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Abstract. We give some rules to define measures which could describe heat
flow in homogeneous crystals. We then study a particular model which is
explicitly solvable: the one dimensional nearest neighborhood Ising model. We
analyze two cases. In the first one the spins at the two boundaries interact with
reservoirs at different temperatures in the thermodynamical limit the measure
we introduce converges locally to Gibbs measures and a temperature profile is
so derived. We obtain an explicit expression for the thermal conductivity
coefficient which depends on the temperature. In the second case we study the
asymptotic behavior starting from an initial state in which each half of the
space is at a different temperature. We find again a temperature profile which
asymptotically obeys the heat equation with the thermal conductivity coef-
ficient previously derived. From a mathematical point of view, the analysis of
the invariant measure is made possible by studying a "time-reversed" process
related to a graphical representation of an associated process. This provides us
with an explicit formula for the rc-fold correlation function and we study the
limiting behavior using both this representation (for proving an ex-
changeability result) and a Donsker-type, spacetime renormalization
procedure.

1. Introduction

In this paper we study the stationary nonequilibrium measures which describe
systems where a temperature gradient is present and a heat flow is established.
Even though this is a classical problem in Statistical Mechanics, many questions
still remain unanswered, particularly in the framework of a mathematically
rigorous approach. The main point of investigation [1,2] concerns both a general
characterization of these measures and the (dynamical) way the stationary heat
flow is established. In this paper we restrict ourselves to the first aspect so as to
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avoid the deep difficulties connected with the second. The price we pay is high:
without dynamical considerations the definition we give of the state describing
heat flow is quite arbitrary, it becomes in fact the hypothesis of the theory rather
than being the result of it. To support our assumptions we can only give a few
motivations and some heuristic considerations we would therefore rather look at
its consequences. At the moment we can exhibit a (quite explicit) solution of a
particular model. Possible further studies in this direction are briefly discussed in
the last section.

We begin by recalling some physical questions which arose quite naturally in
[2] and that give some insight on the motivations which inspired our hypotheses.
In [2] a system of point particles is investigated. The particles move in a bounded
region A and interact pairwise. When they collide with δΛ their velocities are
stochastically reflected with a Maxwellian law whose parameter depends on where
in dΛ the collision takes place and corresponds to the temperature of a reservoir in
thermal contact with the system. Under suitable hypotheses on the interaction it is
proven that the state of the system approaches a unique (invariant) measure.
However the state so obtained does not necessarily exhibit a heat flow; this
depends on the nature of the interaction among particles which should satisfy
some hypotheses of dissipativity. For instance, even if the particles were not
interacting, uniqueness would hold, but in this case Fourier's law would not be
satisfied. The same conclusion holds in Spohn and Lebowitz, [1], for a chain of
harmonic oscillators. We introduce below a "local ergodic assumption" (for lattice
systems where mass transport phenomena are absent, see the Concluding
Remarks) which may more appropriately be called a "local equilibrium condition"
since dynamics does not enter in our approach.1 We will then investigate the way
these local conditions "match" together to build a measure for the whole system.

Usually equilibrium states at temperature T (DLR measures) are introduced
by requiring that any subsystem be in a local equilibrium defined by the Gibbs
measure at temperature T. In order to describe systems in thermal contact with
reservoirs at different temperatures we therefore assume that the equilibrium "at
the boundaries" is described by Gibbs distributions at the temperatures of the
reservoirs. For the "internal subsystems" local equilibrium should be defined
differently since there is no common temperature throughout the system.

We say that a subsystem is in local equilibrium if all configurations with the
same energy have the same weight. This implies that the state is Gibbs if all
subsystems of a given size not too small are in local equilibrium and if the
temperatures at the boundaries are the same. Also for infinite systems, where the
boundary conditions in some sense disappear, local equilibrium, as above, implies
that the state is DLR, more precisely a superposition of DLR states, because of
micro canonical-DLR equivalence. These statements hold for a quite general class
of interactions, see for instance [3] and references quoted therein.

1 It is indeed possible to prove approach to the local equilibrium, as we define it, for some quantum
mechanical system coupled to suitable reservoirs (infinite systems of particles) in the so-called "weak
coupling limit". This is considered in [13] where in particular (in the above limit) it is shown that a
system of finitely many quantum spins goes to a stationary measure, which is just the one we will be
studying in this paper. We are indebted to A. Frigerio for pointing out this reference
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It can be seen that generally no measure exists which has at the same time all
the above subsystems in local equilibrium, if the temperature at the boundaries is
not uniform, i.e. there is no solution for these "equilibrium equations", no
probability measure has conditional probabilities given by our requirements of
local equilibrium. We are therefore led to weaken again our demands, and we
proceed as follows.

We introduce a Markov process by randomly choosing, each time, a subsystem
(of a given fixed size) and then defining a transition probability which leads that
subsystem to its "local equilibrium": uniform distribution on its energy surface for
internal subsystems, Gibbs distribution at the reservoirs' temperatures for those at
the boundaries. We assume that the measure which describes the heat flow in the
system is the measure which is invariant under the above transition probability, i.e.
stationary under the corresponding "stochastic dynamics".

In this paper we study the consequences of the above assumption in a
particular model which is somehow explicitly solvable: the nearest neighbourhood
one dimensional Ising model. We consider spins Sx [Sx = ± 1] at sites —L,...,L
and we randomly choose x in a uniform way. While the assumption of uniformity
is somehow natural for internal x's, because of the homogeneity of the space, one
could think that different rates of choice could be given to x in the neighbourhood
of the boundaries. We will see that this does not lead to any change in the
thermodynamical limit, L going to infinity (Sect. 4, concluding remarks).

If — L+l^x^L— 1 then the transition probability changes Sy only for y = x
and in such a way that the energy

is unchanged. Sx is then distributed uniformly on U = const. If x = L [ — L] then
the transition probability changes only SL [_S_L] and it-is given by

and analogously for χ= — L, with βx Φβ 2 , β= -—.
/c 1

It is easy to show (see Sect. 2) that for any L > 0 there is only one measure
invariant under the above stochastic dynamics. We are interested in its asymptotic
behavior as L-> oo and we want to show that it exhibits a temperature gradient. To
make this apparent we proceed as follows.

Let Θ be the algebra of local observables [4] (cylindrical bounded functions)
then for any ξe(—l, +1) we define the "measure at ξL" v^L) as

vf\f) = μw(τ[ξL]f), feΘ,

where μ{L) is the stationary measure for the region [ —L, L], τy, yeZ, is the
translation by y9 \_ξL~\ is the integer part of ξL. The measure v(

ξ

L) expresses "the
structure of the state around ξL\

We use this definition to exploit the variation of v(

ξ

L) versus ξ, as L goes to
infinity. We prove that for each ξ, v|L) approaches a DLR measure at temperature
T(ξ). We prove that T(ξ) is a smooth monotonic function between Tt and Γ2, the
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boundary temperatures. From this, if we assume the validity of Fourier's law, we
obtain the thermal conductivity coefficient k(T). More precisely let Q(TV T2) be the
heat flux. Fourier's law is ^ j -

Q(T19T2)=-K(T)— (1.1)

and so we obtain the ratio K(T)/K(T0) in terms of the profile T(ς), T and To are
temperatures between Tλ and T2. It turns out that in our model K(T)/K{T0) is well
defined, namely it does not depend on Tx and T2. K(T) is found to be, up to a
multiplicative factor, the specific heat (for the Ising model). On the other hand we
can avoid assuming Fourier's law and in fact we can prove it for our model, if we
use in a stronger way the stochastic evolution so that it defines not only the
stationary measure but also the heat flux β(T1 ? T2). The argument reads as follows:
QL{T19 T2), the heat flux at finite volume, [ — L, L], is just the (total) energy change
per unit time due to switches of the spin at L the energy change due to the spin at
— L is just the opposite and represents the heat per unit time transferred to the
reservoir at temperature Tv If we adjust the time scale in the stochastic evolution
so that it converges to an "infinite volume" dynamics, see Sect. 2, we find out that

QL{TVT2) goes to zero as ί/L and we define Q{TVT2) as lim LQL(TV T2).
L-

1 AT1

Furthermore, up to this order, QL is proportional to — . This proves
L dζ

—— defines the same heat

conductivity coefficient as before.
The stochastic dynamics we introduced allows us to study also another model

for the heat flow. We consider an initial state μ0 described by Gibbs distributions
at different temperatures T2, Tλ in the right and left half spaces. If we denote by μt

the distribution at time t, we find that asymptotically in t, μt locally looks like a
Gibbs measure with space-time dependent temperature T(i, f), ieΈ. This can be
"naturally" approximated by a smooth function T(x,t), x e R If we consider the
heat equation (for heat conductivity coefficient depending on the temperature) we
find the following: the function T(x, t) is a solution of this equation provided that
the specific heat C is that of the Ising model, and K, the heat conductivity
coefficient, is the one previously derived (by suitably fixing the multiplicative
coefficient).

From a technical point of view we derive an "explicit" expression for the n-fold
correlation functions of the invariant measure via a sort of time reversed process.
To perform this we build a particular graphical representation of our original
motion using the ideas of "association" [8]. The reversed process reduces our
computation to a system of simple random walks with exclusion and absorption at
the boundaries. We identify the limit of the correlation functions by using first a
Donsker-type renormalization which is shown to converge to independent
Brownian motions for the two-site correlation, and an exchangeability argument
to get the full statement. Both these limiting procedures rely on classical estimates
of the number of returns to the origin for simple random walks on TL.

In Sect. 2 we give the main results, in Sect. 3 the probability estimates needed
for the proofs of Sect. 2 and in Sect. 4 some concluding remarks.
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2. Results

We consider the region — L,..., L, LeN, and for x e [ —L,L] spins Sx = ± 1. The
interaction energy (nearest neighborhood Ising model) is

U(SX\SX+1)=-JSXSX+1 (2.1)

L/YiS liS tS ) = JS S JS S (2 la)

The transition probability P(S, S'\ S, S'e {-1,1}2L+ x (5, S' are spins configuration
in [ —L,L]) is defined to be

P(S^Sr)= V — x ~ 1 ? —^^ — x ~ 1 ? —^^— Γ7 ^ ( 5 — S")

2ITT e-^ + e^J JJL

δ{S»~S'»)+2L+ϊ
• Π δ(Sy-S'y), (2.2)

y>-L

; : ; s
In Eq. (2.2) the terms with x e [ —L+1,L—1] express the achievement of a
microcanonical local equilibrium while at x = — L [ + L] the equilibrium is Gibbs
at temperature /^ [)82]. Notice that in the semi-infinite DLR distribution [6] the
probability that the first spin is S'L, given the boundary condition SL_V is written
as

which is just the term accurring in Eq. (2.2).

Proposition 2.1. There exists a unique probability measure μL(S), Se{ — 1,+1}2L+1

which is invariant under P, i.e.

ΣμL(S)P(S,S') = μL(S'). (2.3)
s

Proof. It is easy to see that P is an irreducible, aperiodic Markov chain. From a
classical theorem on Markov chains the thesis follows, [5]. •

As discussed in the introduction, the limit of μL should be studied in the
topology defined by the* following:

Definition 2.1. Let Θ be the algebra of local (cylindrical) bounded functions on
{-1, +1} Z . Namely if Se{-1, +ϊf,f{S)eΘ i f/ i s bounded and if there is M > 0
such that / only depends on S_M, ...,SM. Let

τaS)x = (S)x+a, (2.4)

(τJ)(S)=f(τaS)9 feΘ. (2.5)
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We consider μL, defined in Proposition 2.1, as a probability measure on the whole
space {— 1, + \}τ by saying for instance that with probability 1: Sx = 1 Vx: |x| >L.
Then we define vf] on {-1, + 1}Z as

v{

ξ

L\f) = μL(τ[ξL]f), \/feΘ (2.6)

ξ e ( - l , + l )

\_ζL~\ = integer part of ξL.

[By Kolmogorov's theorem, Eq. (2.6) uniquely defines v|L).]

Theorem 2.1. For every ξe(— 1, +1), vf\f) converges for any feΘ (when L
diverges). The limit defines a probability measure vξ which is DLR at a temperature
T(ξ) (implicitly) defined by

^ (2-7)

( 1 7 a )

j8 l5 β2 are defined by Eq. (2.2).

Proof The proof is given in the next section.

Theorem 2.1 determines the heat conductivity coefficient K(T) if we assume
that Fourier's law holds in our case: let Q(TV T2) be the heat flux Fourier's law is

Q(Tl9T2)=-K{T)-^T(ξ). (2.8)

Then from equation (2.7)

Έf' ( 1 9 )

- 1

f(β(T))\τ = τo\
 f o r s o m e f i x e d To K ( T ) i swhere the const, in Eq. (2.9) is K(T0) j

then proportional to the specific heat [/(/?) is in terms proportional to the mean
energy of the system]. As explained in the introduction, the important feature in
Eq. (2.9) is that the dependence on jδ1 and β2 has disappeared so that K(T) has
been defined consistently. In fact K(T) does not change even if we somehow vary
either the interaction with the reservoir or the size of the subsystem which is
assumed to go to local equilibrium (see Sect. 4). To obtain the explicit formula
Eq. (2.9) for K(T) we do not really need to assume Fourier's law. This can in fact be
proven to hold (in our model) provided that we use in a stronger way the
stochastic evolution so as to define not only the stationary measure but also the
heat flux Q(Tl9 T2). The argument follows:

The heat transferred to the system from the reservoirs in an interval of time is
measured by the corresponding change of total energy of the system (use the first
law of thermodynamics, noticing that in our model no "work" is done on the
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system). Since the change in energy is due to switches of the spins at — L or at + L
we can say from where, left or right, the heat has been transferred to. Therefore we
pose the

Definition 2.2. Consider L as fixed. Let (%)) n e N e({-1, + 1 } 2 L + 1 ) N so that

) = {S_L(n\...,SL(n)}

is a spin configuration and (S{n))neN a possible trajectory for the stochastic
evolution. The heat (per unit time) given to the system at time n + 1 from the right
reservoir is the random variable

(2.10)

The heat from the left reservoir δQ_L(n) is defined similarly. A heat flux can
also be defined in a natural way inside [ — L, L]. Let x = — L— 1,..., L— 1, Ex the
energy of the spins — L, ...,x. Then

(2.10a)

is the heat flux at x at time n + 1 coming from the left. The average flux per unit
time is defined by

δQj= lim 1 X δQ,(n\ j = - L , . . . , L , (2.11)

which is well posed because of

Proposition 2.2. TTie /imzί in Eq. (2.11) exΐsίs /or α/Jj and a.s. with respect to the
(stationary) process P^\ with initial (invariant) measure μL. The δQ- are a.s.
constant and δQ. = — δQL for j = — L,.. .,L — 1:

2] e-βiJ + βiJ _eβiJ-βiJ

δQ SQ (2Λ2Ϊ

Proof. The existence statement is a consequence of the ergodicity of P^\
Proposition 2.1.

From this

|S_ L (0)-S_ L + 1 (0) | = 0,S_

which gives Eq. (2.12) by using Eq. (2.2) and Theorem 3.1. The evaluation of δQp

j > — L is completely analogous. Π

Remark. The factor — in Eq. (2.12) instead of the expected is due

to the fact that the evolution defined in Eq. (2.2) does not "scale well". In fact it
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converges locally to the trivial (identity) evolution as L diverges, because of the

factor — — - in Eq. (2.2). When evaluating the stationary measure this circum-

stance does not play any role. However when we want to compute time evolved
observables, as in Definition 2.2, we need to define correctly the time scale of our
process. This is done in the following:

Definition 2.3. To every site x e [ - L, L] we associate a time-line, on each of which
we plot a Poisson process with mean one. For x e [ — L + 1,L— 1] the mark reads
"α" (active) or "p" (passive) with equal probability. For x = L [ —L] the mark is 1

e~βiJ Γ e~βiJ Ί

with probability —^ —^ \—fj zr^jl or 0 with complementary probabilities.

This defines a stochastic continuous time evolution P\L) for the spin configurations
according to the following rule. A spin S x ,xe[ — L + 1 , L — 1] can change only
when an active mark "α" appears at x. In that case the switch occurs whenever it
does not change the total energy. The marks appearing at x = ± L determine the
value of that spin as follows: when the mark 1 appears the spin at that time must
become or remain of opposite sign from that of its nearest neighbor, and, when the
mark 0 appears, of the same sign. It is easy to see that μL (of Proposition 2.1) is the
only invariant measure and that the time evolution P(

t

L) converges, locally, to an
"infinite volume" time evolution Pt. Pt can be explicitly constructed by simply
considering Poisson time lines for each xeTL. On each line, independently as before,
and with mean 1, are put "α" and "p" marks with equal probability. Finally let
δQj(t) be the continuous time analogues of the δQfn) of Eq. (2.10), δQfont ] of δQj

as in Eq. (2.11). Then

Theorem 2.2. Almost surely with respect to the process P(

t

L) with initial (invariant)
measure μL

e(-βl+β2)J_e(βί-β2)J 2J
°_ _ _ Jjf)(cont.)7 _ _ γ τ\ (Ί \X\

+ e-^J)4L~ OQL J~ """ ( ' j

As L goes to infinity Lδζ^l0^ satisfies Fourier's law, Eq. (2.8), with T(ξ) given as in
C{T)

Theorem 2.1 and with K(T)= —-—.

Proof. It is completely analogous to that of Proposition 2.2 as far as equation (2.13)
is concerned. The remainder follows by direct computation. •

Remark. Notice that δQ{l°£tm) correctly behaves like L" 1 , when L diverges. In
Fourier's law, Eq. (2.8), there ought to be a factor L" 1 , which is in fact absent
because we rescaled the space variable by letting ξe (— 1,1) instead of [ — L, L] and
we took Q as lim LQL. This is the reason why we had to consider in Theorem 2.2,

L(5g(cont.) m t h e r t h a n ^(cont.) j ^ j f

In the remainder of the section we discuss the following model. Let μ0 be the
semi-infinite DLR measure at temperature Tt [6] on the left half space
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(x = — 1, — 2,...) and at temperature T2 on the right one. Namely

x ^ l for β2 and x ^ - 1 for β1, (2.14)

/ΛHi (2.14a)

where

{x}c = {yeZ:y*x}. (2.14b)

Equation (2.14) uniquely defines μ0, see [6].

Theorem 2.3. Lei μί9 ί^O, 6e the measure at time t evolving according to Pt (the
"infinite volume" time evolution as in Definition 23). Then there exists T(x)>0,
xeIR, such that for every xeΊR, feΘ

lim lμt(τ[xVΪ]f)-μ™XfK=O. (2.15)

See Definition 2.1 for Θ and τ[m]; μ{T(x)) is the D L R measure at temperature T(x).

Furthermore

/<»,«=/<«f J W E ^ U / u y i *J Λ rz

o |/2πί |
where f(β) is defined in Eq. (2.7a).

Proof. The proof is related to that of Liggett, see [7], and will be given in the next
section, see the Remark after Lemma 3.1.

The relationship between the "temperature profile" T(x, t) [ = K~ xβ(x, t)~x] as
in Theorem 2.3 and the heat conductivity, K, see Eq. (2.9), is given by the heat
equation:

Theorem 2.4. Let C(T), K{T) be the specific heat and the heat conductivity
coefficient; then the heat equation is

dt d

For the Ising model

C(T)=-J^ff(βl β=~. (2.19)

Then T(x,t) satisfies Eq. (2.18) if

(2.20)
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so that K(T) is the K{T) of Eq. (2.9), with const. = - \J, as obtained in Theorem 2.2.

Proof. E(T) is the left hand side of Eq. (2.17) E(T) is increasing and invertible.

Rewriting Eq. (2.18) in terms of E(T):

dE _ d (K dE\ _ 1 d2E

Ίh~Ίh\C~dx~)~2~dxΎ

because of Eq. (2.20). By Eq. (2.17) the thesis follows. •

Remark. It is easy to see that if K(T) is smooth enough then it is uniquely
determined by Eqs. (2.18) and (2.17) [as in Eq. (2.20)].

3. Probability Estimates

We introduce the random variables nx, x integer with values nx = 0,l, the former
occurring if SX = SX+V the latter when Sxή=Sx+ί. To any spin configuration S in
{ —1,1} 2 L + 1 there corresponds a "particle configuration" {nx,x= —L, ...,L—1}.
The configurations S, —S (obtained from the other by flipping each spin) give rise
to the same {nx}. The following quite obvious proposition links the measure μL,
introduced in Proposition 2.1, to its relativization to the {nx} variables:

Proposition 3.1. Let μL be given by Proposition 2.1. Let

then

where n(S) is the "particle configuration" corresponding to S.

Proof Let 01 act on the space of probability measures over { — 1, + 1 } 2 L + 1

For P as in Eq. (2.2)

P0lμL = 0l{βP0£)μL =

and because of the uniqueness of μL (see Proposition 2.1) this concludes the
proof. •

Proposition 3.1 allows us to study the measure μL regarded as a measure on the
σ-algebra generated by the {nx} in the sequel we will denote it by the same
symbol, μL.
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The stochastic evolution Eq. (2,2) in the particle representation is also Markov
with transition probability:

e/?iJ(l-2n~z,)

eβ2J(l-2nL)

K - ^ ) ? (3-D

,n'x+1):ήx + ήx+1=nx + nx+1). (3.1a)

This evolution represents particles moving only one at a time to neighboring
sites, if empty. At the extremal sites particles can be created or destroyed
independently and with rates determined by βv β2 as in Eq. (3.1)2. As in
Proposition 2.1 the Markov chain with transition probability P(n, n') is irreducible
aperiodic and there is only one measure, μLi which is P-invariant.

To study the asymptotic behavior of μL as L diverges we use a very simple and
powerful "graphical representation" of the correlation functions, see [8]. To avoid
notational complications we will assume that the particle sites are —L,...,L (in the
limit L going to infinity this turns out to be irrelevant).

We begin by introducing the analogue of the process defined in Definition 2.3,
but use the "particle language". We will consider possible variations of the
probability distribution governing the "thermalization" of the spins close to the
boundaries. The physical reason for this is given in the Introduction and in the
Concluding Remarks of Sect. 4 we treat here the more general case because our
formalism would not change much anyhow.

Definition 3.1. We consider in this definition L O^m^L fixed, m will be kept the
same as L goes to infinity and [ — L, —L + mW_L — m,L~] are the "sites" where the
rate is going to be changed. So given L, m we introduce a realization of the
continuous-time Markov chain which has the same invariant measure μL as the
discrete time analogue and which will enable us to "reverse the time" in an
appropriate sense. To each pair of nearest neighborhood sites we associate a time-
line and on each of these lines we plot a Poisson point process. This process has
mean 1 for all the lines between the sites [ — L + m, L — m]. For the other lines (it is
also convenient to draw a line between — L— 1, — L and another one between
L,L+Ϊ) we plot the marks with means 0<y t .<oo: namely in the line L — m + i,
L — m + i+1 the mean is γ., i = 0, ...,m: Analogous is the procedure for the lines
between — L~ 1, — L + m. Each mark referring to internal lines can read "a"
(active) or "p" (passive). The probability for the "α" and "p" is the same. On the
external lines the mark read "b" (birth) with probability

e~βl e~β2

—R — Γ at the left —R j - at the right

and "<f' (death) with the complementary probabilities.

2 This system is considered in [14] and the stationary measure is explicitly given if particles are only
created at — L (no particle's death at —L) and only destroyed at L (no particle's birth at Λ-L)
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b-i- δ

t = T

- d

4-b

Fig. 1

time line position particle present

All these Poisson processes are independent. For each realization we have a
trajectory of particles according to the following procedure. Given an initial
configuration of particles (plotted as "0" in Fig. 1) we switch the values at the
neighbouring sites when an "α" mark (arrow in the figure) occurs, and at the
boundaries we create (destroy) a particle according to the mark "fe" ("d") if they fail
to be already existing (absent). If a particle is already at site L when a sign "b"
occurs, the particle is not affected (if the site was void and a "d" mark occurs, it
remains empty).

In order to recover the Markov chain of Proposition 3.1 look at the discrete
time skeleton, obtained by observing the process only at the instants when a mark
appears on some of the time-lines (with probability one, two marks never appear
at the same time). This Markov evolution has transition probability given by
equation (3.1) when we choose m = 0 and the two y's both equal to 1.

Remark. This realization is important to us because all the randomness is
concentrated in the laws of the point-process (Poisson) and of the marks
(independent, equal probability ...). Given this random configuration, the evolu-
tion is deterministic and we can use one-one correspondence. Furthermore if we
wish to focus on a certain aspect of the evolution (e.g. the evolution of one ghost
particle among others, see Definition 3.2) and make a statement dealing with this
aspect only, we need only consider the "law" of this part of the process. For
instance we will see that "a ghost particle performs a random walk, which is
known to escape from any fixed bounded region almost surely," which means that
those random configurations such that this happens have probability one.

Eventually we must remark that the continuous time setting is not necessary
for reversing the time. It will only be used for the renormalization procedure in
Lemma 3.3.

Definition 3.2. By using the above graphical representation it appears that if we
want to know what is the value of the process at a time t and at a certain number
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of sites (correlation functions of these sites at time t) we just need to read
backwards. Each site will then be "moving" back according to the arrows in the
graphical representation, and in order to avoid notational confusion we will call
the trajectory of the site "the trajectory of the ghost particle." Namely every site
involved in the correlation function becomes a "ghost particle" whose trajectory is
determined by the above graphical rule. The probability that several sites are
occupied or empty at time t, given an initial configuration of "real" particles at
time 0, is the probability that the corresponding ghost particles are present, ηx = l,
or absent ηx = 0. A particle is present at times t at the site x iff one of the following
events occurs:

i) the ghost particle reads a mark at one of the extremal lines before t (going
backwards) and this is b (it is meaningful in what follows to consider the trajectory
of the ghost particle to finish when it reads a "b" or "d" mark)

ii) the "ghost particle never reads a "d" or "ί?" mark before t and goes to an
occupied site at time 0, (the bottom of the diagram).

Because of the special property of the Poisson point processes, namely that
read backwards they are still Poisson point processes, we note that the ghost
particles also perform a continuous time Markov evolution. This is a simple
exclusion process with two additional sites at ±(L+ 1) where they are "absorbed"
and read their final sentence, "fe" or "d". The limiting distribution of the particles
as t diverges is the unique invariant measure of the process, and therefore is μL (the
same as of Sect. 2 for the special choice of m = 0 and γ = 1, as noted in Definition
3.1). This is so because the probability that a particle survives [i.e. it never gets to
+ (L+1) before ί] goes to zero as t diverges.

It is convenient to give notation for the above quantities: we denote by (Ω, 0>)
the probability space which realizes the Poisson independent processes with their
marks, ηx are the occupation number variables (0 or 1) for the ghost particles, X(t)
their trajectories.

It is very easy to study the one-body correlation functions. We will then
analyze the two-point correlations, again quite explicitly, and finally we will need
to use a more abstract argument for the n-body correlations.

It is easy to see that a single ghost-particle, when observed at the instants when
it moves, performs (in law) a simple Markov chain with transition probability

) = p(x,x-l) = l/2 if - L + m + l ^ x ^ L - m - 1 and

if x = L — m + ί and

p{L,L+l)= 2 y w " 1 - = l - p ( L , L - l ) ,
2ym-i+ym

and analogously on the other side.

Definition 33. We will denote by P* the law of the Markov chain with transition
probability defined above.
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Theorem 3.1. Let ξe(—ί, 1) and let x be fixed. Then

Km μL(n[ξL]+x) = f (1 - ξ)f(βx) + | ( 1 + ξ)f(β2), (3.3)

where

In particular if m = 0, y± = 1 fsee Definition 3.1) ami y e [ — L,L— 1], we are in the
original case considered in Sect. 2 and

Proof. Since the values of the marks in (Ω,0*) are independent of the rest of the
process we have

μdny = l)=Άβί)PΪ(X(T)=-L-l)+f(β2)P*(X(T) = L), (3.5)

where Pf is given in Definition 3.3 and T is the first moment the particle reaches
either — L— 1 or L. To estimate the exit probabilities in Eq. (3.5) we remark that
they are harmonic functions [5] and that they can be easily computed in an
explicit way when m = 0. From this Eq. (3.4). To get Eq. (3.3) we introduce a new
stopping time T which is the first time the random walk gets to ±{L — m). Up to
this time the random walk is 1/2 1/2 and so

P*(X(T) = a(L - m)) = ̂  + ̂ Γ ^ ) ) ' a = ± 1 (3 6 )

On the other hand the probability starting from a(L — m) to get to a{L+1) goes to
1 when L goes to infinity and from Eq. (3.5) and (3.6) we prove Eq. (3.3). Theorem
3.1 is therefore proved. •

Our next goal is to prove the following

Theorem 3.2. For every K>0, x l 5 . . . ,x κ eZ, nv ...nKe{0,1}K and ξ e ( - l , l )

K

}^μL(nXίnξL] = nv ...,nXκ + [ξL] = nκ)= Hm Π ^ L K + IW = Π^ (3.7)

which is given by Eq. (3.3).

Theorem 3.1 and 3.2 yield the

Corollary. For every ξe(— 1,1), vf\ see Eq. (2.6), converges to the Gibbs measure at
temperature T(ξ) = (Kβ(ξ))~1 given by

f(β(ξ)) = ϊfiβi) (1 - ξ) + kfiβi) (1 + ξ), (3.8)

where f is defined by Eq. (2.7a).

We first prove Theorem 3.2 with K = 2 and to do so we introduce a definition
and some lemmas.
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Definition 3.4. We consider the trajectories of two particles starting at x and y.
Sometimes we will consider this as a trajectory in the space TL1 for the point (X{t),
Y(ή).

We will denote by PL the law of the corresponding Markov chain. It differs
from the law of two independent random walks in continuous time when

i) the two particles are in nearest neighborhood sites
ii) at least one of the two particles is in the region [ — L— 1, — L + m] and

[ L - m , L + l ]
iii) after a particle has reached +(L+1).
In the sequel we will somehow try to reduce to the independent case. A first

step is to introduce the process P ( / ), where / stands for free of the "boundary
conditions". Namely L is taken to be infinite so that P(f)

independent 1/2, 1/2 random walk only for the condition i) above.
We now introduce some shorthand notation :

{a} = {(X(tl y(ί))teR+l first exit of X(t) occurs at

a^L+l) and first exit of Y(t) occurs at a2(L+l)}

T— first time a particle arrives at dΓ,

differs
ve.

• i ) } ,

from the

(3.9)

(3.

(3.

(3.

(3.

.10)

11)

12)

13)

Even though this does not appear explicitly, notice that the above defined
quantities do depend on L. H(x, y) will only be considered as defined on dΓ. For
ε>0 let:

= characteristic function of the set {|x — j/|^εL} in TL2 (3.14)

and

We then have the obvious

Lemma 3.1. With the notation above

\PLl{a}|(XXO), 7(0)) = (x, y)] - £ ( / ) ( F ) | ^2E{f)(Dτ) + \E{f)[_(hτ - Hτ) (1 - Z) r)]|,

(3.16)

where the superscript T means that the function has to be evaluated at the position at
the random time T (defined in Eq. (3.12)) E(f) is the expectation for the process P(f)

starting at (x, y).
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Proof. We simply note that

Equation (3.16) is then obtained straightforwardly. •
We are going to show that the right hand side of Eq. (3.16) is vanishingly small

for large L and so it will remain to estimate E{f)(hτ).

Lemma 3.2. Let (x,y)eδΓ (see Eq. (3.9)). Then

lim sup \(h(x9y)-H(x9y))(l-D(x9y)\=O9 (3.17)
L-^oo (χ,y)edr

where h, H and D are defined respectively in Eqs. (3.15), (3.13), (3.14). As a
consequence the last term in Eq. (3.16) goes to zero as L goes to infinity for any fixed
ε>0.

Proof The idea of the proof is the following. H(x, y) is the probability that x exits
at αx(L +1) and y at a2(L+ 1). But one of the two particles, let us say x, is close to
the boundary i.e. at distance m+ 1 from L + l (for example). The other one is very
far away, otherwise: 1 — D = 0. The x-particle will reach L + l before it gets "close"
to the y-particle, with very large probability. Therefore the two particles move
independently and so H and h are equal (in the limit L going to infinity). In fact by
using the same argument as in the proof of Theorem 3.1 it is enough to prove that
one of the two particles reaches ± (L +1) before the two become nearest neighbors.
To fix the ideas, let us assume as before that X = L — m and that \y — x\ ̂ εL. Let f
be the exit time at L + 1 for a single particle which is initially at L — m and performs
a (1/2, 1/2) random walk when its position is x<L — m and with the probability
specified in Def. 3.3 when L — m^x^L+1. It is easy to see that Tis almost surely
finite. Then for every δ > 0 there is T such that the probability that f> T is less
than δ. Furthermore there exists deΈ+ such that a (1/2,1/2) random walk does not
get further than d within time % with probability larger than 1— δ. When L is

larger than —, with probability larger than 1 — 3(5, the x-particles reach L + l

before the x and y particles become nearest neighbors.
To evaluate E{f)(pτ) and E{f){hτ) in Eq. (3.16) we use a renormalization

procedure, by shrinking the lattice by and by speeding up the time by a
L — m

factor 2L2. In this way we are considering a sequence of processes Pj^j in the same
trajectory space and

Lemma 3.3. P[̂ J converges in distribution to P ( b ), the Brownian motion in two
dimensions.

Before proving Lemma 3.3 we note that the convergence in distribution will
(see Lemma 3.4) imply the weak convergence on a class of functions which includes
both Dτ and hτ, more precisely these functions written in the renormalized
variables.

Proof of Lemma 3.3. The trajectory space is D(IR+,IR2), see for instance [10]
Chap. 5. The measure Pfy are characterized by Eq. (3.18) below. Call ξt the
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element in D(R+,IR2) and suppose
i) Φ is a bounded function measurable with respect to the σ-algebra generated

by the process up to time s > 0 ;
ii) / is a real C 3 function on IR2 with compact support. Then (Efy is the

expectation w.r.t. P[ ĵ)

( ' \ ALf{ξu) d u W > s > 0 , (3.18)
s I

where (for notational simplicity in the following formulas the shrinking factor for
the space variable is considered to be L rather than L — m):

+f[χ9y-L)-4f{χ,y) , if \x~y\>~, (3.19a)
L

/ 1 \ / 1 1 \

ALf(x,y) = L2

Ά if y = x+^, (3.19b)

-3f[x,x-Ά if y=x~j; (3.19c)

For each fixed /

(ALf) (x, y) = Af(x, y) + 0 ί i j \x-y\>~

(ALf) (x, y) = [Δf(χ, y ) - ^ ix, y)) +

Therefore the right hand side of Eq. (3.18) is almost equal to

(3.21)

except for a term of size O(l/L) and another bounded by

1(.)(U = c h function that ξue{-).

This represents the amount of time the process spends in the region

l(x,y)\ \x — y\= — >. To estimate it we go back to the unaccelerated free Markov
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chain. When outside of {\x — y\ = 1} the chain waits a time U before entering this
set and U has the same law as the waiting time for a simple one-dimensional
random walk to reach zero starting from \x — y\ — 1. When in the set {\x — y\ = ί}
the chain remains a "geometric" time inside. So the amount of time spent in
{|x — j/ | = l} between L2s and L2t is of order L, hence of order ί/L after
renormalization (up to a factor \t — ε\). On the other hand, the family P^f) is weakly
compact in the Skorokhod topology ([11]) and therefore any weak limit of Pff)

satisfies

( \f{ξjdu"j = E(Φ [f(ξt)-/O). (3.23)

Equation (3.23) read for Φ, /, s, t as in Eq. (3.18) completely characterizes the
process which is therefore the independent Brownian motion [10]. •

Remark The above result remains unchanged even if we consider the many-
particles case. Therefore we have proven Eq. (2.15). Since Eqs. (2.17) and (2.16) are
standard estimates for single particle random walks, Theorem 2.3 is also proven.

Lemma 3.4. Let dΓ be the boundary of the unit square in 1R2, D the characteristic
function of the set

{(x,y)edf\\x-y\^ε},

(3.24)

f and the stopping time at df, Df, hf are the random variables obtained by
computing D and h at the random time T. (These definitions are the renormalίzed
analogues of those for dΓ, D, h). Then

L—• oo

L->oo KJ' κ '

Proof The function Dτ becomes Dτ after the scale changes. This is not continuous
in the Skorokhod topology [10] but the set of its discontinuities has zero-measure
with respect to P(by (This is so because the discontinuities arise from trajectories ξt

which are either tangent to dΓ or which cross dΓ at the points \x — y\ = ε.)
Equation (3.25) is then a consequence of Lemma 3.3 via Theorem 5.5 of [10].

For Eq. (3.26) the argument is very similar. The only remark is that hτ when
rescaled is not h?. The difference can however be uniformly estimated by
something vanishingly small as L diverges. •

Proof of Theorem 3.2 for the case K = 2. This is a straightforward consequence of
Eq. (3.16), of Lemma 3.2 and of Eqs. (3.25) and (3.26).

Remark. Of course one would guess that this result holds for K > 2 (in Theorem
3.2). However the functions which play the role of H do depend on L and we lack
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information on the uniformity of their convergence (which we exploited in the case
K = 2 in Lemma 3.4).

To prove Theorem 3.2, we will first establish an asymptotic exchangeability
for our stationary measures μL, then we will use DeFinetti's theorem and the
already obtained factorization of the two body correlations: this procedure is very
similar to that used in [12]. In fact the proof of the following Lemma 3.5 could
also be obtained in close analogy with that of Theorems 1, 2 of Spitzer [12].

Lemma 3.5. Let σ be any permutation of the set of indices {1, ...,K} then:

Llim μL(nXl + [xL] = nv.., nXκ + [xL] = nκ),

- M n χ t + [*L] = "«!)> • •>nχκ + [χL] = " o w ) ] = ° > ( 3 2 7 )

where nί, ...,nκe{0,1}K.

Proof. We have to go back to the original Poisson-point process, (Definition 3.2).
Given an initial configuration of "ghost particles", focus on two of them. Then the
following transformation S on Ω (the space of realizations of the process) is
defined, see Fig. 2.

On the set ^ : ^ is such that there is a first time when the position of the two
particles are nearest neighbour and there is a mark in the line connecting them. S
acts by changing this mark (from "α" to "p" or vice versa).

On the complement of ^, S acts as the identity. It is quite easy to see that the
transformation S does not change the probability. The essential point is that on &
the transformation S is such that the trajectories for all the particles different from
i or j are the same for ω or S(ω), and are exchanged for i and j after this fatal
moment. In particular this yields:

converges to 1 as L diverges. This is so because of the following two facts.
First, each time the particles are nearest neighbour there is a probability 1/2 that a
mark between these positions appears before the two particles separate. Secondly,
when separated the two particles move according to independent simple random
walks, and move at least (1 — \ζ\)L times before one of them is absorbed at the
boundary. A simple random walk comes back to zero more than JV^-times (β < 1/2)
before N with probability tending to 1 as N diverges. Hence we have proved the
claim for any transposition of the indices, and therefore for any permutation, since
this can be written as a product of transpositions. •

From Lemma 3.5 it follows that the weak limit of any convergent subsequence
of μL's is exchangeable and therefore by De Finetti's theorem it is a mixture of
Bernouilli measures. From Theorem 3.2 with K = 2, which we have already
proven, the 2-body correlation function factorizes and this implies that the weak
limit is Bernouilli itself. For, if v is the law of the mixture, we have

lp2v(dp)=l\pv(dp)
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t = r

t = 0
Θ

the transformation S Fig. 2

and strict convexity of p2 forces v(dp) to be a Dirac mass. The parameter of the
Bernoulli measure is the same for each subsequence by Theorem 3.1 and so
Theorem 3.2 is proven.

4. Concluding Remarks

There is some arbitrariness in the choice of the size of the subsystems for which it is
assumed that "local equilibrium" holds: namely in Eq. (2.2) the choice was that
only a single spin at a time could change. Analogously we could have assumed that
a block of m spins at a time is "thermalized", as explained in the introduction (only
changes which keep the same energy are allowed). As a consequence the measure
μL changes but the effect disappears as L diverges.

Notice that in Sect. 3 we have actually proven a stronger result than that stated
in Theorem 2.1. Namely that if we change the rate of the thermalization
atxe[ — L,L~] by keeping it uniform between — L-frn, L — m, m fixed when L
diverges, then the stationary measure μL changes but in the limit the change
disappears.

It is physically conjectured [2] that the relevant information on the heat
transport phenomena should be found in the 1/L asymptotic correction to the
measure μL with respect to its limiting value. In our case it ought to be possible to
prove rigorously the existence of such a state.

It should be interesting to study different spin systems (i.e. more general
interactions, higher dimensional cases) than the model we have treated here and to
check whether analogous results hold. The same definition of local equilibrium
and stationary measure under the stochastic evolution could be applied to systems
of oscillators for which a deterministic dynamics exists. Is then the measure μL

stationary under the deterministic dynamics for a finite time up to order 1/L
(included)? The leading term for μL should go to the Gibbs state (if our results
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extend to this case) and so it would be automatically invariant and the problem
remains if the correction in L~x is also stationary. It would also be interesting to
compare μL with the measure μL defined as the invariant measure for the dynamics
with stochastic boundaries like that introduced in [2] for the particles' case. Again
the guess is that the two measures are the same up to order ί/L.

Another question: is it possible to give some definition of local equilibrium,
like the one we used here, if continuous particle systems are considered? The
physical problem is that in this case mass transport phenomena are present.
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