\ is the number of sites in Λ, is finite
dimensional, and the spectrum of HΛ(υ) is discrete. This permits us to define
NΛ(E, v) as the number of eigenvalues of HΛ{v) less than, or equal to E.

By a simple argument involving the ergodic theorem (see e.g. [9])

lim ±-NA(E,Ό) = N{E) (1.10)

exists and is independent oϊv, almost surely. Under our assumptions, the density of

exists as a bounded function. In fact, Wegner [10] has shown that (see
Appendix C)

^ (1.12)
dv

and
ρ(£)>0, for Eeσ(H). (1.13)

If —- has certain analyticity properties, e.g.
dv

dv
(1.14)

then ρ(E) is analytic in E when either y> 1, or \E — 2v\ρ 1 (see [9]).
Next, we turn to the formal definition of the diffusion constant and the

conductivity, as given by Kubo (see e.g. [11]):

IF2

ρ(E)D{E)=\im—Y|x|2 fdP(v)\G(E + iε,v;0,x)\2, (1.15)
εio πv x

\ (1.16)

and the conductivity is given by

σ(E) = e2ρ(E)D(E),

where e is the electric charge.
To relate the time-independent definition of D(E), D, in terms of the Green's

function of H, to the time-dependent definitions (1.3), we choose

and note that if f(t)/t->D, as ί—xx), for some function f(t) defined on [0, oo), then

00

\ (1.17)
ε | 0
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and formally,

ε
2

=— \dE
2π

18

G\E+-,v;0,x dt. (1.18)

It is not hard to show that if D, as given by (1.15), (1.16), vanishes, an ergodic mean
of r2(t)/t vanishes [i.e. existence of the limit of r2(f)/ί, as ί-»oo, is not required in the
above arguments].

Before summarizing our main results we recall, for completeness, a convenient
sufficient condition for the existence of point spectrum, essentially due to Ruelle
[ 1 2 ] 1 :

If f(t) is a non-negative function on [0, oo) and ε = T * then

±-]f(t)dtSεε\ eι-*f{t)dt
1 0 0

l (1.19)
o

Let Sc denote the projection onto the spectral subspace of H corresponding to
σc(H), and let P | x | > κ be the projection onto wave functions which vanish in
{xeΈv:\x\<R}. Let h(R) be a positive function, with h(R)-+ -foo, as R-^oo. Then,
using (1.19) and results of [12, 3],

\Kψ\\2= lim \im±-]\\PM>ReitHψ\\2dt
R^ao T->oo I o

00

Se lim hmε ^ e-εt\\Plxl^Re~itHψ\\2dt
R-+O0 ε | 0 0

oo

^e Πm (l/Λ(R))Emε J e""!! V/RjxDe"^!! 2 *. (1-20)
i?->oo ε |0 0

By arguments similar to the ones used to obtain (1.18) we conclude from (1.20) that
in order to show that, for dP-almost every v,

σpp(H\ i.e.

for some interval 7, it suffices to show that

remains bounded, as ε JO. This, however, will not follow from the results proven in
this paper, no matter how / is chosen.

13. Main Theorems

We now summarize the main results of this paper. Let δ be a measure of the
disorder given by

(1.21)

1 We thank B. Simon for explaining to us Ruelle's criterion in the form stated here which is
essentially in [3]
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Theorem 1.1. 1) For large disorder δ,D{E) = 0, for all E.

2) If dλ(v) is given by the Gaussian distribution (1.14) (<5= ]/2ny) then there is a

finite constant Ey such that D(E) = 0, for | £ - 2 v | > £ r

Remarks. (1) Theorem 1.1 holds in arbitrary dimension v. Our estimates for Eγ

approach 2v as y JO since the density of states ρ(E) goes to 0 for \E — 2v| > 2v as γ[0.
(2) A result analogous to Theorems 1.1 and 1.2 holds for a large class of

distributions dλ(υ) briefly described in Appendix C.
Theorem 1.1 is a simple corollary of the following more general result.

Theorem 1.2. There are constants λ(p, m) and E(γ, p, m) such that, for every m < x
and every p< x ,

Prob{v:\G{E + iε,v]0,x)\Sem{N~]xl\εή=0}^l-Cp/Np, (1.22)

uniformly in εφO, for some finite constant Cp, provided ό~[i^λ(p, m) or \E — 2v
^£(}\ p, m) (when dλ is Gaussian), respectively.

Remark. We have used (and shall use) the convention that

(1.23)
v

where V is some measurable subset of Ω.
Next we show that Theorem 1.2 implies Theorem 1.1. We define

l l (1.24)

By Eq. (1.15)

ρ(E) D{E) = lim — V |x|2 f \G{E + is, v 0, x)\2 dP(v).

We decompose Έ into annuli, Apj = 0,1,2,..., where, for some constant R to be
chosen later,

Λ0 = {x:\x\<R},

j , 7=1,2,3,. . . .

Then, using the definition of VN, we get

ρ(E)D(E)S l i m — £ ίε2emNΨ(VN)\ ^ \x\2

e-
m^} +cv(R2j)v + 2P{~ VN )\ , (1.25)

ε j o π v j = { ) { J [xeA. \ J J

where cv is a constant ( « volume of the unit ball in IRV), and in the second term on
the right side of (1.25) we have used the trivial upper bound

the sequence (Nj)JL 0 can be chosen at convenience. Clearly

X |x | 2£?-m l χ l=const£Γ ( m / 4 )* 2\ for ) = 1 , (1.26)
xeAj

and, by Theorem 1.2,

(1.27)
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for any p< oo, provided \E\ or δ are large enough. We now choose

It follows from (1.25)-(1.27) that

ρ(E) D(E)^ lim const <!ε2 [e(m 8)*tfv4 2 +
ε o

00

J = 0

If we choose p>v + 2, let ε tend to 0 and R tend to x we conclude that
ρ(E)D(E) = 0. Since ρ(£)>0, for EespecΉ, see (1.13), it follows that D{E) = 0.

In the proof of Theorem 1.2 we shall take advantage of the fact that it is really
enough to prove inequality (1.22) for the Green's function of the Hamiltonian in a
finite volume. Let A be some finite sublattice, and let GΛ(z, v x, y) be the Green's
function of the Hamiltonian HΛ= —AΛ + vχΛ. In Appendix B we show that, for all
εφO,

\GΛ(E + ίε, υ x, y)\ S C εe~m ( ε ) l*~ y |, (1.28)

for some constant Cε which is finite for ε + 0, and some m(ε) proportional to ε, both
independent of υ and A. From this and the resolvent equation it follows that, for
ε + 0,

lim GΛ(E + is, υ;x,y) = G(E + iε, υ;x,y)9 (1.29)

uniformly for x in finite subsets of Έ.
Theorem 1.2 follows from (1.29) and the following result, (see Appendix B for

some details):

Theorem 1.2 .̂ There are constants λ(p,m) and E(y,p,m) such that, for m > 0 and

Prob{v : \GA(E + iε, v 0, x)| ^ em(N~|x|), ε + 0} ^ 1 - Kp/Np, (1.30)

uniformly in ε φ O and in A , for some finite constant Kp, provided ό~ι^λ(p, m ) .

The proof of Theorem 1.2̂  is the main goal of our paper.
The organization of our paper is as follows:
In Sect. 2 we sketch the basic strategy of the proof of Theorem 1.2^ and

introduce an inductive scheme, extending over a sequence of increasing length
scales, on which that proof is based. We reduce the proof of Theorem 1.2^ to some
estimates on the Green's function of HA = — ΔA + υχA, where A is an arbitrary finite
sublattice having certain properties. Those estimates hold under inductively
defined conditions on v. Furthermore, we state estimates on the probability that a
potential v satisfies those conditions.

In Sect. 3 we prove our basic (deterministic) estimates on finite volume Green's
functions. Sections 2 and 3 really form the core of this paper.
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In Sect. 4 we prove some purely combinatorial results concerning subsets of TΠ
which we shall need in our probability estimates. The results and the ideas of the
proofs are closely related to results and arguments which appeared in [7, 8].

The basic probability estimates are stated and proven in Sect. 5, and in Sect. 6
the proof of Theorem 1.2̂  is completed.

Some auxiliary results are collected in several appendices.

2. An Outline of the Basic Strategy

In this section we develop and inductive method which permits us to prove results
concerning the decay of the Green's function in a finite volume Λ, for a class of
"nonsingular" potentials which will turn out to have dP-measure close to 1.

We choose an energy £, to be kept fixed in the following, and define a sequence
of singular sets Sj = Sj{E v) contained in TΠ which depend on E and on the choice
of the potential v. The sets Sj have the property that

S 0 2 S i 2 S 2 2 . . . , (2.1)

with f]Sj = Soo = & with probability one.

The set of singular sites So is defined by

)}, (2.2)

\E\
where N(E,δ)=—- when dλ is gaussian and \E\ is large, and N(E, δ) = δί/2

whenever the disorder δ given by (1.21) is large. The sets Sk, fe=l,2,..., will be
defined inductively.

Let GA(E x, y) denote the Green's function of HA = — ΛA + vχA, where ΔA is the
finite difference Laplacian with 0 Dirichlet boundary conditions on dA. We set

GA(E;x, j/) = 0, unless x and y belong to A.

It is easy to show that if AnSo = 0 and N(E,δ)>2v then

;x,y)\Se~mmx~yl, VεeIR,

where m(E)^ln(JV/2v), x,y in A, (see Appendix A). As i increases, St consists of
increasingly singular points (sites) of v, in the sense that eigenvalues of "block"
Hamiltonians, associated with certain subsets of Sh are permitted to get closer
to E. In Sect. 6 we prove that the probability that St intersect some fixed, finite
region goes to 0 rapidly with I

The main purpose of this section is to give a precise definition of S ,
/ = 0,1,2,..., and to state decay estimates for the Green's function GA(E;x,y),
assuming that AnSk = 0, for some /c<oo. We then present an estimate on the
probability of choosing a potential v with the property that for a given subset A
and an integer k, Ar>Sk(E;v) = θ. These results suffice to prove our main result,
Theorem 1.2 .̂

We now present our inductive definition of Sk, k ̂  1: Assume that
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have already been defined, with So given by (2.2). We define

S K 1 =S ( . -Sf , (with A^B = A\B), (2.3)

where

is the subset of "gentle singular sites of strength Γ of S . Sf is a maximal union of
components C\ satisfying the following condition.

Condition A(i).

(a) diam C^dt = exp [JC0(5/4)1'] = rf _ x (2.4)

(b) dist(Q, St ~ Q) ̂  2r = 2d?/4 (2.5)

(c) άist(spQcH^,E)^e'VTί, (2.6)

for all α.
Here specHD is the set of eigenvalues of the "block Hamiltonian"

HD= — ΔD + υχD, (D some finite region), and the set Q is defined by

Q Ξ {X :dist(x, C?)^4dJ . (2.7)

In Condition A(i) and in the following, diamC is the diameter of CCZV, and

dist(A,B) = inf \a-b\, aeA.be B,

and I I is the Euclidean distance.

Definition. A set A is /c-admissible iff

Q, j = O,l,...,/c. (2.8)

A set is admissible iff it is /c-admissible, for all k.
We now describe some ideas underlying our analysis of the Green's function,

GA(z x, y\ where A is some fe-admissible subset of TΠ, k = 0,1,2,.... Our estimates
are based upon quantum mechanical perturbation theory, where the perturbations
are chosen to be the operators which couple components of sets of singular points
to their complement in A. In order to give a more precise description of our
perturbation expansion we establish some more notation: Let B be some subset of
A, and let γ = dB be the set of links (nearest neighbor pairs) connecting sites in B
to sites in ~B. We assume that yCA. We define Γ to be the operator
corresponding to y, whose matrix elements are given by

J f . M = 1) (2.9)
0, otherwise.

Note that the Hubert space, 12{A\ associated with A, is a direct sum

12{A) = 12{B)®12(A~B),

and, correspondingly, the Hamiltonian HA is given by

B-Γ. (2.10)
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Thus Γ is the operator coupling the system in B to the system in A^B. We define

GBIA = GB®GΛ»B. (2.11)

The first resolvent identity says that

GA = GB/A + GB/AΓGΛ9 (2.12)

or
GA(z ;χ,y) = GB/A(z ;χ,y)+ £ GB/A(z xj) GA(z;/, y). (2.13)

Our perturbation expansion is generated by iterating this identity, using different
decompositions of A which depend on v. It will be quite important to note that if
xeB,

and GB(z;xJ) vanishes unless je B; furthermore GB/A(z x, y) = 0, unless x and y
both belong to B or to A~B, etc.

In the next section we prove the following decay estimate on the Green's
function by iterated use of the resolvent identity.

Theorem 2.1. For \E—2v\-\-δ sufficiently large and arbitrary real ε there is a
constant rn = rn(E, <5)>0 such that if A is a k-admissible subset of the lattice Zv, and
AnSk+1=β then

provided \x — y\^^rk = ̂ dk+v The constant m(E,δ) is independent of k and A.
Moreover

for \E-2v\ +ό sufficiently large. [Recall N(E, δ) is defined after Eq. (2.2).]

Note that this result which is proven in Sect. 3 is purely deterministic, i.e. it
holds for each potential v with the property that A is /c-admissible and
Sk+x(E;υ)nA = β.

Our next task will be to estimate the c/P-measure of the set of potentials, W/A A,
defined by

;v) = 0}. (2.14)

In (2.14) the potential v ought to be chosen in such a way that A is /c-admissible,
and we are really interested in estimating the conditional probability

Prob(H^4<A|y4 is /c-admissible).

This conditional probability can be estimated in terms of P( WAk), for arbitrary, but
v-independent subsets A. Moreover, bounding P(WA fc), for ^-independent subsets A,
can be reduced to estimating the probability that a component of S9j(E v) in the
sense of Condition A(j) contains a given site x of the lattice, e.g. the origin; (j^k).
Thus, let

(2.15)
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In Sects. 4 and 5 we shall prove combinatorial and probabilistic results which yield
the following theorem, proven in Sect. 6.

Theorem 2.2. For large disorder δ, or - if dλ is the Gaussian, given by (1.14) - for
large \E — 2v\, there exists a positive constant k(E, δ), with k(E, δ)-+ + GO, as δ-+ co or
|E|-»oo, such that

ς , )= J dP(v)

1 ] . (2.16)

Now suppose that the diameter of the region A in Theorem 2.1 is bounded by

(2.17)

Let i ̂  k. It follows from Condition A(i), (b) that at most one component of Sf(E v)
can intersect A. It then follows from Theorem 2.2 by straightforward arguments
that

oo

Σ Σ
\\

- fc(£, δ) K0(5/4n^d-'k{E'δ), (2.18)

by (2.16) and (2.17). Here k(E, δ) is a constant which tends to + oo, as δ, or |£|, tend
to oo.

If we now combine Theorem 2.1 with Theorem 2.2 and (2.18) we arrive at the
following basic probability estimate for the decay of the Green's function in a finite
region. See Sects. 5 and 6 for a proof.

Theorem 2.3. Given any finite, positive number p, there exist constants λp, Ep such
that, for

δ'ί(dλ()/d)^λ or \E-2v\^Ep,

the following event, Sb holds with probability at least 1 — ΓP:
Sι is the set of all potentials v with the property that there exists an admissible

region A such that OEA and

1/2g mindist(O,b)S maxdist(O,b)^l,
bedA bedA

and

provided x and y are in A, and \x — y|^/3 / 4. The decay rate m = m(E,δ) is as in
Theorem 2Λ.

Remark. The constraint |x — y|^/ 3 / 4 can be replaced by \x — y\^lσ, for arbitrary
σ>0.
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In the proof of Theorem 2.3 (see Sects. 5 and 6) and in the considerations below
we also use the following elementary lemma which is proven by using bounds on
the density of states see Appendix C (and Appendix A for additional
information).

Lemma 2.4. Let dλ(υ)/dv be bounded. Then, for an arbitrary finite subset, Λ, of TΠ
and an arbitrary κ^l,

Prob {υ : dist(spec#», E) ̂  k) ^ ]/ϊκ ρ(E, δ) \Λ\,

where ρ(E, <5)->0, as \E\, or δ tend to + oo.

The end of this section is devoted to proving that Theorem 2.3 and Lemma 2.4
imply our main result, Theorem 1.2^ (Sect. 1):

First, we assume that
(2.19)

where N is the positive number specified in Theorem 12Λ. Let (Aj)j=0ίlt2f... be a
sequence of admissible sets for which Theorem 2.3 holds, with

l = l. = 2\x\ 4j. (2.20)

We set y. = dAp and let Γ bt the corresponding boundary operator coupling the
systems in A- and in ~Ay To simplify notation we set

[Note that, for j large enough, Aj2A, and all sites in ~Λ belong to ~S0, since
v(j)= + oo, for je ^ A ] By iterating the resolvent identity (2.13) we have

G(£ + ίε,t;;0,x) = [Go + GoΓQG1 + G o Γ Q G 1 Γ 1 G 2 + . . . ] ( £ + iε,ί;;05x). (2.21)

Notice that the matrix elements of Gj in the series on the right hand side of (2.21)
are evaluated at sites which are separated by a distance of at least

- 2|x| 4j~1 + \ 2|x| 4j ^ \ |χ| 4j. (2.22)

By Theorem 2.3 we know that if ve$x then

m(E^)\z-zf\-], (2.23)

provided | z - z Ί ^ / | / 4 = (2|x|4 j)3 / 4. By (2.22), this condition is satisfied in all terms
on the right hand side of (2.21). Thus, it is easy to see that the series on the right

00

hand side of (2.21) converges, for every potential ve Π Sx, and is bounded by
.7 = 0 J

OO

for |x| ^iV/2, where K is some constant independent of £, N and of υe f] $x.
7 = 0 '

oo 1

We now estimate Prob
j=o

require that

( Γ 1 ^ ! , or

Π $i : We choose an arbitrary, positive integer p and
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where λp and Ep are the constants introduced in Theorem 2.3. Then

Prob
j=o =P DA

and we have used (2.19) and (2.20) in the last inequality. This proves Theorem 1.2^
under the assumption that |x|=iV/2.

If |x |< JV/2 we set l. = N-4j+1J = 0,1,2,.... Let || || denote the operator norm.
By Lemma 2.4 we know that the inequalities

x = y
hold with probability

(2.24)

(2.25)

In (2.24) and (2.25) it is not required that Ao be admissible, since in Lemma 2.4 it is
not assumed that A is admissible. (In fact, admissibility of a set A is irrelevant,
whenever one needs only a norm estimate on GA) We denote by $(0) the event that
inequality (2.24) holds. Thus by (2.25)

2έ--m l V / 4 |/4 0 |ρ(£, δ)^ 1 -2(&N)ve-'"Nl4Q(E, δ).

ϊ,ό). (2.26)

with m = m(E,δ) as in Theorem 2.1.
It is still assumed that the regions Ap 7 = 1,2,3,..., are admissible. The

resolvent expansion on the right hand side of (2.21) can now be estimated by using
(2.24) and Theorem 2.3, provided the potential v belongs to the subset

n

Furthermore

J = l

(2.27)

if \E — 2v\ or δ is large.
This completes the proof of Theorem
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3. Decay Estimates on Green's Functions

In this section we prove inductively a family of inequalities for GA(E + iε, υ;x,y)
indexed by distance scales |x —y|«d fc = exp[Ko(f)k], for admissible A such that
AnSk = 0. Let Jk indicate the following inequality:

(Λ) \GA(E + iε,υ;x,y)\Se-mklχ-yK (3.1)

for \x — y\Ί^\dk = \rk_v assuming that A is (fc—1)-admissible, and

The exponential decay rate ("mass") mk is given by

1 (N(E,δ)\ * ( 1 / 4 ) . . . .
m f c = n \ 2v ) ~ -?o

for some finite constant C, with N(E, δ) as in (2.2).

We note that the sequence (mk)^0 is decreasing and that if we choose do = eKo

large enough
m = lim mk^\In(N(E, δ))>09 (3.3)

k->oo

provided |£ | + j/<5 is chosen sufficiently large.
It is quite easy to prove «/0, see Appendix A. We shall prove Jk by induction.

These inequalities together with (3.3) imply Theorem 2.1.
We now assume Jn / = 0, 1, ..., k and propose to establish Sk+1.
Since A is chosen in such a way that

AnSk+1=An(Sk~SQ = Q, (3.4)

we see that Jk holds for admissible subsets of

A~{Sβ

knA). (3.5)

We now consider those components C\ of Sg

k which belong to A. By (3.4) and (3.5),
these sets represent the only "new singularities" of the potential υ which might
obstruct the validity of Jk+1. [If AnS9

k = & then AnSk = Q, by (3.4), and Jk+ί

follows trivially from j^ . ] We shall prove Jk+ί by using Jk on
GA^iS9^A) {E + iε x, y) and putting back the couplings to Sg

knA perturbatively. The
convergence of our perturbative expansions can be controlled with the help of
Condition A(k), Sect. 2, and our induction hypotheses.

We now start discussing the details of the proof. Let Rl be a /c-admissible
region containing a component C\ of Sg

k(E v) and with the property that

and _ _ } (3.7)
dit^Λ?, Q > 0 , with Q as in (2.7) J

Since, by Condition A(k), (b),

d i s t ( C i , S k - Q ^ 2 r f c = 2 d k + 1 , (3.8)

[see (2.5)], it follows that
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in particular,

and Ra

k is an admissible set. The existence of regions Rl with the above properties is
checked in Appendix D. Our first technical result in this section is

Lemma 3.1. Let R = Rl be as above, and choose d0 and \E\ + ]/'δ sufficiently large,
independently of k. If

then

where
(3.9)

Proof Let C = Ca

k,C = Cl [see (2.7)], and let B be a (k- Inadmissible set such that
R~B is (fc— l)-admissible, as well, and

CJBDC,

dist(5 BΛx,y))Zdk (3.10)

J
Since \x — y\^dk+ί, at most one site, x or y may be contained in any one of the
sets C, B, C, while the other one is at a distance > dk from C. The existence of a set
B with the above properties is verified in Appendix D. We set

y = dC, y = dB, and Q = R~B.

The geometrical situation envisaged here is depicted in Fig. 1.
We define Γ and Γ to be the operators corresponding to y and y, respectively

[see (2.9)]. To prove (3.9) we now distinguish the following two cases:
(1) XGQ, yeQ; and
(2) xeB, yeQ,

[the case yeB, XEQ is clearly analogous to (2)]. We first study (1): By using

Fig. 1
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the resolvent identities (2.12) we obtain

Q Q Q ',x9y), (3.11)

since, for x and y in Q, the term

[GQΓGQ/R](E+iε;x,y)

vanishes (Γ couples Qto B!). Since Q is (fc— l)-admissible and Qr\Sk = 0, */k implies

|GQ(£ + iε;t*,w)|^exp[-m k |w-w|], (3.12)

provided |w —w|^ydfc. By (3.10), inequality (3.12) can be applied to estimate GQ in
both terms on the right side of (3.11). To complete our estimate of
\[GQΓGRΓGQ](E + iε x,y)\ we appeal to the following

Sub-Lemma 3.2. Let u and w belong to B. Then

|Gκ(£ + iε;w,w)|^2exp]/4. • (3.13)

Assuming (3.13), and using (3.12), we see that Eq. (3.11) yields the bound

(w,M')ey
(w, w')e y

and we have used the fact that

by (3.10) and Condition A(k), (a). In (3.14) (u,uf) and (w,w') are bonds (nearest
neighbor pairs) belonging to y = dB, with u, weβ, and |y| is the area of y. If we set

9dkm0 _A5d-m

we see that, for |.\' —>>|^^/A+ { and d0, \E\+]/'δ so large that ]/dk^

|G^(£ + zε x, y)| ̂  exp [ - (m^ - μ j x - y|] .

We now come to the discussion of case (2), i.e., xeB, yeQ\ We use the resolvent
identity

GR = GQ/R + GRΓGQ/R >

which yields

GR{E + iε x, y) = [G^ΓGρ] (£ + iε x, y),

because [see (2.11)]

GQIR(E + ίε;x,y) = 0, for xeBc~Q, yεQ,

and

iε ;w,y) = GQ(E + iε ;w,y)9 for J E β.
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Hence, using Sub-Lemma 3.2 to bound \GR(E + ίε x, w)|, x, M in 5, and */fc to bound
\GQ(E + is;u\y)\ (which is possible, since

for d0 large enough), we obtain

£ R(E + iε;x9u)\\GQ(E + iε;u'9
(u,u')eγ

This completes the proof of Lemma 3.1.
We now turn to our

Proof of Sub-Lemma 3.2. By alternated application of the two resolvent identities

GR = GC/R + GC/RΓGR

we obtain the expansion

iε\u,w). (3.15)

Note that since Γ and w, w are all contained in C, GC/R = GC, in all terms
contributing to the right side of (3.15). Factors Gc on the right side of (3.15) are
estimated by using the norm bound

(3.16)

for u and w in C. This bound follows from Condition A(k), (c), see (2.6), i.e.,

Next, we observe that, in all non-vanishing terms on the right side of (3.15), we have

GB/R = GR~B=GQ>

since ΓcQ. These factors can be estimated by using the induction hypothesis Jk,
since

d i s t ( 7 , y ) ^ > K , (3.17)

and (R~B)nSk = ΰ. [To show (3.17) we recall that, by (2.7) and (3.10),

dist(y, γ) ^4dk - dist( - B , C) ̂  dk.]

Thus, applying Jk to GQ we find

\(ΓGQr)(z,z')\^e-m^-z\ (3.18)

By (3.16) and (3.18), the series on the right side of (3.15) can be bounded by
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if \E\ + ]/δ is large enough and d0 is chosen sufficiently large. This completes the
proof of Sub-Lemma 3.2, and hence of Lemma 3.1.

We now use Lemma 3.1 to complete the induction step,

Jk implies Jk+1 (3.19)

Thus, let A be some fe-admissible region, with

AnSk+ί=0.

We may also assume that

otherwise J>k+1 is empty [see (3.1)]. Furthermore we may assume that

AnSβ

k*β,

since otherwise J*k+ι follows trivially from J>k, as already remarked. If

«/fc+1 follows directly from Lemma 3.1, by setting R = A in Lemma 3.1 [see (3.7)].
Thus we may assume henceforth that

To establish Jk+15 we shall combine Lemma 3.1 with a method closely related to
one used in [13] to prove exponential clustering of spin-spin correlations in
statistical mechanics. We need the following easy geometrical result which is
proven in Appendix D.

Lemma 3.3. // d0 is chosen sufficiently large then, given any site peA, there is a
k-admissible region RpCA such that

1, (3.20)

(3.21)

p + 1 , (3.22)

where x and y are two sites in A, with \x — y\^^dk+ι.

Let yp = dRp and let Γp be the corresponding operator (coupling Rp and ~Rp).
We shall iterate the resolvent identity

GA(E + iε;p,y) = [GK p + GRΓpG^ (E + iε p, y)

= GRp(E + iε;p,y)+ £ GRp(E + iε p, u)
(u,u')eγp

iε;uf

9y). (3.23)

(See Fig. 2 for a graphical representation of a typical term.)
In order to prove Jί

k+1 [see (3.1) and (3.2)], we begin by setting p = x. The
factor GA(E + iε uf, y) on the right side of (3.23) is expanded by iterating (3.23) with
p = u\ etc. This process is repeated infinitely often. The resulting series expansion is
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Fig. 2

rapidly convergent, and the remainder term, after n iterations, tends to 0, as n-> x ,
whenever εφO, because the matrix elements of all Greens' functions
GR .(E + iε;p(/),p(j-\-1)), 7 = 1,2,..., appearing in the iteration of (3.23), are
evaluated at sites which are separated by a distance of at least ^dk+v If

Rp{j)nSk = 0 then the bound

( ) |<^-m k | pU)-p(m) | ? ( 3 > 2 4 )

with m'k = mk, follows directly from «/k. If ,Rp(j) contains a component C\ of Sg then
(3.24) follows from Lemma 3.1 with R = Rp{j), and m'k = mk~μk (where μk is as in
Lemma 3.1).

In order to estimate the sum of products of these Green's functions, let

m'k' = mk-μk.

Using (3.24), we bound the nth term in our expansion by

Σ Tie'
• • ,P(n)} j= 1

(3.25)

with p(l) = x9 p(n+l) = y. Setting

lv ...,/„ are constrained by the following conditions:

7 = 1

and

(3.26)

(3.27)

These conditions follow from (3.23), and from (3.21) and (3.22). We note that, by
(3.26) and (3.27),

(3.28)
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By summing (3.25) over all values of n and taking (3.26)—(3.28) into account, we
obtain the following upper bound for the expansion resulting from our iterations
of (3.23):

\GΛ(E + iε;x,y)\^ Σ e-mίι(constdk+1)
Ίvl/dk + ί

l^\x-y\

^ e x p [ - m f c + 1 | x - j / | ] , (3.29)

with

mk+1 = ml — 7vln(constdk+ 1)/dk+ x

provided d0 is chosen sufficiently large. In (3.29) it is assumed, implicitly, that the
remainder term, after n iterations of (3.23), tends to 0, as n->oo. That remainder
term can be bounded by

Σ Π *-m'k\p(j)-p(j+l)\

which tends to 0, as w-»oo, for arbitrary εφO, provided d0 is chosen sufficiently
large.

To summarize, we have proven that for every /c-admissible region A with
AnSk+1 = 0 and arbitrary sites x, y in A with the property that \x — y\^^dk+1

mk+1^rnk-50modk

Thus J>k+1 holds [see (3.1) and (3.2)], and the induction step is finished. The proof
of Theorem 2.1 is therefore complete.

Remark. The condition that A and Rp be admissible regions is important, because
dRp and dA are required not to intersect S{ for Lemma 3.1 to apply.

In the remaining sections we estimate the probability of the event that

where Sk = Sk(E v) depends on the potential v. This will yield Theorems 2.2 and 2.3.

4. Entropy - Combinatorial Bounds

In this section we establish some general combinatorial results which provide
estimates on the number of subsets ΏdTΠ which contain the origin and have
prescribed "volumes," in a sense that we shall make precise. These results play an
important role in the proof of our basic probability estimates stated in Theorem
2.3 (see Sect. 6). Let T(n) = 2n7ί\ n^O. With each site keΊί\n-ΐ) we associate a
cube cn(k) with sides of length 2n parallel to the lattice axes and centered at k. Each
such cube is called an π-cube. [For n = 0, Zv(— 1 ) Ξ Γ , and a 0-cube is a site in Z\]
We note that two adjacent n cubes overlap in a rectangular region of width 2n~ \
for n^ί. Using this fact it is easy to show
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Proposition 4.1. Every finite subset DcΈv is entirely contained in a single n-cube, cn,
provided that 2"^2diamD.

By %n we denote an arbitrary collection of π-cubes and define \%}\ to be the
cardinality of #M. Given a subset D C TΠ we define ^n(D) to be a minimal family of
rc-cubes [i.e. \^n(D)\ is minimal] which cover D. We define the "volume" of D on
scale 2n to be

Vn(D) = K(D)\, (4-1)
and the total volume

V(D)= Σ VJβ), (4.2)

where no(D) is the smallest integer such that 2"o(I))g:2diamD.

Theorem 4.2. // N(V) is the number of subsets DcT such that V(D) = V and OeD

N(V)^3v2v{2-3v)v^eKvV, (4.3)

for some constant Kv.

Remark. Note \ΏN(V) is related to what in physics is called entropy.
To prove this theorem, let us first consider the family $F of sets D containing

the origin with specified ^-volumes: Vn(D) = Vn. Let N({Vn}) be the cardinality of #\
Now consider a collection c£n of n-cubes such that Y£n\ = Vn. We think of (€n as
specifying our set D "on scale 2"." Let JV(#n, K- i ) be the number of covers ^ _ x

subordinate to ζ€n (i.e. each cube oic€°n_γ is covered by some cube in ^n) such that

Proposition 4.3.
) v - ί . (4.4)

This bound clearly implies that

-y)v, (4.5)

where the factor 3V arises from counting the number of covers ^ n o , (n0 = nQ(D\)
consisting of a single rco-cube which encloses the origin. Since there are less than 2V

choices of sequences (Vn\ n = 0,1,2,... for which ΣVn=V, Theorem 4.1 follows.

Proof of Proposition 4.3. Given a cube cecβn and a collection ^-i a s specified
above, let Na

c be the number of (n— l)-cubes in (£*_ί contained in c. Clearly

We now ask how many collections <&"_ί are there for which Na

c = Nc with
YJNc = Vn_1. Note that there are 3V possible positions of an (n--l)-cube inside
some arbitrary n-cxxbe. Thus the answer to the question posed above is that the
number of collections with specified Na

c = Nc is bounded by

Now summing over the 2Vn~1 choices of {Nc}ce^n we see that (4.4) follows. •
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Remark. These bounds are very crude and can be improved with more effort. This
might be important in other applications, e.g. to expansions in statistical
mechanics.

In order to obtain probability estimates for the components D Ξ Q of sets of
singular sites, introduced in Sects. 2 and 3, it is convenient to define a family ^f

n(D)
of "isolated" cubes. [Cubes in ^'n(D) will turn out to cover subsets of D on which
our eigenvalue condition (2.6) is violated.] More precisely, let 1 ̂  α < 2, and M ̂  2
be specified constants. We define

= {c:ce%n,dist(c,d)^M2an, for all c ' e ^ c ' + c}, (4.6)

vn=Kl r= Σ vn.
n= 1

Theorem 4.4. For α < 2, M < oo there are finite constants K0(α, M) and K'(oc, M)
such that, for arbitrary collections #„, w = 0,1,2,..., with the properties described
above,

F^K0(α,M)F0 + K\OL,M)V.
Moreover, K'(1,M) = 2.

Remarks. For v = 2 a variant of this result has been proven in Sect. 3 of [8]. The
arguments given there combined with Proposition 4.1 prove Theorem 4.4 for v = 2.
The extension to arbitrary dimension v is immediate. (See also [7] for a discussion
of this and related results when v = 1.)

Sketch of Proof of Theorem 4.4. Let γ(ή) be defined to be the integer part of

-(n— 1 — log2[2M + 3]/v]). The basic observation required in the proof is the

following inequality: For n > l + l o g 2 [ 2 M + 3]/v],

VnύhVm + Vm, (provided Vm^2). (4.7)

To prove (4.7) we define (€"m = (€m^c€'m,, for all m, and note that, given an arbitrary
cube ce^"(n), one can find a cube c'e#'y'(n), c 'φc such that

dist(c,c')<M2α y ( l I ).

By the definition of y(n) and Proposition 4.1, c and d can be covered by a single
cube in ̂ n. More generally, if c l 5 ...,cz are I cubes belonging to ̂ ( π ) such that for
each je{l,...,/} there is a σ(j)ή=j with the property that

then one shows quite easily, using Proposition 4.1, that [Z/2] cubes in (€n suffice to
cover {cl5 . . . , c j , where [7/2] = integer part of 1/2. However, it will require \^n)\
different cubes in (€n to cover all cubes in # ;

y ( π ). Hence

K=K\
which is inequality (4.7). Given n, we can iterate (4.7) N(ή) times, where N(n) is the
largest integer for which ^ ^ ( n ) ̂  0. (Here ym denotes the m-fold composition of the
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function y with itself.) Using the trivial fact that Vm ^ Fo, for all m>0, we obtain by
iterating (4.7)

\N(ή) N(n) / - j \ m - l

"•4) F»+,.? i(5) w <«>"•4
By summing inequality (4.8) over all values of n ̂  n0 and using simple properties of

y and N(n) which are discussed in detail in Sect. 3 of [8], Theorem 4.4 follows. In

particular, since iV(n)~( + const, Y - ^ const Y - con-
\log2α/ π t \ \2) V^! \n/ /

verges, provided α < 2. •

In certain applications to high- and low-temperature expansions in statistical
mechanics it would be useful to have better constants in the bounds proven in
Theorems 4.2 and 4.4.

5. Probability of Occurrence of Singular Sets

5.Ϊ. Statement of the Main Theorem

Let D be some finite subset of the lattice Έ. With D we associate a subset VD CΩ,
of potentials, v, as follows:

VDJ={υ:D is a component of S*j(E;v)}9 (5.1)

where S9j(E υ) is the set of "gentle singular points of strength j , " as constructed in
Sect. 2.

The purpose of this section is to establish an upper bound on

PDj= j dP(v) = Pτob(VDj). (5.2)

Thus, let veVD j and suppose, first, that

j 1 . (5.3)

Since D is a component of Sgj and SjCSj_v D clearly satisfies Condition A(j-1), (a)
and (b). Since the sets, Sf, ί = 0, 1, 2,..., of singular points of strength i are always
chosen to be maximal, D would be a component of S9j_ 1 if Condition A(j-1), (c)
were satisfied. Thus, since DφS9j_v it follows that

dist (spec HD(v), E)<e~ yT^ (5.4)

for all ve VDj, with D satisfying (5.3). Here D = {xeT :dist(x,D)^4^._ J see (2.7).
Second, if

diamD >*/,., (5.5)

then VDJ is clearly empty, and hence

PDJ = 0. (5.6)
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Let Xp j be the characteristic function of the set of potentials

{ι;:dist(spec/ίD(ι;), E)<e ι Λ 7^", άvάmD^d^x} ,

and let χD be the characteristic function of the set, FD, of potentials defined by

{v:3i such that D is a component of Sf(E, v)}. (5.7)

Clearly VDJCVD. Our discussion can now be summarized by the following
inequality:

\\ltj{v)Uv)dP(v), if

PD^\pD=\χD{υ)dP(υ), if diamD>dJ_1 (5.8)

lo, if άmmD>d}.

If άiamD^dj_ 15 F D j can be further estimated by

Pn.juiP^py2, (5.9)

where

ph=hUv)dp^) ( 5 1 0 )
Inequality (5.9) follows from the first inequality in (5.8), by the Schwarz inequality.
We have thus reduced the problem of estimating PDJ to estimating PD and P^ r By
Lemma 2.4, if \E — 2v| or δ is sufficiently large then

), (5.11)

where ρ(E, δ)^0 as |E |^oo or (5->oo. Thus it remains to estimate PD.

Theorem 5.1. If \E — 2v\ or δ is sufficiently large

PDS exp[-ko(E9δ)V0(D)-k'(E,δ)V'{D)] , (5.12)

where V0{D) and V\D) are as defined in Sect. 4, and fc0, k' are constants which tend to
+ oo, as | £ | ^ o o or δ-^ co.

In Sect. 6 we shall combine the inequality in Theorem 5.1 with the entropy
estimates of Sect. 4 to complete our probability estimates for the decay of the
Green's function, G(E -f iε, v x, y\ announced in Theorems 1.2 and 1.2^ of the
introduction.

5.2. Proof of Theorem 5.1

Let us first recall that %!'n(D) C ̂ n(D) is the set of isolated n-cubes c with the property
that ce%'n{D) iff

for all ce^n(D) with cφc. (We have set M = 2, α = 5/3; see Sect. 4 for definitions.)
The aim in Theorem 5.1 is to associate a small factor e~k with each isolated cube c
in <£'„, n ^ l . Roughly speaking, isolated subsets of D are extremely unlikely,
because on all such subsets the eigenvalue condition (2.6) must be violated. Lemma
2.4 can be used to show that this occurs with low probability, since κ~e~vdn.
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(Note that if the eigenvalue condition were satisfied then cnD would itself be a
component belonging to S9

m, m<j, because of our maximality condition.)
In order to make the above ideas more precise we shall first bound the

characteristic function of VD by a product of characteristic functions. To define
these characteristic functions let j(n) be the smallest integer such that

Λ ) (5.13)

If ceWJJ)) we set

CCΛD = {x:dist(x, cnD)^4dm}, (5.14)

and define χn c(υ) to be the characteristic function of

^ (5.15)

When n = 0 we set C6O{D) = D and identify ce%' with a site in D. We define yΛ) c to
be the characteristic function of the set

{υ:\v(c)-(E-2v)\^N(E,δ)}> (5.16)

where N(E, δ) is defined after (2.2). Let

I(Ko)={0}u {neZ:n^K0/\n2} , with Kυ as in (2.4). (5.17)

Note that j(n)^l for all Oφne/(KO). We adopt the convention that an empty
product is defined to be 1 and that χικc(v)= 1 for nφI(K0).

In Sect. 5.3 we shall prove the following lemma.

Lemma 5.2. For χn>c defined as above

Xκ»^ Π Π *„»• • (5-18)
n = 0 ce^'n(D)

Assuming this lemma we shall prove Theorem 5.1 by using Holder's inequality
together with the statistical independence of χn?c, for disjoint c's. In fact, if cί and
c2e%'n(D) then

1 2 0, if

because

άist(c1nD,c2nD)^2-2i5/3)n-9dj{n)
j{n)

^ 0 , if Ko is large enough.

This implies the independence of χ,ic, ce^'n(D). Hence

ί Π Xn,c(v)dP(v)= Π ten,c(v)dP(v). (5.19)

Next we combine Lemma 5.2 and (5.19) with the Holder inequality

1-r)dP)1-, (5.20)
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0 < r < l , and use the obvious fact that χq = χ, q>0. This yields

00

π u
00 00

*[ Π hoJPY-'
[ J

ίίft Π xj
U = l ce%'n(D)

00

^ Π Π ίhn,cdPT(ι-r) (5.21)

by successive applications of (5.19) and (5.20).

Proof of Theorem 5.1. By the definition of χn>c, (5.15), and the fact that dj{n)^2", we

see that Lemma 2.4, with κ= exp(— |/z ), implies

ίhnJpT{1 ~r)^Q(E, δγn{1-r)\ϊrW\rn{1-r)2Gxp[(r- l)(r]/2)72] . (5.22)

We now choose r = 0.8 > l/]/2. Note that the right side of (5.22) is small when n is
large. When n is small we use the fact that ρ(£, δ) is small for |£ | or δ large.
Therefore each factor in the product on the right side of (5.21) yields a small factor,
for each cube in %\r and Theorem 5.1 follows.

5.3. Proof of Lemma 5.2

Let j(n) be given by (5.13), and cr\D by (5.14). For each ce^'n{D) we propose to
show that

( ( ι ; ) , E ) ^ exp(- | / d ^ ) , (5.23)

for all veVD, with VD as in (5.7). From this Lemma 5.2 clearly follows. Since
ceΉ"n(D\ we have

diam(D) ̂  dist (c, #„(/)) ~ c) ̂  2 • 2 ( 5 / 3 )"

^ 2 2 ( 5 / 4 ) 2"^2 ^ (5.24)

and we have used (5.13).
Let i(ή) be the largest integer such that

m (5.25)

Then, by (5.24) and (2.4), we see that D can be a component of S9

k(E;v) only for
some value of k satisfying

lϊjSK and C) is a component of S9j(E;v) different from D then, by (2.5),

dist(cnD, q ) ^ dist(D, q)^2d<. 5 / 4 ), (5.26)

and if j>k

q ) ^ dist(D, 5 f c-D)

^ ) + 1>2 2 ^ ' ^ 2 ^ . (5.27)



Absence of Diffusion 177

Inequalities (5.24), (5.26), and (5.27) imply that cnD satisfies Condition A(j(n)), (a)
and (b). Now recall that the sets S9j(E ύ) are required to be maximal. Thus if cnD
satisfied Condition A(j(n)), (c) it would be a component of Sg

j(n)(E;v). Since
j(n)<ί(n)<k, (5.23) now follows.

It should be pointed out that, for each ceΨn(D\ the integer j(ή) and the validity
of (5.23) do not depend on the potential υ, as long as ve VD.

6. Proofs of Theorems 2.2 and 2.3, Conclusions

In this section we use the results of Sects. 4 and 5 and Theorem 2.1, proven in
Sect. 3, to complete the proofs of Theorems 2.2 and 2.3. We recall that it has been
shown in Sect. 2 that our main technical result, Theorem 1.2Λ of Sect. 1, follows
from Theorem 2.3 and Lemma 2.4. A proof of Lemma 2.4 and related matters are
contained in Appendices A and C.

The main points which remain to be discussed are the following:
(1) Let σe(0,1) and /> 1 be given. Let fc be the largest integer for which

H^Γ. (6.1)

We must estimate the probability, P(/,σ), that there exists a (fc— Inadmissible
region A containing 0 such that

1/2g mindist(O,b)S maxdist(O,b)^l, (6.2)
bedA bεdA

and with the property that

AnSk{E\υ) = 9. (6.3)

For such regions it follows from Theorem 2.1 that

\GA(E + ίε,v; x, y)\ ^ β " m | j c ~ y | , (6.4)

with

provided

^dk. (6.5)

Theorem 2.3 follows if we can show that given any p<oo, there is a finite
constant cpσ such that, forcpσ

(6.6)

Our proof of this estimate proceeds as follows:
First we notice that, with probability 1, there exists a (fc— Inadmissible region

A satisfying (6.2). This is shown in Appendix D.
Thus it is enough to estimate the conditional probability, Pk9 that

AnSk(E;υ) = 6, given that A is a (fc- Inadmissible set satisfying (6.2). But Pk can
be bounded below by the probability Pk(l) that any set A which satisfies (6.2) does
not intersect Sk(E: v). Clearly

P,J/)^1 - const Γ max (1 - P v J (6.7)
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where Pxk is the probability that xφSk(E;v). Since the distribution dP(v) of
potentials v is translation-invariant,

mm P^k = P0Λ. (6.8)

Next, we bound POk from below by

Po,^1- ΣPj-Poo, (6-9)

where pj = Pτob(VΌJ) is the probability that OeS^E υ). Here

VXJ={υ:S%E;v)3x},

see (2.15), and p^ is the probability that

ro n u
/c=0 \fc=0

is non-empty.
Thus, we must show
(2) for arbitrary finite regions A

i.e. pO0=0; and
(3) given an arbitrary q<oo, there is a finite constant cq such that

(6.10)

Remarks. 1) We note that (3) clearly yields Theorem 2.2.
2) From (6.9), (2) and (3) it follows that

POtk^ί-constdk~
q

9 q>0,

(because Pj^dJq = exp[ — #KO(5/4)J']). Now, recall that k is the largest integer with
the property that

Thus

^l- constΓJσ q. (6.11)

By the definition of P(/,σ), (6.7), (6.8), and (6.11), it now follows that

- constF~~ϊσq

for any finite p, if |£ | + ]/()^c' ίr with cy> — (p + v). This proves our basic lower

bound on P(l, σ), see (6.6). Thus the proof of Theorem 2.3 is complete.
We now turn to our proofs of (2) and (3); see (6.10). Point (2) is settled easily:

Since A is assumed to be a finite region, Conditions A(i), (a) and (b) of Sect. 2 will
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be satisfied for i large enough. Thus for S^ to be non-empty it is necessary that E is
an eigenvalue of HΛ=—AΛ + vχΛ. Since specify is discrete, this event has
probability 0.

To settle (3) we use the results in Sects. 4 and 5: To begin, note that

where PDJ is the probability that the set D C 7LV is actually a component of Sgj(E v).
Thus we need an estimate on PDJ. Such an estimate has been established in Sect. 5.
Let V(D) and V'(D) be defined as in Sect. 4 see (4.2) and (4.6). Then, by (6.12) and
inequality (5.8),

00

v < y y p
Pj= L L ΓD,J

V=ί DBO

V(D) = V

£ Σ { Σ W2Py2+ Σ PD\< (6-13)
v= l

V(D) = \

where P^} has been defined in (5.10) and PD in (5.8). The second inequality in (6.13)
follows from (5.8). By (5.11),

(6.14)

PDJ ^ 2ρ(£, δ)(9dJ _ 1)
ve~Vd^ ~l/2 = Φ/£, δ),

and by Theorem 5.1,

PD ^ exp [ - feo(£, (5) F0(D) - fe'(£, (5) F'(D)] ,

if |£ | + |/d is large enough. [Here V0(D) = \D\ is the number of sites in Zλ]
Next, we use Theorem 4.4, with α = f and M = 2, to conclude that

so that, by (6.14),

(6.15)

for some constant K(£, δ) which tends to + oo, as (|£| + <5)-* oo. It is an immediate
consequence of the definition of V (see Sect. 4) that

V(p) ^ const In diam D. (6.16)

Thus, by (6.13)-(6.16),

V F^constlndj

where

N(V)= # {D:DBO, V(D)= V}.

By Theorem 4.2,
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Thus

) 1 / 2 Σ e ( ^ - i x ( £ ί ) ) κ + Σ e^~κ^δ))v. (6.17)
V F^constlnd,

By (6.14) and (6.17),

with q(E, δ)-+co, as \E\ + δ-+co. This proves (3).
The proofs of the results announced in Sects. 1 (Theorems 1.1 and 1.2) and 2

(Theorem 2.3) are now complete.
To conclude, we wish to mention some interesting open problems.
1) It appears to be rather straightforward to extend our analysis to systems

with off-diagonal disorder, or to the problem of wave propagation in a random
environment on 2£v, provided the disorder is large (or the energy is constrained to a
suitable region).

2) It would be interesting to improve our methods in such a way that not only
absence of diffusion (for large disorder or at low energies), but localization, in the
strong sense of the word, is obtained, i.e.

if / is chosen to be a union of intervals located at sufficiently large values of |E|
(and if the disorder is large, / is the whole real tine). A proof of this requires
mastering more serious small divisor problems. While we have envisaged a
tentative strategy to get at such results we do not know of any complete analysis.

3) As the reader has noticed, estimates on the density of states are an
important ingredient of our analysis. It would be interesting to improve the
present estimates on the density of states (see [9,10]) and, for example, establish
bounds on and smoothness properties of ρ(£), for E in the region where extended
states are expected.

4) It would be interesting to prove general upper bounds on the diffusion
constant D(E), for arbitrary E. This will probably require new ideas.

5) It may be possible to apply our methods to almost periodic Schrodinger
operators on Έ'. In particular one might consider a limit periodic potential with
random coefficients. A primary problem in an analysis of almost periodic
operators will be control over the density of states.

Appendix A: The Path Expansion for G

In this appendix we expand the Green's function in the off diagonal matrix
elements of — Δ to obtain a formal series for GΛ{E). The terms of the series are
indexed in a natural way by paths ω which represent a sequence of nearest
neighbor pairs of lattice sites in Έ. If D is the diagonal operator

and J denotes the off diagonal elements of ΔΛ, i.e.

Jr=\ if |/-7l = l , iJeΛ,
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and 0 otherwise. Then formally, see [1,14]
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= Σ lD(JDF\(χ,y)

Σ l Γ τ-yH,(cϋ)

1 ί jj ' (A.1)
^y jeΛ

where ω ranges over nearest neighbor paths starting at x and ending at y which are
constrained to lie in A. Also, Πj(ω) denotes the number of times ω visits the lattice

site jeΛ. Note that if SonΛ = β then \Dj\^—9 N = N(E,δ) [see (2.2) for the

definition of N(E, δ)~] and

i

N'

ω:.\^ Y jeΛ \^ y iV

JV

2v + ε

IV
(-J+ε) (A.2)

with ε chosen such that 5Ξ1. [This is possible if an appropriate definition of
N(E, δ) is made.] N

In general, it is clear that the factors D^ may become arbitrarily large, and (A.I)
will not be absolutely convergent. This is the problem of small divisors. Our
strategy is to selectively expand the off diagonal matrix elements of A, depending
upon v. In this way we obtain a convergent series.

Representation (A.I) is also useful for estimates on the density of states, see
(1.11),

ρ(E) = lim Jrn j dP(v) G(E + iε, υ 0,0)

fω) dλ{v).

If dλ(Vj) is, for example, the Gaussian given by (1.14), then by deforming the
contour of integration so as to avoid the zero of DJ1, it is easy to show that if
\E — 2v| is large or y is large then

where a = a(E, y)—>0 as either \E — 2v\ or y become large. Thus if |α |<(2v) - 1 the
integrated series converges and ρ(E) is bounded and analytic in E. Similarly one
can prove that the average Green's function decays in \x — y\ for large |£|. In order
to make this argument rigorous it is important to first take ε large so that the series
(A.I) is manifestly convergent. We then let ε^O after integration. Moreover one
can obtain with some extra effort good bounds on ρ(E) as \E — 2v|—> OG (see [9, 14]
for details).
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We remark that the above analysis breaks down if one tries to estimate the
average of the absolute value of the Green's function because deformation of our
contour is no longer possible.

Appendix B: Proof of (1.28)

Let U(a) be the multiplication operator on /2(ZV) given by eίa'j. By direct
calculation we see that

U(-a)HΛ(v)U(a) =

where QΛ(cή is a bounded operator independent of v which has an analytic con-
tinuation m a satisfying

\\QΛ(a)\\SC\a\ (B.I)

£

for ae<£v and \a\ ^ 1. If we choose \a\ ^ — then

U(-a)GΛ(E + w)V(a) = [HΛ-E + iεQΛ(a)~]" ι (B.2)

is a bounded operator on 12(%V) with norm less than 2ε~1. Now observe that the
x, y matrix element of (B.2) which equals

must be bounded in absolute value by 2ε~1. This completes our proof of (1.28).

Remarks. A similar result holds if there is a gap in the spectrum of H, with ε
playing the role of the width of the gap.

In the above we have relied on the so-called Combes-Thomas argument (see
[15] and references therein).

Appendix C: Bounds on Density of States

Proof of Lemma 2.4. Let χΛ(κ, E) be the characteristic function of the set

{ι>|dist(speci/», E)^κ}, (C.I)

and let NΛ(E,v) be as in (1.10). Following Wegner [10],

, E)dP S ί LNΛ{E + κ9υ)- NΛ(E - κ9

= ί ^-NA{E\υ)dE'dP

g Σ sup l^A j δjNΛ(E\ v)dE Π dλ(vk), (C.2)
j vj \ clVj J k+j

where

δjNΛ(E\v) = NA(E\v-)-NΛ(E\v + ) (C.3)
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and υk = vk for k ή=j, and υj > vj denote the endpoints of the support of dλ
(possibly + oo). Note that the integrands above are all nonnegative and that we
have used the relation N(E, v) = JV(O, v — E). Since v is a rank one perturbation of
HΛ(v) it follows from the minimax principle that the eigenvalues of HΛ(v) are
interlaced λk~ 5Ξλk

+ ^ λ k +15 hence O^δjN^l, a.e. in υ (since the λk are distinct with
probability 1). Thus

1\Λ\. (C.4)

This establishes Lemma 2.4 if δ is large.
If |£ | is large, NΛ(E, v)^ 1 only if for at least one 7, \Vj — E+ 2v^2v which occurs

with probability less than

\Λ\ j dλ(v). (C.5)
\V-E+2v\^2v

When dλ(v) is Gaussian, then the integral is small for large E. Lemma 2.4 follows
by taking the geometric mean of (C.4) and (C.5).

Remark. We have used only the fact that —-— is bounded and that for large |£ |
dv

(C.5) is small. If we assume that λ(vj) is Gaussian then the factor ]/2κ which
appears in Lemma 2.4 may be replaced by 2κ. This follows from the method of
Appendix A (see also [9]).

Appendix D: Admissible Sets

Lemma. Let D 2 ^ ^ i ^e rectangular regions such that

dist(Dv~D2)^10dk. (D.I)

If d0 is sufficiently large, then there is a k-admissible set A such that D2DΛDDV

Remarks. The admissible sets needed in Sects. 3 and 6 are given by the above
lemma after a suitable choice of D 1 and D2.

The proof of this lemma is nearly the same as the argument which appears in
Appendix E of [8].

Proof Let _
(D.2)

and let

u= u q
Now consider the components of U (defined in the usual nearest neighbor sense)
which meet dDί - call them Uβ. We claim that

dmm(Uβ)Sί0dr9 (D.3)

where r is the largest integer such that Uβ D C* for some α. Let A be defined as the
union oϊ D{ and (J Uβ. Clearly (D.3) implies that AcD2.

β

We shall establish (D.3) by induction on r. Clearly (D.3) holds if r ̂  1 using (2.4)
and (2.5). Now let Uβ and r> 1 be given and let C% i= 1,2, ...,m denote those C*
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contained in Uβ. We define Qγ to be the components of

m

uf~\Jc?.
ί

By induction,

d i a m β y g 10 </,._!

which is much less than

for d0 large. In the last inequality we have used (2.5), (2.7), and (D.2). Therefore
each Qy can meet at most one C"\ Since Uβ is connected, it follows that Uβ

contains exactly one C^(i.e. m= 1). Therefore if d0 is sufficiently large,

diam Uβ ^ diam C? + 20 dr _ ί

r •
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