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Abstract. We consider the Schrodinger operator H=H,+ V of a many-body
system, where V'is a sum of dilation-analytic, short range (not necessarily local)
two-body interactions, together with the associated self-adjoint analytic family
H(z), |Argz|<a, of complex-dilated operators. For each z we construct the
local wave operators and the S-matrix below the smallest 3-body threshold,
using abstract stationary scattering theory and the Weinberg—van Winter
equation. The diagonal element of the inverse S-matrix describing scattering
within the channel « in the lowest energy range is proved to be the boundary
value of a meromorphic function &(z), —a<Argz<0, where ¥(z) is the
S-matrix for H(z) on the corresponding cut. Generally, the poles of ¥(z) are
resolvent resonances, but a resolvent resonance may not be a pole of #(z), if it
is embedded as an eigenvalue in the continuum of H(z,) for a suitable z,,.

Introduction

Scattering theory for two- and three-body Schrodinger operators with dilation-
analytic potentials was studied in [7, 8]. In [8] the abstract stationary theory
developed by Howland [15], Kato [20], and Yajima [35] was utilized. As in these
works the basic decomposition equation for the resolvent of the three-body
problem was a type of symmetrized Faddeev equation. For the extension to the
n-body problem we adopt an equation based on the Weinberg—van Winter
equation (Lemmas 2.12 and 2.14). This has the advantage of simplicity and the
disadvantage of the possibility of spurious poles in the resolvent equation. The
effect of these, however, can on the whole be eliminated. Utilizing this equation, we
construct wave- and scattering operators for the Schrodinger operator H below
the lowest three-body threshold X9 as well as for the complex-dilated operators
H(z) and prove asymptotic completeness (Theorems 5.6 and 5.7). This is based on
the limiting absorption principle of Sect. 3 and involves for the dilated operators
H(z) the construction of a spectral measure (Lemma 5.3). The spectral trace
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formalism of Kuroda [22] is utilized for the definition of the inverse wave
operators (Definition 5.4). This yields a simple expression for the S-matrix
(Theorem 5.10).

Perhaps the main importance of the dilation-analytic theory lies in its
contribution to the analysis of resonances. In the spectral theory [4], the so-called
resolvent resonances occur as poles of the resolvents of H(z) and of certain
analytically continued matrix element of these resolvents.

In the two-body case these resolvent resonances coincide with the poles of the
analytically continued S-matrix [7]. In the many-body case this is not necessarily
true. A resolvent resonance may be a continuum-embedded eigenvalue of H(z) for
a suitable z, in which case it generally does not give rise to a pole of the analytically
continued S-matrix. More precisely, for each threshold A below X9 it is shown, that

2
g1 </1 + Q—)

mp

of the inverse S-matrix is the boundary
A, A
2

value of a function Vl(gei‘/’)zt%l(go,%), meromorphic in an angle {z=ge"|
D

—a<¢<0,0>0} (Theorem 5.11). The operators Z,(¢, 1) are scattering matrices

for the dilated operators corresponding to the cut A+ e?*R™*. It is then shown,
2

that if k=1+ 2—2— is not a pole (or a spurious pole) of the resolvent on the other
m

D
side of the cut, then « is a resolvent resonance if and only if z is a pole of Z,({)

[Theorem 5.17 (1)].

If x is an embedded eigenvalue of H(z) however — in which case it appears as a
resolvent resonance on both sides of the cut — then %;({) has a pole at z if and only
if there are also resonance eigenfunctions which do not continue analytically as
eigenfunctions of H(z) [Theorem 5.17(2)]. These results follow from an analysis of
the behaviour of resonance eigenfunctions in the limit when the spectrum of H(z)
passes through the resonance, characterizing “embedded” eigenfunctions by the
vanishing of a closely related function on the energy shell (Lemmas 4.6 and 4.7)
and the establishment of an isomorphism of A4"(#,” !(z)) with the space of “non-
embedded” resonance eigenfunctions (Theorems 5.13 and 5.15).

For simplicity we have assumed that thresholds are non-degenerate. In Sect. 6
we sketch the extension to the more general case, as it occurs when there are
symmetries in the system.

Analyticity properties of the S-matrix have been established for 3- and 4-body
Schrodinger operators by Hagedorn [13], who obtained continuation also of off-
diagonal elements with poles at most at resonances under the assumption that the
potentials are exponentially decaying and dilation-analytic. Other results in this
direction are due to Nuttall and Singh [25] for many-body systems below X9,
including also Coulomb potentials. Results on general n-body scattering theory
for the operators H(z) have been announced by van Winter [34] and Sigal [28].

Although the emphasis is on the analytic theory, we remark that without the
analyticity assumption the method yields a proof of completeness below 29 in the
framework of the abstract stationary theory under the assumption Al. In this
generality, however, the singular points are only known, by a lemma of Kuroda
[21], to lie in a closed set of measure zero. Completeness below X9 has been

the diagonal element
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proved under various conditions by the time-dependent methods of Combes [9],
simplified and generalized by Simon [30] and of Enss [12]. Contributions to the
general n-body problem are due to Hepp [14], using Faddeev-Yakubovski
equations, and Sigal [27], using Berezin’s equations.

1. Notations and Basic Assumptions

We consider a system of n particles, denoted by 1, ..., n, in m-dimensional space R™.
The mass, position and momentum of particle i in the center-of-mass frame are
denoted by m;, x;, and k,. We denote the pairs (ij) by o, f etc. For o= (ij) we set

X, =X;— X, k,=(m+m)~ (mk,—mk).

Proper subsystems or clusters are denoted by C, and for C containing at least 2
particles m,, x, and k, denote the total mass of C and the set of linearly
independent position and momentum vectors of particles in C relative to the
center-of-mass of C.

A cluster decomposition is a partition D, of the system into k disjoint cluster
Cy,....,C,. For D,={C,, ...,,C,} we denote by yj, and pj, the set of k—1 linearly
independent relative position and momentum vectors of the centers-of-mass of
clusters C; with the center-of-mass of the total system removed. We set D=D,
={C,,C,}. We write D,CC; if each cluster of D, is contained in a cluster of D

The basic Hilbert space # is L*(R™"~ V), where we can choose any set of n— 1
basis vectors for the underlying space of positions or momenta relative to the
center-of-mass. We choose to work mainly in momentum representation, switch-
ing occasionally to position space in connection with some of the proofs. The two
representations are distinguished by subscripts like (x, y) for position space and
(k, p) for momentum space.

We denote by #°€ the Hilbert space associated with the internal coordinates of
C.If C contains only one particle, we take #°C to be a 1-dimensional space. We set

k
HPx=[] @#C for D,={C,, ..., C,}, while # = L*(R™*~ V) is the Hilbert space
i=1
of relative positions or momenta of the centers-of-mass of C,, ..., C,.

The free Hamiltonian H, can be written in various ways depending on the
choice of coordinates. For later use we shall give various explicit expressions of
H,.

Let o;=(n},n?), i=1,..,n—1, be a sequence of pairs, M,=a, U ... Ua, and
assume n7¢M;_, such that (ay, ...,a,_,) defines a connected graph. Let k;_, ; be
the relative momentum of the center-of-mass of M;_, and n, if n} e M,_, and the
same with n; replaced by the center-of-mass of «; if n}¢M,_ . Set

Ay =L*Ry_ ) if nieM,;_, (1.1)

1= 1,

and

Hot, 0, =L RS,

i

CI®LARE) i ni¢M, . (1.2)

i~ 1%
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In momentum space the free Hamiltonian HM:-% of the center-of-mass of
M,;_, and n? if nfeM,_,, «; if n}¢M,_, is given by

2
ki-—l,i

HM:- 1,00 —
O,Ir = 2
M,

, (1.3)
= 1,0
where m,, _ . is the reduced mass of M,_, and n} if nl e M;_ and of M;_, and «,
ifnleM,_,.

The free Hamiltonian H¥ of o, is given by

kZ
Hy=—2 m t=m "+m,". 14
0 2mai oy n! n? ) ( )
Setting
FMo- i Héf";‘""" if nleM,_,
0 H¥o-vop HY if nl¢M,_,,

we can write the operator H in the form

n—1
Hy=H%+ Y HM-vwm, (1.5)

i=2

where the variables are separated.

We set
R ()= (HYy =)
Ry(0)=(H =0
Ry o= (o=
Ro(()=(Ho= )"
and

HY'=Hy+ ) Hylo-v%.
j=2

J

For any non-trivial cluster C we denote by HS the free Hamiltonian of C in the
center-of-mass system. If C contains only one particle, we let Hi=0 on the
1-dimensional space #°. For any D, ={C,,...,C,} we denote by H{ the free
Hamiltonian of the centers of mass of C,, ...,C,. Then we have

k
Hy=Y HS+HDx,. (1.12)

i=1

We make use of the weighted Sobolev spaces H*’(R') with differentiability
parameter s and weight J, as defined in [7], Sect. 1. For a discussion of the spaces
H*?(R") we refer to [23]. We set

Hs(Rl) =H> O(Rl) , Hs,é =H> 6(Rm(n— 1)) ,
H"(Ry)=Hy?® H%Ru)=H3? etc.
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For any pair of Hilbert spaces 5#,, #, we denote by #(H#,, #,) and €(H#,, )
the spaces of bounded and compact operators from ¢, into J#,.

We denote by S'”! the unit sphere in R' and identify L?RY) with
L>RY,LYS'"Y);0'"Y), writing f(o,-) for feL?®RY). The trace operators
v(0)e BHY(RY, LA(S' 1)) (see [23]) are defined for s>1/2, >0, by

o) f =flo, ). (1.13)

For any D=D, we denote by y,(¢) the trace operator in Z(H*(R? ), L*(S"~1)).
The unitary group of dilation operators U(p) is defined for fe #, geR*, by

m(n—1)

U@NHp=e * flep). (1.14)

For any operator 4 in # we set A(g)=U(0)AU(¢™'). We denote by U, the
dilation group on J#”.
The dilation and trace operators are connected by
m(n—1)

W)= 2 »)U(o), (1.15)

m

1@=0 2y(HUxe). (1.16)
For 0<a<3, let ©=0, denote the angular region

0,={z=0€"|peR", —a<gp<a}.

We use the notation

Kol (pp) = j )f(kp’ pp)Pp(kp)dky,

RrknD(n -2
whenever the right hand side is defined, and

(169) (kp, pp) = dkp)g(pp) -

Assumptions on the Interaction

We make the following explicit assumption on the interaction V'=> V,.

Al. There exists s>1/2 such that ’
V,=AW,A,, where A,=(1-4,)"%
and W, is a symmetric operator in L; such that
Web(H: L2

A2. The ¢(HY:?, L} )-valued function W,(¢) has an analytic extension from R*
to 0.

Al implies that W¥e%(L; , HY. %), and by A2 W;¥(¢) has an analytic extension
to @. Since W, C W*, we shall simplify notation by writing

W2)eG(H:?, L )nE(Li , Hp: ~?).
The condition Al was introduced by Kuroda [23].
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For a discussion of the condition A2 for multiplicative potentials we refer to
[3].

The operator H, is self-adjoint on 2(H,)=H% 2.1t follows from A1 that ¥, and
hence V is H,—e¢-bounded, so H is self-adjoint on P(H,). Moreover, by A2 the
operators H(z)=H,(z)+ V(z) form a self-adjoint, analytic family defined for ze 0.
We set

Vi)=Y, V2,

acC
k

VBJZ)=:§: }: vxZL

i=1aCC;
V(2 =V(2)—Vp,(2),
HY)=HG(2)+ V), Hp(=Hy2)+ Vp,(2),
(1.17)

R(z,{)=(H(z)—{)" 'Rz, {)=(H(2) - ()~ !
RDk(Z’ O = (HDk(Z) - C)_ Lt

We denote the set of all two-cluster decompositions D by 9. For
D={C,,C,}e2 we set

o) =0, (H+ H*) =0, (H)+ 0 ,(H®),

where HC' + H2=H ' @I+ I @ H®? acts in #1Q#>:

Note that if C, is trivial, then o2 =g ,(H").

We now make a further, simplifying assumption.

A3. For all De 2, such that 2 +0, o2 consists of simple eigenvalues, and for
D, #D,, 6?1neD>=0.

This assumption is made to simplify the treatment and presentation. In the last
section the more general case, where A3 is not assumed, will be discussed.

The set of k-body thresholds X,(¢) is defined by

Zlp)= gj {Gd(Hcl(ei"’)) + .+ O-d(HCk(ei‘P))}

(1.18)

2, =Z,(0), in particular ¥, =( ) o.
D
We set

XY =min {keZ,},
o= ale), 2=20).

2<k=n-—

For any C, we let 2(¢) denote X(¢) for the operator HE(e™).
Throughout this paper we fix E as follows,

Ee{keX,|k<Z29}.

In case {keX,|k <23} is finite, E=ZX9 is also allowed. Let
Dy ={EcD|d?n[29, E)+0}
9y ={DeD|cPN[ZY, E)=0}u{D,lk=3}.
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For De @, let n(D) be the number of points in o2 N[2%, E), and let

AL <D Ly D)z

be these eigenvalues with the corresponding normalized eigenfunctions chosen
such that ¢iy(z) is analytic in O [cf. Lemma 2.10(2)]. Let

n(D)
Pi(2)=pp(2)><{Pp(2), P5(2)=.; Piy(2), (1.19)
and
ri(z,0) = (jﬁ‘z’ +,1;J—§)_1, i=1,...n(D), (1.20)

where mp ' =mg ' +mg ', and py, is the relative momentum of the centers of mass of
C, and C,.
For De 2, we decompose Ry(z, () with respect to E by setting

n(D)
Ry(z, )=Rp(z. )+ _Zl |¢p(2)>75(z D<@, (1.21)

1

where

R5(z,0)=Rp(z,0) (1 - P5(2)). (1.22)

We define the following Hilbert spaces and operators associated with the set of
channels related to scattering below E.
To simplify notation, we set

n(D)

IEIED)

Deggi=1 D,i

H=HS Y SL;,
D,i

with elements &= (u, {t}})
H'=H'® ) ©H;,,
D

Ry(z.0)=Ry(z.0® ), ©rp(z0), (1.23)
J@i=u+ Y [¢h(2)7,, det, (1.24)
D,i
Wi(2)=Vp(2)dp(2)) » (1.25)
W@i=V(zu+ 3, Wy(2)p, (1.26)
Gz, O =1dp(2))> + Wi(2)riy(z, ), (1.27)
Golz, =1+ V(2)Ry(z, (), (1.28)

G(z,0)ii=Gy(z, Qu+ Z Gz, Oty =[J(z) + W(z)R (2, )]ii. (1.29)
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For ¢ 40 we also utilize another decomposition of Rz, {) corresponding to a
single channel, associated with the threshold 1= 1}, We write

Ry(z,0) = Ry(2,0) + 152>z, b2, (1.30)
where

Rp(z,0)=Rp(z,0) (1 - Pp(2)). (1.31)

2
pp?

_ The relevant spaces and operators are redefined as ,fﬁ:}f L
H;=H'®H; , ii=(u,1)e X,

J(@i=u+|pp(2))T, (1.32)

R, (2, 0)ii=Ro(z, Qu+|¢52)riz O, (1.33)
G (2 Qii= Gz, Qu+ Gz, ), (1.34)
W, (z)ii=V(z)u+ W)(z)z. (1.35)

2. Resolvent Equations

The basic resolvent equation utilized here is the Weinberg—van Winter equation
cf. [16]. The l-connected and the r-connected parts of the resolvent, I)(z,{) and
I.(z,{), are defined by

Lz0)= ) 2 ROV, (). .

Dy—1C...CD3 (@1 ...an-1)

Ry (20V,(2) ... Ry (2 0V, _(2), 2.1)
I(z0)= ) Y V. (@R, (z0).

D,,—1C...CD3 (&1 ...an-1)

Vo, (@Rp, (2, 0V, (2)Ry(2,0), (22)

where > is over all chains of decompositions D,_, C ... CD, such that D;
Dy —1C...CD>

arises from D;. , by joining two clusters of D,,,, and Y is over all

(@1...0n—1)

(otg ..., ) such that the particles of the pair «,_; belong to the same cluster of D;

but to different clusters of D, j=2,...,n—1.
The disconnected part D(z, {) of the resolvent is given by

D(z,0)= Y Y(=1Hk=1!Ry(20). (2.3)

k=2 Dy
We then have the following two forms of the Weinberg—van Winter equation.
R(z,0)=1I)(z,OR(z, )+ D(z,{), 24
R(z,)=R(z,()I(z,{)+ D(z,{). 2.5)
Equation (2.4) is given in [32], IL, (6.38), and (2.5) is obtained from (2.4) by
taking adjoints and replacing (z,{) by (z,{). Note that
L(z,0)=1§Z0, D(z{)=D*zJ).

In order to study the connected kernels we make the following
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Induction Assumption
g (H2)) SZ%p) +e* R ™

for all systems C with less than n particles, where H(z) is considered as an
operator in H"! for t=+s, [=0, — 2.

Lemma 2.1. o(Hp, (2)) So(H(2) + ... +0(H™(z) +€**R* and
Ry, (z,{)e ﬂ B(H"' H" l+2)ﬁ.93(H 5 _2®Hs -2 JH, ®H;,)

t=xs
1=0,-2

NB(H; QH; , H, 3 @Hp ) AL, ®H} , HY> @y

with Hp, considered as an operator in H"', t=+s, 1=0, -2, H; "*QH ™2,
H,’®H; and L, ®H;  respectively, and DD D,.
Proof. Let us consider the space H, ®Hk o, the other cases are similar.

Let Ho(z) be the closed operator in H, ®H,; defined as H(z), but with
domain H?®H, *?. From the assumptlons Al and A2 it follows that V(z) is
H, ,—e&- bounded “where H,, , is the operator z*k?/2m, in H,_* with domain H,_*2.
This implies that V(z) is H,—¢-bounded, and hence

Vo &Sy, s <l Hof ly, -+ K@) f - (2.6)
where |- | =1l HH;;.@U,S;D.

From (2.6) follows that Hy, (z) as an operator in H, S® H}  is closed on 9(H,),
and the Hj, (z)-norm is equivalent to the Hy-norm.

Moreover, the e-boundedness implies that HS(z) is sectorial with arbitrarily
small opening angle (see [29]) where HC(z) is considered as an operator in H;
with domain Hjy;2. Then we can apply Ichinose’s lemma [17] and the induction
assumption to obtain

o(Hp,(2) So(H  (2))+ ... +o(H (z)) +e* R
and hence for { in the complement of this set
R, (z)e B(H, @H; H,>*®H},’
Lemma 2.2. For 2<k<n—2, Im{=+0,
V, Ro()e®(H, > > Hy )QABH . . )® ..
®@A(Hy L )@BH 2, )® - ®A(HY, 2, 4, )

where (o4, ...,a,_ ;) defines a connected graph, and H ;—}S_:i are the spaces defined by

(1.1) and (1.2) with L? replaced by H** ~2.

(2.7)

Proof. We follow the proof of [10], using the representation
RoO)=] et - -

—II“xt —HM, %2

‘.e—H{)wn—zv‘xn—ldt (28)

O'——>8
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valid for Im { <0 in the sense of uniform convergence in
B(H,S % H ) QBH; D)@ .. @B(Hy %)@ B(H, S, L)
® ...0%H5 >, .. )

Moreover, e 8" is uniformly bounded in A(H, " -2, H, ®) and hence by Al
V, e "5 uniformly bounded in €(H,,> 2 H} ~?) for te[e, ), e>0. Then the
argument of [10] yields

0
V, Ro(Q)= [ &V, e s om0 g7 Hom= gy 2.9
0

in the sense of uniform convergence in
C(H,> % Hy " )QBH WS 1) ... QBH> %)

@B My 5. )® - OBH 2,4, )

and the lemma follows.

Lemma 2.3. Let (o, ...,o, ) define a connected graph, and V, =3 V,. For
j=1
2<i<n—2,Im (%0,

Vou_ Ro,_ (O BUT;, > @B(Hyr, 2)® .. @BH L, ).

) n-2,0n-1
Proof. We use the representation
«° 4 M, M,
VDn_fRD,,_,-(C)= j‘ eCtVDn_ie—HD"_,te—HO D%ttt ...-e_Hﬁ n-2- n—lt, (210)
0

where Hj, =Hg/*+V, _ valid for Im{ <0 in the sense of uniform convergence
in
BH;, 2 @AH:02)® - @BH L, )

by Lemma 2.1 and the same proof as in Lemma 2.2.

Lemma 2.4. I({)e4(H™ > 2, H>?) for Im{+0.
Proof. A typical term is
V, RpQ....V, Ry (D-....V, Ry(0). (2.11)

On—1 Ar+ 1

We prove by induction that for i=1,...,n—1
V.Ry (O ...-V,R(Oeb(H,> " * Hy >

Dn—: Dy
®BHS 2)® ...QBH> 2 ). (2.12)
For i=1(2.12) holds by Lemma 2.2. Compactness of the term given by (2.11) is

(2.12) for i=n—1.
Assuming now (2.12) for i=k, we shall prove (2.12) for i=k+ 1. We write

Vo Rp, 0=V, RO =V, Rp, (). (2.13)

Ak + 1
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By (2.12) for i=k and Lemma 2.3 we get

(1=Vp, Rp, OV, Rp, ., (0 V,Ro(0)
eB(H, > 2 Hy 2 )QBH S o2 )@ .. @BHyS 2, ) (214)

kp,_i ks ke + 1 n-2,0dn-1

Lemma 2.2 implies
Vo [Ro(DeB(H, 2)®F(H, 72 Hy, 2

kn-x Op+ 1 Ok + 1
@BHE L )@ .. @BHZ A ), (2.15)

Mic+ 1,00+ 2

where k, s the set of internal momentum vectors of particles in clusters of D, _,
with exception of a possible common particle with o, , , together with the relative
momenta of centers of mass of clusters of D,_, and o, ;.

From (2.13)-(2.15) follows (2.12) for i=k+ 1, and the lemma is proved.

Corollary 2.5. I())e¥(H %2 H*?) for Im{=0.

Lemma 2.6. [({)e¥(H " *, H®) for Im{=0.

Proof. This is proved in the same way as Lemma 2.4 on replacing —2 by 0 and 0
by 2 in Lemmas 2.2-2.4.

Lemma 2.7. For —a<o@<a, {¢Z(p)+e* R*
I(z,{)e6(H™ > "%, H" ~?)nG(H %, H")
I(z,0)e¥(H =2, H**)nG(H %, H%),

and the functions I(z,{) and I(z,() are analytic in z and {.

Proof'. By successive applications of Lemma 2.1 and Al, A2 it is proved that
I(z,()e B(H > "2 H> " *)n%(H *, H°).

Then compactness follows from Lemmas 2.4 and 2.6 and Corollary 2.5 by
analytic continuation.

Lemma 2.8. ¢ (H(2)) S Z(¢p) +¢* R*, where H(z) is considered as an operator in H"'
for t=+s, 1=0, —2.

Proof. 1t follows from Lemma 2.1 and an e-boundedness argument, that
I1(z,0)[ =0 for [{|—co, |Arg{—e*?2d>0,

in any of the spaces Z(H"Y), t= +s, |=—2,0.

Then by Lemma 2.7 and the analytic Fredholm theory (cf. [31]), (1 —1,(z,{)~!
is meromorphic in C\{Z(¢)+e** R*} with values in (H""). It then follows from
(2.5) and Lemma 2.1 that

R(z,0)=D( (1 -1z )" (2.16)

is meromorphic in C\{Z(¢p)+e?* R*} with values in #(H"", and the lemma is
proved.

In the proof we have used the induction assumption which by the lemma is
verified for systems of n particles. The verification for 2-body systems is
straightforward.
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Lemma 2.9. The operator 1 —1)(z,{) has the same null space when considered as an
operator in H"' for t=+s,0 and 1=0,2. The same holds true of the operator
H(z)—{, and o ,(H(2)) is the same when H(z) is considered as an operator in H"' for
t=+5,0and [=0,2.

Proof. For 1—1I/(z,{) this follows from Lemma 2.7. Moreover,
1—=1I(z,0)=D(z,{)(H(z)— {) (2.17)
and hence
N (H(z)= SN (1=1(z,0)). (2.18)

We recall the basic property of discrete eigenvalues and eigenfunctions of H(z).
Lemma 2.10. 1) o}(¢) =0 (H(2))nR =0 (H)\Z, and o3(¢p)=0,(H(2))\R accumulates
at most at points of Z(¢), is contained in the sector bounded by the half-lines
29+ R" and 25 +€* R*, and is independent of ¢ unless “absorbed” in the essential
spectrum X(@)+e*¢* R™*.

2) For Aea,(¢@) there exists a basis {¢i(2)}¢2, of N (H(z)—7), such that the
vector-valued functions @%(z) are analytic in O for Aecl(p) and analytic in
{z=0e"|0>0, 0= Arg/ if ArgA=0},i=1...d,=dimA"(H(z)— ).

3) For Lea () the inverse Fourier transforms (f)a(z) of the eigenfunctions are

of the form
PiD)=e"*g, ger,
where k depends on A and z.
Proof'. 1) and 2) are proved in [2] and [4], and 3) in [11].
Definition 2.11. For AeX we define the set of resonances £, by

Z,= | 0{K60§((p)|h¢ is between {A+e?*R*} and {1 +e?*R*}},

—a<e<

where ' =min{ueZ|u>1}.
We set £, =R,.
We have

A,= | {xeoi(p)x is between {A+e**R*} and {1 +e**R*}}.
0 <a

For pe(—a,a) we set
G (@) ={xeC\o (@)l N (1 - 1(z,x)*{0}},
and for @ +0
Gi(@)=0,p)NR=5,, G4(p)=d,(p)\R.

By analyticity and unitary equivalence, &,(¢) is p-independent in the same way as
o (¢p). We define

= | . {xe&(p)lx is between {1+e**R*} and {¥ +e**R*}},

—a<q)<

Ry =R, .
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We shall now derive a decomposition equation for the resolvent based on the
Weinberg-van Winter equation in the form (2.16), valid in Z(H"') for t= +s5,0,
[=0,-2.

We decompose D(z,{) corresponding to a fixed energy E by splitting off from
each operator Rz, {) the parts arising from bound states of the clusters C; of D
with total energy less than E. Using the notation of Sect. 1, by (1.21) and the 2™
resolvent equation we have for De 7,

n(D)

Ry(z, )= Zl ¢n(2)>75(z. DX D)l
+Ro(z, O)(1 = Pp(2) = Vp(2)R}(2, 0)) (2.19)
and for D,e 7, 2<k=n—1

Rp,(2,0)=Ro(z, (1 = Vp,(2)Rp,(2,0)). (2.20)

Introducing (2.19) and (2.20) in (2.3) and using the notation (1.23), (1.24), we
obtain from (2.16) the following representation of R(z, ().

Lemma 2.12. For (e C\{(Z(¢)+e** R")Ué (o)}

R(z,{)=J(2)R,(z, ()Y (z,0), (2.21)
where
Y(z,0) =X )1 -1z 0! (2.22)
and
X(z,0)=X5 (20, Xz 0} (2.23)
with
Xp(z,0)=— DEZ@E(l — P3(2) = Vp(2)R}(2. 0)
+ DREZ% (= D k=D (1= Vp, (2R, (2, 0) (2.24)
and
Xz, 0)=—<¢%2|, DeZy, i=1..nD). (2.25)

We have the following identities
Lemma 2.13.
R(z,0)G(z,{)=J(2)R (2, () in ZB(H’,H*>?), (2.26)
G(z,0)Y(z,)=1 in %B(H°. (2.27)
Proof. By Lemmas 2.1 and 2.6 and the proof of Lemma 2.8
X(z,0)eBH HY),  Y(z,0)e B(H, H).
From Al and A2 follows that G(z,{) defined by (1.29) satisfies
Glz, {)e B(H®, H).
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We prove (2.26), then (2.27) follows from (2.26) and Lemma 2.12. By the second
resolvent equation

R(z,0)Gy(2,{) = Ry(z,{) (2.28)
and
R(z, )Wp(2)r(z, {)
= R(z, O)Vp(2)R (2, O(H p(2) = O)ldp(2))1p(2, )
=¢p(2)>7p(z 0) = R(z, )lpp(2)) »
hence

R(z,0)Gp(z,0) =1dp(2))rp(2, {) (2.29)

and (2.26) follows from (2.28), (2.29).
For ¢=+0 we obtain, starting from (1.30), the following alternative decom-
position of R(z,{), proved in the same way as Lemma 2.12.

Lemma 2.14. For ¢+0, A=/5ead?, (e C\{(Z(¢p)+e** RT)UG ()}

R(z,0)=J,(2R, ,(z,0)Y,(z,0), (2.30)
where
Y,(2,0)=X (2,01 = 1(2,0)" ' =(Y2(2,0), Y)(z() (2.31)
and
X(2,0)=X3z,0,X5(z0) (2.32)
with
X3(z,0) = — (1= Pp(2)— Vp(2)Rp(2, )
+ 2 (= k=11 =V, (2)R,,(2,0)) (2.33)
and
Xi(z,0)= —<{¢p@, (2.34)
where
9, ={D,+D}u{D,Jk=3}.
We have

X,(2,0)eBHH),  Y(2,0eBHSH), G,(z0)eB(H,H)

and the following identities, proved as Lemma 2.13.

Lemma 2.15.
R(z,0)G,(2,0)=J,(2)R, ,(z,{) in Q?(ﬁj, H?), (2.35)
G,(z,0Y,(z,0)=1 in %(H°). (2.36)



Analytic Scattering Theory for Many-Body Systems 187

3. Limiting Absorption Principle

In this section we prove the existence of the limits on the continuous spectrum of
the operators I.(z,{), I)(z,0), Y(z,{), and G(z,{) in topologies related to the
H*-spaces and establish the analyticity properties of the limiting operators.

The statement ‘ ‘
0.(z, A+ ue*@)e #(K,,K,)

means that the following limits exist in the uniform operator topology of
4K, K,) ) . . . .
Q. (2, 2y + 1e) = lim Q(z, Ay + pe?+9)
el0

=1lim Q(0e"* ™ %, 1) + ue**).
el0

Lemma 3.1. For D={C,C,} and anC;*0, j=1,2,
V(2)eBH,>*@Hy2, H;, @Hy?
Proof. 1t is straightforward to verify that
A 2)eBH, > *QH} 2, HY*QH},?
and the lemma follows from Al and A2.
Lemma 3.2. For D={C,C,}, anC;*0,j=1,2 and i=1...n(D),
|$5(2)>7p. (2. Ap + e* ) $p(DNV,(2)e B(H .3 * @ Hy;,,
where
1 (2, A+ pe?) = lglln(;l ri(z, AL+ pe?ie o)

=lim ri (e’ ¥ 9, 2L + ue?™®).
cl0
Proof. This follows from Lemmas 2.10(3) and 3.1 together with a result of Agmon
[1], quoted in [8], Lemma 1.1.
Lemma 3.3. For D={C,C,}, anC;#0, j=1,2,i=1,..,n(D), p=0, pe(0,E—1})
and p+0, ueR~™

R}(z, Ay + ue* )V (2)e B(H, > *@Hy,2, HY?).
For =0, .=1%, the same holds with R% replaced by R},

Proof. By Lemma 3.1 it suffices to prove RE(z, A+ ue**®)e B(H*, H*?). This is
proved in the same way as Lemma 2.1. Defining H o(z) as a closed operator in H®
with domain H*? and accordingly by e-boundedness H(z) closed on H*?2, we
obtain

kp?

Hi(z)=Hy(2)|(1 - pp(z)H

as a closed operator in (1 — P5(z))H® with domain (1 —PE))H*? and graph-norm
equivalent with the H*Z-norm. By the induction assumption and Ichinose’s
lemma, A} + pe?™ is in the resolvent set of HE(z) and hence

RE(z, AL+ ne**)e B(H*, H>?).
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Lemma 3.4. For ¢ +0, ueR*
1,.(2, 2+ ue*?)e6(H, > > @Hy,?
Proof. A typical term containing the singularity is
Ro(z. V(@) . Ry, (2.0, () ... Rz OV, (). (3.1)
By Lemmas 3.2 and 3.3
Ry (2, A+ pue*)V, (2)eB(H,>*QH;}

The factors R, (2, Ap+ue* )V, . (2), k=0,..,n—3, are in B(H,>*Q@H;;}
by Lemma 2.1.

Hence the term given by (3.1) is in Z(H, > *®H};2).

The terms without singularity are in %’(H o 2®H 2) by repeated application
of Lemma 2.1 and hence

1), (z, 2+ pe*)e B(H, ¥ *@Hy?
By Lemma 2.6, I|(z, A}, + ue***?)e4(H, »*®@H},2) and the lemma follows.
Lemma 3.5. For =0, ue(29, E)\X,
I (webH™?).

Ak + 1

Proof. We consider the term

RoVy, 'Ry WV, o Rp (WY, (3.2)
where
n(D)
Ry, (W)= Z [pp7D+ (WPl + RE(W). (3.3)

Using Al and Lemma 2.10(3), it is easy to show as in Lemma 3.1 that
6>V, € BH 2, H’),
and hence by [8], Lemma 1.1

I¢D>rDi(,u)<¢D| o EBH* ?). (3.4)
By a similar proof as in Lemma 3.3
Ry(WV,, e BH>?). (3.5)

The factors R, _ (w)V,, ., are in B(H*?) for k=0,...,n—3 by Lemma 2.1.

Hence by (3.4) and (3.5), I,,(wWeZ(H *?), and then by Corollary 2.5,
I, (WeBH 2.

Lemma 3.6. For i=1...n(D), =0, A, +ue(29, E\XZ, and ¢p+0, ueR™*
I, (z, A+ pe*)e €(H®).
Proof. We consider the typical term, setting { = 1% + ue*™,
Vi (@R (2,0)- ..oV, (2Rp _ (2,0)- ...V, (2)Rq(2,0), (3.6)
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where

n(D)

Vu (2R (2,0) = Z i DNPp(EDTD 4 (2 OHE+ Y, (DRE(z,0). (3.7)

By the proof of Lemma 3.3, V, _ (2)Ry(z, {)e B(H").
By Lemmas 2.10(3) and 3.1 and [8] Lemma 1.1

V(D521 (2, O PR (D) e B(H?).
Hence I, ,(z,{)e #(H"), and then by Lemma 2.6 I, (z,{)e €(H").
Lemma 3.7. For pe(—a,a), AeX,, { =1+ ue*®, ueR",
G.(z0)eBHLHY), G,.(z,0)eBHS, HY).
Proof. Clearly G(z,{)e #(H®), and by Lemma 2.1
Gz, 0)e B(HS_, HY) for =0, 25>1
and for @=+0, A[+41.

pp’

For ¢ =0, A, <1 and @0, 1, =1 we have by Lemma 3.1 and [8], Lemma 1.1
Wiz, Orp (2. 0) = Vi(2)ldp(2)>rp 1 (2. )€ B(H; ,, HY)
and the lemma is proved.
Lemma 3.8. For 2= 1%, k=A+ ue**, ¢ +0,
N (1=1I_(z,x)+{0}
if and only Ukeﬁluég(@;uél), where
I,.(z,x)e6(H, > *®H}2).
(z,x))=* {0} if and only if ke, where
1,.(z,x)eG(H?).
There exists e,>0 and bases {¢; + Qe““"”” )}?;11) of
N (L= (9), k)

and a basis {¢ |z, x)}"‘ ) of /(11— I, + (2,x)) such that ¢; - (é, k) is analytic in & for
O<e<e, andforj dl )—dlm./V(l I, + (z,x)

For =0, /(11

-

6501 (Qe TP, k) —— b, 1 (z.10)

in H,»*®@Hy? for 9+0 and in H™*? for ¢=0.

Proof. We consider the case of I,, for ¢ <0, the other cases are similar. Define the
operators B(£) and K (&, x) for 0<e<g, by

B =(1+&pH)(1-E724,, ) (1 =E724,,)",
K (& ©)=BOI(&x)B~ ().
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Then K,(& k) is analytic in ¢ for O<e<e, with values in %(#), and by
Lemma 3.4
Kt(Qe'(w_s), K) 0 K, (z,x)
in the operator norm of ¢(#) where
K, (z,x)=B()I,,(z,k)B~}(2).
Moreover for ¢ >0
U(@K(e"™?,1)U(e™ ") =K (e"® 7).

Evidently, o(K (&, k))=0a(I(&,x)), and by analyticity and unitary equivalence
for fixed ¢, this spectrum is independent of ¢ for 0 <e <¢,. Hence we can choose a
circle I with center — 1 and radius 6 such that

{{0<|{+1]<8}na(K (& k) =0 for O<e<e,
and
{¢0<|+1|<8}na(K,,(z, k) =0.

Define the projections P(&,x) and P (z, k) by
P 1 _ -1 R 1 -1
P(fa K)_ 27!1}[(Kl(67 K) ,u) d,ll,P+(Z, ")—'— 2_7U II‘(KH—(Z, K)"‘,U) d/'t

Then
Plee"®~9,1) > P (2.K)
in the operator norm of %(#).
This implies that A'(1 — K, (z,k))= {0} if and only if
N1 —K (& x)£{0}.
Clearly
N (1=I(& k)= BN (1 - K&, x))
and
N (A —1,,(z,xK)=B(E)AN(1—-K,,(z,K).

On the other hand, it follows from Lemma 2.9 that A(1—1I,(&, «)) is the same
when I/(, k) is considered as an operator in H, **®Hj;? and in #, and hence

N(A=1,,(z,k)+{0} if and only if xe,.

Let & be the dense set of dilation entire vectors. Since P(&, k) is finite-
dimensional, there exists for

P=p(e® NeN(1-K(®9,x)
a vector

1= es,
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such that
=P, k),
and by unitary and analyticity

(&)= P(& x)x(&)e N (1 - K\(& k)
and

¥ (2)=P (2, k)y(z) =lim p(e’® ~?)e N (1 - K. (2, 1)).
&l0

To a basis {y,;} of N (1—K,(e»~9, k) corresponds bases ,(¢) and v, (z) of
N1 =K (& k) and A/(1—-K,.(z,k)) and hence bases

P& =B(Ow(&)

and
¢:.+(2)=B(2)y,;,(2)= ligl (f)i(gei(“’ ~9)

of #(1-1I( k) and A (1—1,,(z,«)), and the lemma is proved.

Lemma 3.9. For i=7%, k=A+pe*®, ueR* for p+0,
ke(29,E)\X, for ¢=0,
N (=1, - (z,x) + {0}
if and only if
Ke@luﬁz’;u&p(@;uﬁlu&p),
where I, (z,k)e €(H").
Proof. This is proved in the same way as Lemma 3.8.

Lemma 3.10. For A=) =)+ pe®*, ueR*, (R, 0R (R, 0R,) for ¢+0 and
(e(Z9, E\(Z,08,) for 9=0,

Y+ (z, e B(HS, HY)
(=)
and for @ £0
Yy (2.0)e BH®, HY).

Proof. This follows from Lemma 3.6 and 3.9 and the fact that X(z, x)e Z(H®, I:IS) (cf.
the proof of Lemma 2.12).

Lemma 3.11. Under the conditions of Lemma 3.10
G+ (@0Y+ (20=1 in B, (3.8)
-) -)
Gy (20Y; (z0=1 in B(H). (3.9

Proof. This follows from Lemmas 2.13, 2.15, 3.7, and 3.10.

We shall now establish the existence of limits Y, (z, A+ ue*?) for ¢+0 in a
different topology, related to the concept of smoothness. This will be utilized for
the construction of a spectral measure of the operator H(z).



192 E. Balslev

Lemma 3.12. For A=2,, ¢ +0 and ACR™ a bounded closed interval the following
limits exist in B(A, L*(A, H%)), where pe A,

lim I (z, A+ pe?@*9),
el0

Proof. We consider the term given by (3.6) and (3.7). By repeated application of
Lemma 2.1 and Al, A2 it is shown that

V, [(2DRp. (2, A4 pe*®)- .-V, (DR(z, A+ ue*)e B(A , H; L ). (3.10)
By a similar proof to that of Lemma 3.3

V, (R eBH;, QL2 HY). (3.11)

dn-1

By a result of Kato [19] and Lavine [24], quoted in [8] Lemma 1.2, the
following limits exist in 2(L2 , L*(4, L))

yp?

lim (14 y2)"52(— A, +ptie) " (3.12)
el0

From (3.12), Lemma 2.10(3) and A1, A2 follows the existence of the following
limits in Z(H; QL2 , L*(4,H)

D’
im V,  (2)|¢p(2)>rp(z, A+ pe* =) pp(2)]. (3.13)
el0
The lemma follows from (3.10), (3.12), and (3.13).
Lemma 3.13. For A=2,, ¢ +0 and ACR" a bounded, closed interval such that
(A+eX0 A3 (R, ORI (R OR, ) =0
the following limits exist in B(A, L*(4, HS))),

lim Y(2, 2-+ pe* %)+ (3} (3.14)
and the following limits in B(H, L*(A, #))
133 YO(z, A+ peiec ) (3.15)
Proof. We write
V(2,0 =X,(2,0)+X (2, ) (1 = L(z,0) " '[(z,0) (3.16)

By Lemma 2.1 and Al, A2, X9(z, A+ ue?*)e B(H).

Then the lemma follows from Lemmas 2.14, 3.6, 3.9, and 3.12 and (3.16).

We conclude this section by establishing the basic analycity properties of the
operators Y, (z,{).

2
Lemma 3.14. For .=2,eX,, A<E, the B(H*)-valued functions I, , (Z, A+ 2—2—) are
+ my,

analytic in O\R™, and for ).+ AT
2my,

2 ,2ip 2
lim I,, (Qei"’,/1+ ¢e ) =I,, (Q,/H— —Q——>

@—0%F D 2mD
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Proof. We consider a typical term containing the singularity, obtained by setting
{=A+ ~—in (3.6) and (3.7).
2my,

It is clear from Lemma 2.1 that for D e 7., Ry, (z,{) is analytic with values in
A(H*, H*?) for ze O\([2mpy(E — 2)]*/?, o0).
For D,e %, the operator H, (z)(1— Pﬁz(z)) is analytic in ¢, and

leo(H,,(2)I(1— PR (2))#).

By the proof of Lemma 3.3 it is then easy to show that R} (z,{) is analytic with
values in B(H*, H*?) for ze O\([2my(E — 2)]*/?, o0).

By a straightforward proof, given in [8], Lemma 3.15, it is shown that for
Xy, <A, 1} 4(2,0) is analytic with values in AH,, H ;Dsz’z) for ze ®\R™, and for
oeR”

2 ,2i¢ 2
: ; ; Q i Q
Iim 7 A =r A+ ——|;
@-0% Dot (Qe * 2my, ) "D2t (Q * 2mD>

for A), =4, r} 4 (z,{) is analytic for ze @, and for 1}, >4, r}, .(z,{) is analytic for
ze O\([2mp(A' — )]V, o0).
From these observations and Al, A2 the lemma follows.

Definition 3.14. For /=15eX, and any set D(1)CC, we use the notation

D)= {ze O+ % eD(/l)}.

Lemma 3.15. For leX,, A<E, the #(H", H¥)-valued function
2
Y+ (Z, }."‘ L)
=) 2my,
is meromorphic in O\R* with poles at most at points of
(oI (P 0R,)).

2
Moreover, for A+ ;71) €4, )\a,

2 2ip 2
lim Y, (Qei"’,/1+ Qze ) =Y, (g,l—i— Q—)
¢~0%F mp 2my,

Proof. This follows from Lemmas 2.10(2), 3.9, 3.10, and 3.13.

4. Isomorphism of /(1+Ry, (z,)Vp(2))
and V(G (2, IV (2R, (2,0))

Definition 4.1. X, ={ppe R |Ipp|=1},
hy=h,=L*Z,) for i=1...n(D).
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For AeX,, A<E, pe[4, 1), let .
hw= Y ) ©®h,

De@g ADZA
m—2
TD(ﬂ)=(2mp)m/42_I/ZNTVD((ZW’D#)UZ)G #BH} . hp)  for HeER™, (4.1)
(TN W=Tyu—2p)f for feH; , pe(lp, ). (4.2)
For pe(4, A) set

Tw= Y ) OhWw, (4.3)

DeZg An<2

n(D) )
T= Z Z DT;,. (4.4)
De9g i=1

The operators T}, are defined such that 7}, has a unitary extension in
AB(L? , L*((A}, 00), ki), and such that

-
TH, T '=) in L*(29, «),h(%). 4.5)
By (1.15), trace and dilation operators are connected by
Ty()=2""2 (U (2, , 1)), (4.6)
where {U(0)} .+ is the dilation group in J#, .
Lemma 4.2. For ze 0, { =], + ue*™,
€2 0Qmi) ™ {rh , (2.0~ (2.0} = TEW Ty, @.7)

Proof. This follows from a well-known formula of scattering theory, see [23],
Proposition 5.5.1.

Lemma 4.3. Let A=J)ieX, A<E. For =0, let geR*, ue(0,1 —2), iic H* and
assume

J(QR, (0, A+ pWite #.
Then for A3, <
yple™ @mp(A— g + pu)?)t), =0,
in particular for =1, T4+ u=0. 4.8)
For ¢#0, let ge R™, ueR™ and assume
Jy(2)R (2, A+ pe e # .
Then Ty(ug™*)r=0,
in particular for 9= 2mpp)*'?,y,(1)r=0. 4.9)
Proof. This is proved in the same way as [8], Lemma 5.4.

Lemma 4.4. Let iicH® for ¢=0, aeflj for ¢+0. For ¢=0, leX,, A<E,
pe(2, ANG

T(WY. (WG (Wi =T(pir. (4.10)
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For g0, { =1+ pe*®, (¢, OR,R,0R,),
Ty(uo™?) Y, . )(Z, C)Gz( + )(Z, Ot = Ty(ue ™),

in particular for g=(2mpu)'’*
2
z

22
yD(l)Y;v(j)(z,l—f— ——) G+ (z,/H- 2y

) G, )a=yu(1)f. 4.11)

Proof. By Lemmas 2.12-2.15, 3.7, and 3.10
JR, (W)Y, (WG L (Wi=JR, (i,
and for %0
JA(Z)Rui(Za C)Y,11-(Z» C)G,ii-(za Oii= JA(Z)RMi(Z, Oy,

and the lemma follows from Lemma 4.3.

Definition 4.5. For AeX,, A<E, { =+ pe*™,
(G o(2,0)=N(G (2,0 N (2R, (2. 0)).
For ¢ =0,
No(G 1 (1) ={Qe V(G ()| T(WR=0}.
For ¢ +0,

No(G4(2,0)={Qe (G, 1 (2, )| Tp(e™*)r=0} .

Moreover, in accordance with Lemma 4.3 we set
(G (2, 0)= Np(G 1 (2, O) N (J(2DR, 4(2.0)).
The spaces A(G, () and 4(G, .(z,()) are defined similarly.

Lemma 4.6. Let ¢+0, =A%, =74+ ue**, and consider Ry (z,x)Vy(z) in accor-
dance with Lemmas 3.2, 3.3 as an operator in (H ;DS’Z®H,S;; -

The operator J,(z)R, ,.(z,x) is an isomorphism of N'(G,.(z,x)) onto
A (14 Ry, (z,k)Vp(2)) with the inverse M, given by

M ¥ =Q={u,1}, (4.12)
where
u=—(1—=Py2)V3(2) ¥ + Vp(2)Rp(z. K)Vp(2) ¥, (4.13)
and
1= —{PLDNV5(2)¥P. (4.14)
Furthermore,

No(G, 1 (2,1) =N (G, _(z,K)).
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Assume moreover, that Al, A2 hold with W(z)e Z(H*" %, H) for 0<s' <1/2.
Then J(2)R, , . (z,x) maps NG, +(z, ) isomorphically onto A (H(z)— x). The same
holds with + replaced by —, and

N (14 Ry, (2, )Vp(2)NAN (1 + Ry _(z, ) Vp(2)) = A (H(z)— k).
Proof. 1t follows from Lemmas 3.1 and 3.3 that
M, e#H, 2®HkD,Hj)
and by [8], Lemma 1.1
JA2)Ry ;4 (z,k)e BHS, H, > > QH}?
For Qe A(G, ,(z,x)) we have by (2.35)
(1+Rp . (z )V (DR ;4 (2, )2 =R (2,1)G, 4 (2, K)Q
=0 in H,**®H;?.
On the other hand, let Ye H, ¥ *®H};? and
(14+Rp(z,0)Vp(2))¥ =0. (4.15)

By definition of M, (4.15) can be written
Y=J,(2)R, ;. (z,)MYP. (4.16)
By (4.15) and (4.16)
G,.(z, K)MK¥’=lgig)l (H(ge'*~ 9 —x)¥
= —lim (H,(0e'® ™) ~19Ry. (2. 19V3(2) ¥

+ lim Vi(ge' =¥ =0,
and the isomorphism of A"(1+R,, +(z K)Vp(z)) and N (G (z,K)) i1s proved.
If Qe A, o(G, . (z,x)), then by Lemma 4.2
Y=J(2)R, ,.(z,0)Q=J(2)R, ,_(z,x)Q
and hence
M ‘I/={~2eﬂ~/o(G _(z,x)).

If Ye V' (H(z)—k), ie. Pe N (L+R,,(z,x) and PeH*?, and Q=M Y, it
follows from Lemma 4.3 and (4.16) that T,(uo ™ 2)t=0, hence Qe N, oG, . (z, K))

Suppose on the other hand, that Qe A/(G, , (z,«)), and let
¥=J,2R, ; (2,18,
By a result of Agmon [1], quoted as [8], Lemma 1.5, Ye H_ " *®H};2. Then by

Lemma 3.1 extended on the basis of Al, A2 in the strengthened form teH, 3s
Repeating this argument, we get after k steps

s—1+k(2s—1),2 s, 2
YeHS, ®H;2,
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hence YeH*?, and we have proved that J,(z)R, ,,(z«) is an isomorphism of
N o(G, 4 (z,K)) onto N'(H(z)—«). The same proof holds with + replaced by —
where M is defined by (4.12)—(4.14).
It is clear that
N (H(z)—1x) SN (1 +Ry, . (2,k)V(2).

Conversely, if Ye /(14 Ry, (z,k))Vp(2)), and M, ¥ =, then by (4.16)
Y=J,(2R, ;. (z,x)2=J,(2R; ,_(z,K)Q.
This implies
$n(2(1p 4 (2, 6) =15 _(2,K))r=0
and hence Tp(uo ™ ?)r=0.

As seen above, this implies ¥e A/"(H(z)— k), and the lemma is proved.

Lemma 4.7. Let ¢ +0, A= /13)622, k=A+ue**, and consider R, (z,x)Vy(z) as an
operator in B(H,*>*QHy,?

There exist eo>0 and for O0<e<e, bases {W (&)} of N(H(E)—K), E=0e' @9,
and a basis {?,,(z)} of /' (1+R,,_(z,1)V(2)), such that W (&) is analytic for ¢>0,
O<e<ey, and

lim ¥ (ee"*~)=V,,(z) in H,»?Q@H;?.

el0

The same holds with + replaced by — and ¢ —¢ by ¢ +e.

If ke o (H(2)), there exist ¢y, &, and functions ¥ (%), E=pe™, analytic with values
in H, *2@Hp* for geR*, p—&; <a<@+e,, and such that {¥(z)} is a basis of
N'(H(z)— k), and {¥(£)} generates a subspace of N (H(E)— k) for p—e, <a<¢ and
Q<a<@+e,.

Proof. Since
1=I(& x)=D(&, x) (H(E)— ),
we have
N (L4 Ry(E 1) Vp(E) = N (H(E) =) N (1 I/, K)). (4.17)
Moreover,
N (U4 Ry (@) Vp) SN (L1, (z,)), (4.18)

which can be seen as follows.
Let

YR, (VY )P=0, WYeH > QH2.
Then by Lemma 3.1, V}(z)¥ € H®, and
lim (H(ge'®~9) — ) = — lim (H ,(0e'® ™ ?)— k)R, (z, k) V(2) ¥
el0 el0

+lim V(ge' ~ )Y
el0

=—Vp(2)P+Vp(2)P=0 in H*.
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Hence by Lemmas 2.1, 3.2, and 3.3
lim (1 — I ,(0€"® ™9, x))¥ =1lim D(ge'® ™9, ) (H(ge'® ~? —x) ¥
&l0 el0

=0 in H, *®H;?2.

For a fixed &,€(0, &), let {¥(¢"“ ")} be a basis of A (H(e"®~*Y)—k). Then by
(4.17) and Lemma 3.8 there exist analytic functions ¥«(¢) and limiting functions
¥, .(z) such that

'P,.(Qe"“"’g))w ¥,.(2) in H *’QH;}?
and
¥ {0e'* ™) = Ule) (e ~*).
By analyticity of Rp(&, x)Vp(€) this implies
(1+Rp(&)VH(E) P (=0
and then for ¢0
(14+Rp (2, K)V(2)¥,.(2)=0.

It is clear, that {¥ (&)} is a basis of A (H(&)—k) for all & with 0<e<eg, (we
could start from any e€(0,¢,)), and that {¥;,(z)} is a set of linearly independent
vectors. Conversely, a basis {¥(z)} of A (1+Rp,(z,k)Vp(z)) by (4.18) and
Lemma 3.8 is boundary value of a linearly independent set of analytic vectors
{¥ (&)}, which by analytic continuation are in A"(1 + Rp(&, k)Vp(E)). Thus {¥P(2)} is
a basis of A (14 Ry, (2, k))Vp(2)).

The same proof holds with + replaced by — and ¢—¢ by ¢ +e.

If keo (H(z)), by Lemma 4.6

N (H(z)—x) SN (1 +Rp (2, )Vp(2)NA (1 + Ry _(2, )V} (2)).

Then the above construction yields a basis {¥(z)} of A(H(z)—«) and
functions P{(§), £ =ge™ analytic for o —¢, <a<¢ and P{?(&), analytic for ¢ <a
< @+e¢,, such that

lim P{M(ee™* ™)=Y (z) in H,>’Q@H;}}
el0
lim PP (ee*?) =W (2) in H,*’QH;}}
el0

It follows, that ¥,(&) defined by

PM(ge™) for @—g <a<e
Y(E)=)P(0e*) for a=¢
PP(e™) for p<a<g+e,

is analytic in &, and the lemma is proved.
Lemma 4.8. For ue(29,E)\2,,

N (G (1) = Ho(G, (1) = N o(G_ (1) = N (G _(w), (4.20)
JR,  (Wia=JR, (Wi for e N (G.(w), 4.21)
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and JR, ,(u) is an isomorphism of N (G 4 (W) onto N'(H— p) with the inverse M,
given by

M ¥P=Q, where Q={u0,..,0}, u=-V¥.

Proof. 1t follows from Lemmas 2.9, 2.10, and 3.8, that A4"(H — p) coincides with
N (1+Ry(p)V) where 1+Ry(u)V is considered as an operator in H™*2 and
N (H—pw)SH>?.

If Qe /(G (1)), then JR, . (WQeH =2, and

(1+Ry(WV)R, , =Ry (WG (1)Q2=0,
hence
Y=JR, (WQe N1+ Ry(W)V)=N(H—p).

By Lemma 4.3 this implies T(1)Q2=0, so Qe /(G (1)).
Clearly, A4(G ()= Ao(G_(w), since

G (W)= G_(W=W{R,.(W—R, (W)},

and we have shown (4.20) and hence (4.21). R
If Ye /' (H—p), then YeH>?, and — V¥ eH", so Qe H*, ¥ =JR, . (W), and

G, (WR=H-pJR, (WQ=(H-p¥=0,

and the lemma is proved.

5. Construction of Wave Operators and S-Matrix

Lemma 5.1. Let A=/}, and let A be a Borel set such that A is a compact subset of R*
for @0 and of (0,2 — 1) for =0, and such that

(A+ A4e¥0) (G, U R, U5 (H) VR, 0 R,) =9 .
Then for f,ge # and for f and/or g replaced by functions in L*(4, H%) we have for
©=+0
e” £ (Tp(w) Ylg (o, A+ ,Uezi(p)fa Tp(w) Yzi)lL (=@, A+pe” Zi(p)g)h,,d.“
.1 . )
=lim— §({R(@, 2+ (u+ie)e*®) — R(@, A+ (u—ic)e*™)} £, g)dp. (5.1)
el0 a4
Forp=0
Y Y HTA+wY A+ f, Tyd+p Y G+ wg), du

DePg AHsSA 4

=liglzim.£({R(/l+,u+i8)—R(/1+u-—i£)}f, g)dp. (5.2)

The left hand side of (5.1) or (5.2) defines a bounded, sesquilinear form on # x H .
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Proof. This is proved in the same way as [8], Lemma 7.1, utilizing Lemmas 2.12,
2.14, 3.10, 3.13, and 4.2, and writing y,{$}(Z)| f as a function in L*(4, h).

Definition 5.2. For ¢ +0 and AeZ,, A<E, we denote by %,(¢) the set of all Borel
sets A such that 4 is a compact subset of R* and

(A+eX D) (R, R, UR, OR,) =0 .

The operators E (¢, 4)e B(#) are defined for 4€%,(p) in accordance with
Lemma 5.1 by the sesquilinear forms

.1 Y
(Exp. D) f.9)= hmrf ({R(@, A+ (u+ie)e??)
el0 <7
—R(p, A+(u—ie)e* )} fig)du frge#.  (53)
Lemma 5.3. For fixed ¢ %0, the operators E,(p, A) satisfy the following conditions :

E;l,.((PaA1)E/12((PaA2)=5QTE;,,((P=A1F\A2) for Aiegii((ﬁ’)’ i=1,2. (54)

For any finite set {4,}y—, of pairwise disjoint sets in G,(¢p),

E, ((p, 0 Ak) = X Eio.4), (5.5)
E, (o, AHSHE (9, 4). (5.6)

Proof. This is similar to the proof of [8], Lemma 7.6, utilizing Lemmas 5.1, 2.14,
3.13 with simple modifications due to the presence of the term (¢p}(Z)| in Yi(z).

Definition 5.4. For ¢+0, A=2,eX,, Ae%,(¢p) we set

F (@, D) =24 Ty Y, 1 (@, A+ pe?), (5.7)
F, (@, N)=F, (¢, NE, (@, 4)H . (5.8)
For ¢=0 and 4 a compact subset of (0, A —2)\G ,(H) we set
Fy (A =x4m) Y Y OTR+pY.(+p, (5.9)
De9DE AH S
F, (A)=F, (NEQA+A)# . (5.10)

We shall now establish the basic properties of the local inverse wave operators
F, (@, 4) associated with each channel for ¢ +0 as given by (5.7), (5.8).
Lemma 5.5. The operatorsF, (¢, A) are in B(H, L*(4,hy)), and
Fo (0, ME (0, )=F, (0, 4). (5.11)
Proof. The first statement follows from Lemma 3.13 and [8], Lemma 1.3. Then it is

proved as in [8], Lemma 7.10 that E,(p,4)=0 implies ﬁli((p,A)=O, using
Lemmas 3.10, 5.1, and 5.3 and [8], Lemma 1.3, and 5.11 follows.
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Theorem 5.6. The operators F, (¢, A) are 1 —1 and bicontinuous from E (¢, A)H#
onto L*(4,hp). Moreover, for A A and tve L*(A, hy)
F, 4 (0, DE (9, DF; o, Au=y 0. (5.12)
Proof. Let feE,(p,4)#. Then by Lemma 5.1 and (5.3)
I[£1="sup I(Fu@, DL F (=@, D)2, np)l

llgll=1
SIF @ Dl 2ga iy 1 F (= @ Dl g, 204, by - (5.13)
This proves that F,(¢p,4)is 1—1 and F; ' is bounded. It is then proved as in
[8], Lemma 7.12 that &(F, (¢, 4)) is dense in L*(4,hp) and hence F, (¢, 4) is
onto L3(4, hy).

Theorem 5.7. The operators F, (A) defined by (5.9) and (5.10) are isometries from
EQA+ M)A onto Y, Y @L*(A—AL+4,hy).

DePg AB <A

There exist unique isometric operators F (A, A') from E((4,X)\c (H))# onto
YooY @LMA— AL, A —2%),hp)

DePE AB<A
such that for A a compact subset of (0, X' — )\G ,(H),
F (ALA)EA+A)# =F, (4). (5.14)

For AS(0, % — )\ (H) and
Yo N @ul,  ubeLX (-2, A =i hy),

DeZg AHSA

] (5.15)
FoLMEQ+DFN A=Y Y @y pe st
DePr AHSA
Moreover,
A Na= ts_)hm et je~ ity (5.16)

Proof. The first statement is proved, utilizing Lemma 4.4 and (5.2), in the same way
as Theorem I of Kato [20], cf. [35], Theorem 1.6 and [8], Theorem 7.13. Since
o,(H)\o,(H) consists of isolated points u such that E({u})=0, the operators

F (4, 4) defined on U E(A+ A)# by (5.14) immediately extend to isometries on
E((2, /)\o (H)) A . The identity (5.15) is proved for a €0,/ —A4)\G,(H) as in [35],
see also [8], and extended to AZ(0, A — /)\o (H), using the isometric property of
F(4, ). The identification (5.16) of the operators F ~1(/, A') with the wave operators
defined in the time-dependent theory is proved in the same way as in [35], in fact
the invariance principle holds.

Definition 5.8. For ¢ +0, A= eX,, Ae%,(¢p), the local wave operators
W, (@, )e BLX(A, hy), E (@, )H)
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are defined in accordance with Theorem 5.6 by

W, s(p, 4)=F; (g, 4). (5.17)
The local scattering operators S,(¢, 4)e B(L*(4, hy)) are defined by

For ¢ =0 the wave operators

W, (4,A)e% < Y Y @LH(A—Ap A = Ap),hp), E((4, X)\a (H))H# )
DePg ADZA
are defined in accordance with Theorem 5.7 by
W, (2, X)=F ' (4 1X). (5.19)
The scattering operators
S(4,2)e 9«?( Y Y OLAA—2p A —1p), hp))
DePg AHSA

are defined by
S, A=W A, AYW_ (4, 1). (5.20)
It follows from Theorem 5.7 that S(4,1’) is a unitary operator on
Z Z @LZ((;“_/?D’ l,—)‘ll)): hD)a
DeZg D=4

which commutes with )’ Z @y 14+ s for A4S0, 1 =)
DePe A=A
It follows from Theorefn g 6 that S,(¢,4) is a bicontinuous isomorphism of
L*(4,h,) which commutes with y ,(u) for ACA.
To obtain a representation of S(4,4") and S,(¢, 4) in terms of the scattering
matrix, we need the following result.

Lemma 5.9. For ¢+0, A=A, eX,, A€G,(p), ue # and veH; ,
(F (0, DE (0, A)u, XA T 204, hpy = e*(E, (o, A)u, |p5(— @)>v)

2igp
+ lim e——({R(q), A+ (u+ ie)e®) — R(e, A+ (u—ie)e)}u,
Wi(— @)rp(— @, A+ (utie)e™ > )0) 24 - (5.21)
For =0, leX,, A<E, A+ AL (4, X)\o (H), ue # and

ve Y, Y @®HYR}),
DePE Ap<A
(F L (4, MEMu, 7 () TC+p) Y. Y, @L*4,hy)

DePr A=A

(B Y Y - i)+ lim

DePgr ib=4 2mi
({RGApt-ie) = RU+u—iefhu, Y Y W= @Irb(— @+ pct i),
De9g AD<A
(5.22)
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where 7, ()= Y Y @y w) andv= Y ) @uv.

DePE A=A DePg AbZA
Proof. This is proved in the same way as [8], Lemma 8.1 utilizing Lemmas
2.12-2.15, 4.2, and 5.5.

Theorem 5.10. For ¢+0, A=Y, AecD4(A), the local scattering operators
S,(p,4) and their inverses S; '(p,A) have the following representations for
feL*A4,hy) and a.e. pe A,

(S 0. DW= 1,0 SN0, 1)f (1) (5.23)
(7 M@, DN =1, (WS @, 1) f (W), (5.24)
where (@, 1) and its inverse &, (o, ) are defined by
Fp, W) =1=2mie” 2T (W[ Y, _(— @, A+pe™ > YW(— @) ]* TF(w), (5.25)
S i) =1+ 2mie T WY, (— @, A+ e 2 W= o) * T (). (5.26)
For fixed ¢.\0 the operators & (¢, ) form a norm-continuous function of
ue R \{pl + peee 2 ,(;)}
with values in B(hp), and &~ (¢, 1) a norm-continuous function of
pe R*\{ulA+ pe* e R;)}
with values in %(hy). Moreover,
L= Z (o Weblhy), 1—F o Web(hy). (5.27)

For ¢ =0 the scattering operators S(A, ') and their inverses S~ (4, ') have the
following representations for

fe Y Y @LH(A— 2 A —Ap),hp)

DeDg AH<A
and a.e. ue(0, X' — A),
(SC, )N = T, (S (). f (), (5.28)
(7100 () = Ts, (5™ 00 (1) (5.29)
where the scattering matrix (1) and its inverse &, *(u) are defined by
LW=1=-2miTA+ @)Y, A+ wWWT*A+u), (5.30)
L W =1+21iTA+ ) Y_(A+pWT*(A+p), (5.31)

where we have set E=1' in (2.23).
The operator %, (u) is unitary on Y @h, and norm-continuous for

D.i
pe(0, A=A\ ,(H).
Moreover,

1-S(we? (DZ @h"p> (5.32)
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and

l—y}_l(ﬂ)‘f(g(g; @h;). (5.33)

Proof. This is proved as [8], Lemma 8.4, utilizing Lemmas 4.2, 5.1, and 5.9.
We proceed to study the analyticity properties and limits for ¢—0 of
L N, 0%/2my) and F(¢p, 0*/2m), establishing the connection of these operators

with the diagonal elements [¥,(¢*/2m,)], , and |#; '(0*/2m})], , of the S-matrix

on the corresponding energy interval.

Theorem 5.11. For A=, e X, the B(h,)-valued functions ¥,(z)=%,(e, 0*/2m,) and
L N2 =S @, 0*/2m,) are meromorphic for ze O\R™ with poles at most at points
of (R,OA,) and (R, UR,) respectively.

Moreover, '
Fee?) ——5— [ 1(@*/2mp)1;, )* (5.34)
I; (0™ —=o ([I%e*/2mp)],, ) (5.35)

in the uniform operator topology of %(hp), uniformly for ¢ in any compact subset of
{4, AN\G ,(H)}"
Proof. By (4.1) and the identity

@"*yp(0) =751 U 5(0) (5.36)
we have, setting u=92/2m,,
TD(,u)=m113/ZQ_ IVD(I)UD(Q) . (5.37)

Introducing (5.37) in (5.25) and (5.26), we obtain for ¢ +0, taking adjoints and
replacing ¢ by — o,

FHZ)=1+2miz" 2mpy (DU (@) Y} - ((p, A+

2

z .
%) Wip(@)U(@)y3(1)
2
—1+2miz" 2myy,(1) Y} _ (z, At Z—) Wi2)y(L). (5.38)
2my,
and similarly

ZZ

ST Z)=1-2miz" *mpy (1)), (z, A+
2my,

) W2 3(1). (5.39)

By Lemma 3.14, #;%(Z) and ¢,"*(z) are meromorphic for ze O\R* with poles

at most at points of (#,U%,) and (%,U%,)" respectively, and for

0’ i
At —eL N

+ sze(/l, NG,

2

lim y;k(z)=1+2m'g—Zm,ﬂ,)(l)Y;;_(g,/lJr Q—) Wini(1),  (5.40)
®—=0+ 2mD

2

lim %, '*(@)=1—2nig~ *myy ()Y}, (g, s "—) Winsl).  (541)
@—0_ 2mD
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By (5.30), (5.31), and (5.37), the right hand sides of (5.40) and (5.41) coincide
with [, 1(e?/2mp)],. , and [F(¢?/2mp)],, , respectively, and the lemma is proved.

Corollary 5.12. There exist closed null sets N,,C(ALA), such that
(75 P(@?/2mp)];, ; is invertible forge {(A, A)\N, + }’ and

Jim F72) = (L0*2mp)1, )7 (5.42)
Jm L@ =L 2mp), ) (5.43)

in the uniform operator topology of %(hp), uniformly for ¢ in any compact subset of
{4, AN\N, -}

Proof. This follows from Theorem 5.11, (5.27) and a result of Kuroda [21].

We finally turn to the question of the connection between resolvent resonances
and poles of the S-matrix.

The treatment of this problem is more complicated than in the two-body case
(see [7]), partly because of the inherent difficulty due to the possibility of
embedded eigenvalues and partly because of the possibility of spurious poles of

22\ 7! . . .
(1 -1, (z, A+ Z—;)) due to the method, using the Weinberg equation.
D.
We shall not give a complete answer here, but prove the following results
which seem to cover most cases.

2
Theorem 5.13. Let i=2,eX,, and k=A+ ?—e;@ \%” (£, \@A) for ¢ <0 and

/16@1\@ (@l\%’ ) for >0, and define the operators T, . and Z, + by
o=T, f)Q=27riz_2yD(1)E Q, Q=u1eN(G,: (zK), (5.44)
=2, 0= —myY, - ()WY, (5.45)

where E,Q=1.
The operator T, + is an isomorphism from V(G : (z,x)) onto N (F; *(=1)(2)) with
the inverse Z, + .

Proof. We consider (T, .., Z,. ) for ¢ <0, the proof in the other cases is similar. For

brevity weset I, . =T, Z ,=Z, and G, =G,,, Y. =Y, ,R,,, =R, ,, W,=W.
1) V[/l‘;(z)ansz yD(l)yD(l)E =G (z K)—G_ (z K).
By Lemma 4.2

Wi(z)2mimyz = 2y 51y p(DE, = Wi(2){rp 4 (z,6) =15, _(z, K)}E,
=W({R,,(z,6)— R, _(z,K)}
=G,(z,k)—G_(z,x),

since R(z, &) is regular at {=x.

2) Z, maps N'(S;¥(z) one-to-one into JV(G+(Z, K)), and T.Z, =1.
Let oe /(¥5¥(2)) and Q=Z, 0, i.e. by (5.38)

o+ 2nimpz” 2y, (VE, Y_(z, k) Wp(z)y5(1)a =0. (5.46)
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Applying Z, to (5.46), we get by 1)
Q—myY_(z,k)Wi(z)2rimpz = 2p%(1)yp(DE, Y_(z, k) Wi(z)y (1)

=Q+Y_(2,x)(G,(z,K)— G _(z,k))2=0. (5.47)
Applying G_(z,x) to (5.47), we get by (3.9)
G,(z,K)Q=0. (5.48)

From (5.44)—(5.46) follows
T.Zo=0. (5.49)

Also, if Z,oe /' (J,(2)R, ,(z,K)), then by Lemma 4.3 T,Z 06=0, so by (5.49)
=0, and 2) is proved.

3) T, maps N (G ,(z,K)) one-to-one into N (F¥(z2)), and Z, T =1.

Let Qe /(G .(z,k)), and let c=T Q. Then by 1) and (4.11) of Lemma 4.4

S¥Z)o =0+ 2nimpz” 2y (VE, Y_(z,k) W)(2)2miz = 2y%(1)y ,(1E,Q
=0+ 2miz" *y(1)E,Y_(2,K){G ,(z, k) — G _(z,K)}Q
=0—2niz %y, (1)E,Y_(z, k)G _(z,k)Q
=0—2miz" ?y,(1)Q=0. (5.50)

_ By (49) of Lemma 43, T.Q=0 for Qe A (J(2)R,,,(z,x)), so T, maps
(G2, x) into N (F(2) )

By Lemma 4.6, if Qe /(G ,(z,x)) and T,Q2=0, then Qe A (G_(z,«)). This by
Lemmas 4.6 and 4.7 and the assumption that k¢ % implies that 2=0, so T, is one-
to-one.

By 2), T(Z,T.Q2)=T,Q and hence Z,T,Q2=Q, and 3) and thereby the theorem is
proved. _ .

We now consider the case, where ke Z,n%), for ¢ <0 (Ae Z,nZ, for ¢>0),

2
but Y (C, A+ %) has a simple pole at {=(2m,(x—A)*? and N(G; (2,1)
D
corresponds to an eigenspace of A '(H(z)—«k). We first make the following
observation.

Lemma 5.14. Assume that for ¢ .

7p(DE;2=0 for all Qe V(G (z,x)) (5.51)
2
and that Y(;)(C,/1+ %) has a pole of order 1 at { =z, i.e. for { near z
D
CZ A - - CZ
, 2 =T _ = 5.52
o (64 o) = 7252 + 8 (0 ). (552

2
where A(—)GQ(HS, ij) and Y(—)(C,i+ —C—> is regular at { =z.
+ + 2mD

Then ¥ () is regular at { =z, and
FHE) =1 2mimyz~ 2 (DE, T (20 WaEWi1). (5.53)
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Moreover

G- (z K)Y (z,k)=1. (5.54)

) +)

Proof. We consider Y_ for ¢ <0. By Lemma 3.11 and (5.52), for { near z

CZ
o [
2my (g A+ %) (5 A+ 5—2) I. (5.55)

{—z D 2my,
This implies (5.54) and G _(z,x)A_ =0, hence by (5.51)
yp(1)E,A_=0. (5.56)
For { near z
2
SO =1+ 2mimp{ ">y (1)E, Y_ (c A+ ;—) W(Q)y%(1). (5.57)

By (5.52) and (5.56) #*({) is regular at { =z, and #*(2) is given by (5.53).

Theorem 5.15. Assume that (5.51) and (5.52) hold. Let T, & and Z,, & be defined by
(5.44) and (5.45) with Y ; (z,x) replaced by Y (z,%).

The operator T, + induces an isomorphism from
H(G s (2 1)/ A (G (2,K))
onto N (¥ V(Z)) with the inverse Z, .+, induced by Z, .

Proof. This is proved as Theorem 5.13, replacing Y ; (z,x) by Y (2, %) and utilizing
Lemma 5.14.

Remark 5.16. Under the assumption of Theorem 5.15 we obtain from Lemma 4.6
and Theorem 5.15 a decomposition

H(G (2,0) = Hy(G 4 (2, k) + A (G 4 (2, 0)/ (G 1 (2, ) (5.58)
such that

AN/O(G +(2, K))=J1~/O(G_(Z, Kk)) is isomorphic to A (H(z)— k)

and

N(G (2, K))/N(G ,(z,x)) is isomorphic to A (F}*(Z))
and similarly for 4 (G _(z, x)).

2

Theorem 5.17. 1) Let k=1+ 22—, and suppose that
Mp

KR, UR (R, OR,).

Then &~ Y(() has a pole at { =z if and only if ke R, VR (R, VR,).
2) Suppose that (5.51) and (5.52) hold.
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Then ¥~ 1) has a pole at { =z if and only if
ke R, URYR,OR,) and (G + (2,1))/N(G s (2, 1))+ {0}

Proof. We consider the case of #(() for ¢ <0, the other cases are similar.

1) By Lemmas 4.6 and 4.7 and Theorems 5.11 and 5.13, the following state-
ments are equivalent.

a) ke, ;

b) Keg?l,

o) N(G_(z,1)*{0};

d) NS @) +{0};

e) z is a pole of F¥({);

f) z is a pole of Z,({).

2) By Lemmas 4.6, 4.7, and 5.14 and Theorems 5.11 and 5.15, the following
statements are equivalent.

a) ke, and ./V(G+(Z K )/JV (G.(z,x)*{0};

b) ke dk, and N (G _(Z, %))/ N (G _(Z,R)) = {0} ;

<) ,/V(y* Y(2))*1{0};

d) z is a pole of F¥(();

e) z is a pole of F({).

6. Degenerate Thresholds

In this section we briefly indicate the extension of the above results to the general
case, where A3 is not satisfied, as it happens when there are symmetries in the
system. We now assume that A1, A2 hold and moreover that m, =m;, if i} =2},
as it is the case if this coincidense is due to permutation symmetry. In Sect. 1, for
D={C,,C,}, i=1...n(D), let

=dim A (HS + HC2— 1),

and choose in accordance with Lemma 2.10(2) ¢¥(z), j=1 ... d}, such that {¢¥(z)}
is a basis of A" (H®*+ H2— %) and ¢¥(z) is analytic for ze O for each j, and such
that (¢}(2), $}5(2) = 6% for ze 0. Set

Pha)= . 65N 6.1)

Then Pj(z) and Rj(z, () are defined as before, and the definitions of the various
n(D)
spaces and operators are modified in an obvious way, replacing i by ij and ), by

. i=1
n(D) dp

Y Y, with rj;':rﬁ) for j=1...n}. Thus, X now has the components (X, {X4}),
i=1j=1 X X B
De @E, i=1..nD), j=1...dp, for A=17}, X, has the components (X, {X3}),
j=1 d’

The results of Sects. 2-4 are now extended accordingly in a rather obvious way.
The proof of Lemma 4.3 in the general case requires an additional argument, for
which we refer to [8].



Analytic Scattering Theory for Many-Body Systems 209

The local inverse wave operators of Sect. 5 are constructed as before, but now
the operators F, (¢, 4) for ¢ 40 map onto

Y S @4 hy).

Ab=A k=1
The basic properties of the inverse wave operators are derived in the same way,
utilizing the generalized Lemma 4.3.
The scattering matrices (¢, u) and their inverses &, (o, u) in %(hp) in-
troduced in Theorem 5.10 are replaced by operators in
b
(3 3 onp)
ib=2k=1
whose matrix elements can be written in the following form, utilizing (4.4) and the
assumption my, =my, ,for A, =) =A k=1...d}, 1=1...d} , setting u=0*/2my,
Z2
2my,
2

z
2my,,

It @ =142miz"*my 7, (Y5 (z, A+ ) Wi (2, (1), (6.2)

Ab L AD

(L Del* 5 @ =1-2miz"*my, y, (YL, (z, A+ ) Wik (2yg (1), (6.3)

It then follows from Lemma 3.15, that each element of the matrices ¥;¥(z) and
&7 1*%(Z) has the right analyticity properties and limits for ¢—0, and we conclude
that Theorem 5.11 and Corollary 5.12 hold with %(z) and &, (z) replaced by the
above defined matrices of operators and [(¢?/2mp)]; ; and [.%, '(¢*/2m,)], ,
replaced by the partial scattering matrices related to the threshold A, with the
elements

Sy 2g, (0 2mp,)=1=2mimy, y, ()Y (0, A +¢*/2mp )Wy ()y5,(1), (64)
(S35 a8, (92/2’%2) L+ 2mimy, vy (1) Y] (0, A+ 0%/2mp )W (@)75,(1). (6.5)
Theorem 5.13 holds with T, , and Z, . defined by

T, +Q=2miz"* ) 2 ®yp(DEFQ, Qe N(G .+ (2,1))

Ap=Ak=1
db ] dp . .
2| X § @ok]=-von ¥ T mWpensnel
ib=A k=1 ib=Ak=1
db )
Y. ®afe N (FFTIR).
ib=4 k=1

The proof is similar, utilizing the previous modifications. In Lemma 5.14, (5.51) is
replaced by the condition

T.;92=0 foral QeA(G;(zK)

K(+)
and (5.52) is_assumed. Then (5.53) holds in the form of (6.2) and (6.3) with Y
replaced by Y, and (5.54) holds in the same form.
Theorem 5 15 is then generalized in the same way as Theorem 5.13,
Remark 5.16 follows, and Theorem 5.17 is proved as before.
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In the case of permutation symmetry the problem of coincidence of thresholds
could also be treated by reduction of H(z) and H y(z) on subspaces of functions of a
given symmetry (cf. [5]).
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