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Abstract. Explicit formulas are obtained by a simple algebraic method for the
representations of the finite group transformations of 0(2,1) in a continuous basis
when a non-compact generator is diagonalized. Compact and non-compact cases are
treated in a unified form and the nature of analytic continuation is determined.
The transformation function between the discrete and the continuous bases is also
given. These explicit formulas have not been obtained in the literature before.

I. Introduction

The use of the unitary infinite-dimensional representations of non-
compact groups to describe the properties of bound states of quantum -
mechanical systems is by now well understood. However, not much has
been done to deal with the scattering states. There is a need for explicite
forms of unitary representations when a continuous spectrum is used to
label the states (i.e. diagonalized). There arise here some peculiar and
unfamiliar (at least to physicists) problems that must be solved.

There has been a number of recent discussions on the unified repre-
sentation theory of compact and non-compact groups having the same
complex extention [1—3]. A number of recent papers deal with the
specific cases of the representations of 0(3,1) with respect to the non-
compact group 0(2,1) and the analytic continuation problem between
0(2,1) and 0(3) [1—3, 8—10]. In none of the previous work there appears
the explicite form of the representation in a continuous basis and the
relation of the continuous basis to the discrete one. The purpose of this
work is to fill this gap. The simple algebraic method that we give in this
paper as an extension of the previous work [3] not only determines the
representations in a continuous basis | A), but also gives explicite formulae
for the transformation function (m \ X) between the discrete basis | m)
and the continuous basis |A), and the matrix elements (λ \U\ λ'}, where
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U is any group element. These are the quantitites of prime interest in
physical applications. We confine ourselves to the simple prototype case,
namely the group 0(2,1), but the results can easily ge generalized to
higher groups.

In Section II we derive as a preliminary the unitary representations
of 0(2,1) from those of 0(3) by analytic continuation. This is a corre-
spondence between two unitary representations, and of course, is different
than the usual correspondence of finite dimensional unitary representa-
tion of 0(3) and the finite dimensional non-unitary representation of
0(2,1). In Section III, the main part of the paper, we introduce the
continuous basis by a suitable redefinition of the creation and annihila-
tion operators and derive the above mentioned quantities (m\λy and
<A \U\ λ'y. The nature of analytic continuation from the discrete basis to
the continuous basis is of course not unique and straightforward as one
might think, and special attention is given to this problem.

II. Collection of Formulas. Derivation of Unitary O (2,1) - Representations
by Analytic Continuation

(1) Lie Algebras

The elements of the Lie algebras of 0(3) — 0(2,1) system satisfy [3]

[£12, £13] = ίL12

[Zra8, L1B] = ig3BL12 (2.1)

£33 = - 1 for 0(3), 0r88 = + 1 for 0(2,1) >

or, in canonical form, withL± =ΞΞ—=(L13 ± ^23)?

(2.2)
[£+,£-] ==-033 4 2 .

Thus, starting with the 0(3) algebra, L12 L13, L23, the 0(2,1) algebra can
be obtained by the new elements

L12 = £12, Z13 - ίl^j, £23 - ̂ £23 . (2.3)

(2) Fundamental Representation of the Groups

The spinor representations of the group 0 (3) and 0 (2,1) (not algebras !)
are given by [3]

s = — 1 f°r 0(3)

3= + l for 0(2,1)'
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or, we can introduce real Euler angles parameters such that

_ /eW \ / cos (ε f/2) sin (ε f/2)\ /e<"/2 \
π ~ \ e-W*J \- sin(ε f/2) cos (ε f/2)/ \ er^J ' (2.5)

α = ei^+v^l2 cos (ε f/2); β = e iC*~^/asin (s f/2), ε = + ]/— <733 .

This decomposition of W corresponds to the decomposition of the group
element

and to the representation of the algebra

f«5J The General Linear Representation

From (2.5) or (2.6) the matrix elements of a general representations
are of the form

9 (μ £*)«» = ****($«.'***•• (2-7)
Thus it is sufficient to find d(ξ)m>m corresponding to the group element

/ cos (ε f/2) sin(ε|/2)\ / α β\
U - \- sin (ε |/2) cos (ε ξβ)J \g33β δ/

17-. ( Γ"). ' '\- ^33^ α/

We determine the representations induced on the basis functions [3]

I Φ, m> = ̂ w Zφ+^ 7φ-^ , (2.9)

where Φ and m are for the moment arbitrary complex numbers, and ^4W

suitable normalization constants. Then

, m> = Jlm [α X - β Y]φ+™ [- g^βX + α7]φ-^ . (2.10)

For 0 < |/3| < |α|, i.e. |f/2| < π/2, we can expand the bracket by the
binomial theorem :

r (α

The series converges absolutely thus we can rearrange terms :

ί—β\N/_g β\N' ^Φ + m-JV yΦ-m-N' χΦ+m-N + N' γΦ-m-N'+N
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Now let m' = m — N + N'9 then for m > m' :

,my = Σ-ί- Σ (-β)m-m'+N'(-933)
N'βN' ά +~'-^

m' •»' N' = 0

φ-m.-*-„-*•/ φ + m }(φ-α \m-m' + N')\ N'

_m ,_ o\m_m'

Or, introducing the hypergeometric function, we get for the matrix
elements

Am *φ + m'*φ-m(- β)m~m' (Φ + m)!
j[m/ (m-w')! (Φ + m')!

( '
/

-j?7 -Φ-m', -Φ
\

m,

For m' > m, |j8| < ]α], we sum on N rather than .ZV"' in the original
expression

\Φ, m> = Σ -4s- Σ (~ β)N (-
m' Άm' N

Φ + m\ / Φ — m

'~m Σ

(Φ-m)!

/Φ + m\ / Φ — m
•( t f J U - m +

Thus, form' ^ m, \β\ < |α|

(m/ __ m), (φ __ m/),

Ii5!2

', -Φ-m, 1 + m' - m, ^33-ĵ

In all the above equations we have actually

m -> J^Q + m

m' -* £?0 + m' ,

where J 0̂ is the fractional part of m, and is fixed.
Let

and use
(1 - 3)e.F (α, 6, c; 2) = F (a, c-b,c; φ - 1))
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then

(φ + m/), (m-m')! (2.13)

-φ-.m'} ι + φ_ m ' ? m _ m ' _ |_ i 5 -gr33|/?|2); ra ̂  ra'

<φ-m) ! *m+OT'(--<y33jg)m/-OT

(φ_ m ' ) i (m'-m)! (2.13')

f 4^ Irreducible Representations

Up to now Φ and m were arbitrary complex numbers. Now we find the
ranges of Φ and m for irreducible representations.

To find irreducible subspaces we find a subset M of the m's such that
for m ζ M, ΐ>m'm = 0, if m' (£ Jf , for every β. Because Am φ 0 in any
irreducible subspace, the only way Z>m/m can vanish is for

(Φ + m)! ,
(φ + m θ ! - 0 , m ^ m

(Φ-m)!

(A) If (Φ -j- m) and (Φ — m) are not integers, then ΐ>m.m Φ 0 for
all m and the representation is irreducible. We can require — 1/2
ίg Re E0 ^ 1/2 and the corresponding representations are denoted by
9 (Q, E0), Q = Φ (Φ + 1) .

(B) If (Φ -\- m) is integer, (Φ — m not), then the subspace m ̂  — Φ
is invariant, since for any m' < — Φ ̂  m, Φ + m' is a negative integer.
The representation is ^+(Φ), E0= — Φ,m^ — Φ.

(C) If Φ — m = integer (Φ -f m not), similarly Φ ̂  mis an invariant
subspace: ^~(Φ), E0= Φ,m < Φ.

(D) Φ + m, Φ — m both integers :
(i) Φ < 0, we again get @+ or ̂ -.

(ii) Φ ̂  0 the irreducible subspace is finite dimensional, —

(5) Unitary Representations

The fundamental representation preserves the form

|Z|«-fo,|Γ|». (2.14)
Hence

= [(2Φ) !]-* {|«z - /? η - Λ,| -9-
(the factor [(2 Φ)!]"1 is for convenience only). Expanding both sides of
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this equation we get

We wish to identify these expansions with the sum of squares of (2.9)

)
(2.17)

\-gas βX + ocY *(*-"*.
m

In the case of ̂ + (Φ) representations this can be done, if we change the
indices N in (2.16) to Φ + m (actually to Φ + EQ + m) and sum over m
from — Φ to oo. Thus, we have

or,
μ, + 1|« Φ - m

U- 2 ™ l

which agrees with Eq. (1.30) of Ref. 3. The ranges of Φ and m are
determined by Eq. (2.19) and agree with the known results [8,10] which
are now determined by an analytical continuation.

III. Continuous Basis

The representation of the Lie algebra corresponding to (2.9) is in
terms of the boson creation and annihilation operators

or,

This representation is suitable for the diagonalization of L12. Suppose we
want to diagonalize L2B which has a continuous spectrum for the non-
compact case: <733 = 1. For this purpose we define a new set of boson
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operators

or, (3.2)
1 . x 1 .

®ι = y=- fa + *ca), α2 = -1=- (c2 + *Ci) .

So that c^ = 9/9 cf and [<̂  , c*] = d^ . In terms of these we have

^i3 = γ(cf c2 + cf Cl) (3.3)

•̂ 23 = y(cι Cj-cf c2).

Thus we have an automorphism of the Lie algebra

^12-^ — ̂ 23

£i3->£i3 (3.4)

I/23 -> — £ Zr12 .

Thus, for compact case, ε= 1, .L23 and i^12 have obviously the same
spectrum, but for the non- compact case, the representation with L23

having real continuous spectrum is the same as the representation with
L12 diagonal and having a purely imaginary spectrum.

In the representation (3.3), -L23 is diagonal, and we use the same
method as in Section II now to the states

£23μ> = λμ>. (3.5)
The states | λ) are given by

μ> = ̂ λcf* + 8Λ c|*-ίΛ (3.6)
or by

Indeed, under U [Eq. (2.8)] applied to Γ3* j we find

) iε|-(Φ-βλ)
= e 2 e 2 λ = β

μ> (3.8)

(c* \
*)

= e

(3.9)
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(1) Transformation between Discrete and Continuous Basis

We first expand the .L23-states in terms of the Instates. The latter
are

From (3.7) we obtain by expansion

Φ + ελ

Aλ ελ- Φ~~ελ (-l)N

( }

= i, CONTINUOUS PURE
IMAGINARY SPECTRUIVL

=1 , DISCRETE REAL SPECTRUM

Fig. 1. Spectrum of LZ3 in the compact and non-compact cases

If we introduce the hypergeometric function, we get

• I(- Φ-m,-Φ + ελ,ελ-m+l;-l).

In particular, in the compact case, ε = 1, λ = I = integer,

F(-Φ-m, — Φ + l, l-m+ l -l)

which must be equal to the matrix element of a rotation by π/2 :

Indeed we find from (2.11) that (3.11) reduces to

.. (3 12)

In the λ-plane the discrete and the continuous spectra are shown in Fig. 1.
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(2) Matrix Elements of Finite Transformation in the Continuous Basis

We consider again the.L23-basis (3.5). It is sufficient to determine the
matrix elements of an L12-rotation, eiμ(Lίz\ In the fundamental repres-
entation, from (2.5)

Thus from (3.7)

(3.13)

where we have put

= (ααf

= Aλ(acζ

(ααf

(bcf

-X

a — Re α = cos -~-
Δ

Ί, T θ

t 6 = 1m α = t sin -s

il

Fig. 2. Contours of integrations and poles of the integrand for the general binomial
expansion (3.15), for

We must expand now (3.14) in terms of the continuous basis states
I μ). In the case of the continuous basis we use the integral representation
of the binomial expansion [11]

(3.15)

valid for |£| < μ| ? |arg (_ βj^)\ < π β

HerejΓ(—2+ ε«s)(z = # + ίy) has poles at: s = y + i(n — #),?ι = 0,1,2,...,
i.e. in the upper half plane, for x < 0, y > 0 for non compact case and
at s = — n + x + iy, n = 0,1, 2,.. ., along the real axis for compact case.
jΓ(— ss) has poles also at s = — in and s = n, respectively (Fig. 2).
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As sum of residues, equation (3.15) reduces to

(A + BY = * Σ (Γ(N - z)lΓ(N + 1)) B*A-x, (3.16)J I z) N

i.e. the usual binomial expansion. We now apply (3.15) to (3.14):

D(W) \λy= 2πΓ(-Φ-ελ) 2πΓ(-Φ + ελ)

i~* f f d(εs)d(εs')Γ(-Φ- ελ + εs)Γ(-εs)

• Γ(-Φ+ ελ+ εs')Γ(-εs')(-b)εs

The last line can be rewritten to give

Thus, letting
εμ = ελ — εs + εs'

or
s' = μ - λ + s

so that ds' = dμ, and integrating over dsdμ instead of ds ds', we
obtain :

(3.17)

• Γ(- Φ + εμ + εs) Γ(ελ - εμ - εs)

The value of the second integral is —2πiΣ (Residues) of poles (in the
lower half plane, non-compact case) at (Fig. 3).

εs = N, and εs = N + ελ - εμ, N = 0, 1, 2, 3, . . .

For the first set of poles we get for the second integral

^ Γ(- Φ -eλ + N)Γ(- Φ + eμ+N) Γ(ελ - εμ - N) / - b* \N N

jv^0 Γ(N+1) ( a2 ) (~"1'

_ π Γ(— Φ — ελ) Γ(Φ + ε^)
A — εμ) Γ(l — ελ + εμ)

(-Φ - ε λ, - Φ + ε λ, 1 - ελ + εμ, ̂ ^
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Similarly, for the second set of poles we obtain

« Γ(- φ-εμ + N) Γ(εμ -ελ-N) Γ(- Φ + ελ+N)

Γ(N

(- Φ - εμ) Γ(- Φ + eλ)
^ v " / " / - smπ(εμ-ελ)

' ί—Φ - εμ, -Φ + ελ, 1 - εμ + ελ; —

X X

X X

X X

X X

X X

If

* (λ-/z.)-4

o

o

o

0

Γ(l - εμ + ελ)

lί

Fig. 3. Contours of integrations for Eq. (3.17). poles of Γ(—εs); O poles of
Γ(ελ — εμ — εs); X poles of Γ(— Φ — εΛ + εs) and Γ(— Φ + εμ + εs). For
ε = 1, the contour has to avoid the poles X, and the contributions of the poles of

type φ and O? that coincide, exactly cancel

In the compact case, the poles lie on the real axis and the contribution of
the poles coinciding (see Fig. 2) exactly cancel so that we obtain only a
finite sum as it should be. Thus inserting these into (3.17) we get

D(W)\X>= f -̂

εμ)Γ(ελ - εμ)
-

("5*7 ""

(- φ -

Γ(-Φ-εΛ)

-Φ- εμ,-Φ+ ελ,l- εμ + ελ',

(3.18)

Note: The phase of (—6) is chosen to be eiπ thoughout.
In the non-compact case we can then write the matrix elements in the
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symmetric form

(-. φ-f εμ) Γ(ελ- εμ)

Γ(— Φ + εμ)

F(-Φ-ελ,-Φ+εμ,l-ελ
ελ *μ Γ(-Φ-εμ)Γ(εμ-ελ)

Γ(-Φ-ελ)

ελ, —Φ — εμ, 1 — εμ + ελ; —

In the compact case, the integral in (3.18) has to reduce to a finite sum.
This indeed is the case: We get contributions from the poles of

Γ(-Φ + μ) and Γ(-Φ-μ).

For — Φ + μ = negative integer, for example, we have from (3.18)
(writing λ = m, μ = m'), for m <m'

D(W) |w> = -^&«'-»αa*-<»f-~> |m'>

Γ(Φ - m' + 1) Γ(- Φ + m)

( — δ2 \
— Φ — m, - Φ + m', 1 — m + m' — ̂ — 1

or,

| m> - ̂/ ^ /

sinπ(Φ — m) ._ / - . .. _ . — δ2

' sin^W - m J "Φ + m'~Φ ~ ™> l + m m;~^~Bill >/l ^ if If *"~ fit/f \ U

which agrees with (2.12).
The second term in the parenthesis is obtained from the first by

μ -> — μ, λ -> — λ. Thus we have the relation

<3 19>
Normalization of States. The states | A) must be correctly normalized to

(μ\λ} = d(μ-λ), or δμλ . (3.20)
This means

Dμλ(0) = δ(μ-λ), or όμλ (3.20')

as b -> 0, a -+ 1. The discrete case is easy to see.
Letting — b/a — η, μ — λ = x, we have for μ -> λ

Km ILλ (b -+ 0) = Km JL ̂ « [Γ (- εα) + η~2εx Γ (ex)] .
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The limit gives the desired result because of the identity

lim [η** Γ(ίx) - η-*» Γ(-ix)] = 2πδ(x) .
-

(3) Calculation of the Normalization Constants

We have the requirement of unitarity so that

/ ff h*λ = f (D(W) A)* (D(W) /Λ) dλ .
In the case of (m | λ) we use

* Φ/J = / Σ <™ \D+\ λ} (λ \D\ myd

= {|αf |

Consider the expression

{|αf + iaξ |2 +

The right hand side gives

(3.21)

(3.22)

(3.22')

(3.23)

Hence

= Z MU2 l«f I2(φ+m) 14 2(φ~m)

m

can be chosen to be
2 Γ(2Φ+l)
- Γ(φ _ m + !) Γ(φ + m + 1) -

Both Γ(2 Φ+ 1), jΓ(— m+ Φ+ 1) have poles, these cancel to give

- (- 2Φ) '

The left hand side of (3.23) gives

(3.25)

and
2* Γ(- ελ)Γ(-Φ-ελ)

\Aa
We see that - Δ L correctly reduces to . A

 m L for the compact case
1^1 l^-m'l

ε = + 1. Note that only this ratio is uniquely determined.
From (3.19) and (3.25) we have finally

D-μ,-λ=-Dμ9λ. (3.26)

IV. Conclusions

It is well-known that in the case of the continuous basis (the set of
eigenvectors of a non-compact generator), the Lie algebra operators L±

transform the state | A) into states | λ ± *} that are not among the basis
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states and must be expanded in terms of the basis states. We have used
the algebraic forms of these states in terms of creation and annihilation
operators with complex exponents to make these required expansions
from the beginning. We have arrived thus at general formulas, Eq. (3.10)
and Eq. (3.18), valid for both compact and non-compact cases, which
reduce correctly to finite sums in the compact case.
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