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Abstract. We consider the Schrόdinger operator H = H0 + V of a many-body
system, where Fis a sum of dilation-analytic, short range (not necessarily local)
two-body interactions, together with the associated self-adjoint analytic family
H(z\ |Argz|<α, of complex-dilated operators. For each z we construct the
local wave operators and the S-matrix below the smallest 3-body threshold,
using abstract stationary scattering theory and the Weinberg-van Winter
equation. The diagonal element of the inverse S-matrix describing scattering
within the channel α in the lowest energy range is proved to be the boundary
value of a meromorphic function 5ζ(z), — <2<Argz<0, where 5̂ α(z) is the
S-matrix for H(z) on the corresponding cut. Generally, the poles of ̂ α(z) are
resolvent resonances, but a resolvent resonance may not be a pole of ^α(z), if it
is embedded as an eigenvalue in the continuum of H(z0) for a suitable z0.

Introduction

Scattering theory for two- and three-body Schrόdinger operators with dilation-
analytic potentials was studied in [7, 8]. In [8] the abstract stationary theory
developed by Howland [15], Kato [20], and Yajima [35] was utilized. As in these
works the basic decomposition equation for the resolvent of the three-body
problem was a type of symmetrized Faddeev equation. For the extension to the
n-boάy problem we adopt an equation based on the Weinberg-van Winter
equation (Lemmas 2.12 and 2.14). This has the advantage of simplicity and the
disadvantage of the possibility of spurious poles in the resolvent equation. The
effect of these, however, can on the whole be eliminated. Utilizing this equation, we
construct wave- and scattering operators for the Schrόdinger operator H below
the lowest three-body threshold Σ® as well as for the complex-dilated operators
H(z) and prove asymptotic completeness (Theorems 5.6 and 5.7). This is based on
the limiting absorption principle of Sect. 3 and involves for the dilated operators
H(z) the construction of a spectral measure (Lemma 5.3). The spectral trace
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formalism of Kuroda [22] is utilized for the definition of the inverse wave
operators (Definition 5.4). This yields a simple expression for the S-matrix
(Theorem 5.10).

Perhaps the main importance of the dilation-analytic theory lies in its
contribution to the analysis of resonances. In the spectral theory [4], the so-called
resolvent resonances occur as poles of the resolvents of H(z) and of certain
analytically continued matrix element of these resolvents.

In the two-body case these resolvent resonances coincide with the poles of the
analytically continued S-matrix [7]. In the many-body case this is not necessarily
true. A resolvent resonance may be a continuum-embedded eigenvalue of H(z) for
a suitable z, in which case it generally does not give rise to a pole of the analytically
continued S-matrix. More precisely, for each threshold λ below Σ® it is shown, that

the diagonal element
Q2

λ+ -— of the inverse S-matrix is the boundary

value of a function 9p

λ(ρeiφ) = ̂ ?

λ φ , - — I , meromorphic in an angle {z = ρeίφ\

— a<φ<0,ρ>0} (Theorem 5.11). The operators £fλ(φ9μ) are scattering matrices
for the dilated operators corresponding to the cut λ-\-e2ιφR + . It is then shown,

z2

that if K = λ + - — is not a pole (or a spurious pole) of the resolvent on the other
2mD

side of the cut, then K is a resolvent resonance if and only if z is a pole of £fλ(ζ)
[Theorem 5.17(1)].

If K is an embedded eigenvalue of H(z) however - in which case it appears as a
resolvent resonance on both sides of the cut - then έ?λ{ζ) has a pole at z if and only
if there are also resonance eigenfunctions which do not continue analytically as
eigenfunctions of H(z) [Theorem 5.17(2)]. These results follow from an analysis of
the behaviour of resonance eigenfunctions in the limit when the spectrum of H(z)
passes through the resonance, characterizing "embedded" eigenfunctions by the
vanishing of a closely related function on the energy shell (Lemmas 4.6 and 4.7)
and the establishment of an isomorphism of JV{^^1{Z)) with the space of "non-
embedded" resonance eigenfunctions (Theorems 5.13 and 5.15).

For simplicity we have assumed that thresholds are non-degenerate. In Sect. 6
we sketch the extension to the more general case, as it occurs when there are
symmetries in the system.

Analyticity properties of the S-matrix have been established for 3- and 4-body
Schrodinger operators by Hagedorn [13], who obtained continuation also of off-
diagonal elements with poles at most at resonances under the assumption that the
potentials are exponentially decaying and dilation-analytic. Other results in this
direction are due to Nuttall and Singh [25] for many-body systems below Z°,
including also Coulomb potentials. Results on general n-boάy scattering theory
for the operators H(z) have been announced by van Winter [34] and Sigal [28].

Although the emphasis is on the analytic theory, we remark that without the
analyticity assumption the method yields a proof of completeness below Σ3 in the
framework of the abstract stationary theory under the assumption Al. In this
generality, however, the singular points are only known, by a lemma of Kuroda
[21], to lie in a closed set of measure zero. Completeness below Σ® has been
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proved under various conditions by the time-dependent methods of Combes [9],
simplified and generalized by Simon [30] and of Enss [12]. Contributions to the
general n-body problem are due to Hepp [14], using Faddeev-Yakubovski
equations, and Sigal [27], using Berezin's equations.

1. Notations and Basic Assumptions

We consider a system of n particles, denoted by 1,..., n, in m-dimensional space Rm.
The mass, position and momentum of particle ί in the center-of-mass frame are
denoted by mi5 x., and kt. We denote the pairs (ίj) by α, β etc. For α = (ίj) we set

Xa = Xj ~Xί> K = (mi + mj) ~ * ( m A ~ mifej) *

Proper subsystems or clusters are denoted by C, and for C containing at least 2
particles mc, xc, and kc denote the total mass of C and the set of linearly
independent position and momentum vectors of particles in C relative to the
center-of-mass of C.

A cluster decomposition is a partition Dk of the system into k disjoint cluster
Cv ..., Ck. For Dk={Cv ..., Ck} we denote by yDk and pDk the set of fc—1 linearly
independent relative position and momentum vectors of the centers-of-mass of
clusters Ct with the center-of-mass of the total system removed. We set D = D2

= {C1 ?C2}. We write DicCj if each cluster of Dί is contained in a cluster of Dr

The basic Hubert space Jf is /,2(Rm("~ 1))? where we can choose any set of n— 1
basis vectors for the underlying space of positions or momenta relative to the
center-of-mass. We choose to work mainly in momentum representation, switch-
ing occasionally to position space in connection with some of the proofs. The two
representations are distinguished by subscripts like (x, y) for position space and
(fc,p) for momentum space.

We denote by J ^ c the Hubert space associated with the internal coordinates of
C. If C contains only one particle, we take j f c to be a 1-dimensional space. We set

k

tfDk = [ ] ® ^ C ι for Dk = {C l 9 . . . , Cfe}, while Jt?r

Dk = L2(Rm(k-1}) is the Hubert space
i = l

of relative positions or momenta of the centers-of-mass of Cv ..., Ck.
The free Hamiltonian Ho can be written in various ways depending on the

choice of coordinates. For later use we shall give various explicit expressions of
Ho.

Let 0L. = (nl,nf), i = l , ...,n— 1, be a sequence of pairs, Mί = aίu . . . u α i 5 and
assume nfφM^^ such that (α 1 ? ...,an_1) defines a connected graph. Let ki_ιi be
the relative momentum of the center-of-mass of M _ 1 and n{ if π / G M i _ 1 and the
same with nt replaced by the center-of-mass of αf if njφM^ v Set

^,.^ = L2(K-J i f l i
and

*) i f "l
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In momentum space the free Hamiltonian H^'1'*1 of the center-of-mass of
Mi_ί and nf if njeM^^ 0Lt if w ^ M f _ l 5 is given by

k2

Z m M ί _ 1 , α ι

where mM α is the reduced mass of M _ j and n? if π / eMi_1 and of M._ x and α

The free Hamiltonian H% of α is given by

Setting

[JΓZQ ι~1' I + HQ ii \

we can write the operator H in the form

i = 2

where the variables are separated.
We set

and

j=2

For any non-trivial cluster C we denote by HQ the free Hamiltonian of C in the
center-of-mass system. If C contains only one particle, we let Hc

0 = 0 on the
1-dimensional space J^c. For any Dk = {Cv ...,Ck} we denote by H^\ the free
Hamiltonian of the centers of mass of C l 5 . . . , Cfc. Then we have

H0=inc

0> + H°*r. (1.12)
Ϊ = 1

We make use of the weighted Sobolev spaces Hs'δ(Rι) with differentiability
parameter s and weight δ, as defined in [7], Sect. 1. For a discussion of the spaces
Hs'δ (Rι) we refer to [23]. We set

Hs(Rι) = Hs> °(R<), Hs'5 = Ή s ' 5 (R m ( "" x >),

Hs>δ(R™J = Hs

k>
δ HS>3(R™D) = HS^ e t c .
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For any pair of Hubert spaces Jf1? Jf2 we denote by Stffl^ 3tf2) and ^(jf l5 Jf2)
the spaces of bounded and compact operators from Jf̂  into J^2.

We denote by S1'1 the unit sphere in Rι and identify L2(Rι) with
L 2 ( R + , L 2 ( ^ - I ) ; ρ z ~ 1 ) , writing /(ρ, •) for feL2(Rι). The trace operators
y(ρ)e^(Hs(RιlL2(Sι~1)) (see [23]) are defined for s>l/2, ρ>0, by

(1.13)

For any D = D2we denote by yD(ρ) the trace operator in &(HS(R™D\ L2(Sm~ %
The unitary group of dilation operators U(ρ) is defined for fe Jf, ρeR + , by

~^~ (1.14)

For any operator i i n Jf we set v4(ρ) = LΓ(ρ)^ί/(ρ~1). We denote by L/̂  the
dilation group on 3tfr

D.
The dilation and trace operators are connected by

m(w-l)

2 7(i)t/(ί?) (1-15)

). (1.16)

For 0<a<^lQt Θ = Θa denote the angular region

Ga = {z = ρeiφ\ρeR + , -a<φ<a}.

We use the notation

KΦ\f)(pD)= ί ΛkD

whenever the right hand side is defined, and

Assumptions on the Interaction

We make the following explicit assumption on the interaction V =

Al. There exists s> 1/2 such that

K = AxWxAa, where Aa = {l-ΔJ-«2

and Wa is a symmetric operator in L2^ such that

A2. The ^(H^2,Z^J-valued function WJ^ρ) has an analytic extension from R +

to Θ.
Al implies that F^α*G^(L^,H^~2\ and by A2 W *̂(ρ) has an analytic extension

to Θ. Since WaQW*, we shall simplify notation by writing

Wa{z)e m°C \ L2Jn^(Ll H^ 2).

The condition Al was introduced by Kuroda [23].
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For a discussion of the condition A2 for multiplicative potentials we refer to

[3].
The operator Ho is self-adjoint on @(H0) = H°>2. It follows from Al that Va and

hence Fis Ho — ε-bounded, so H is self-adjoint on @(H0). Moreover, by A2 the
operators H(z) = H0(z) + V(z) form a self-adjoint, analytic family defined for zeΘ.
We set

αCC

W z)= Σ Σ vjiz),
i= 1 αc Cί

V^k(z)=V(z)-VDk(z),

Hc(z) = Hc

o(z)+Vc(z), HDk{z) = Ho(z)+ VDk(z),

(1.17)

-ζΓ1

( l . l o )

We denote the set of all two-cluster decompositions D by 2). For
= {CvC2}e@ we set

where HCl+HC2 = HCl®IC2 + ICl(g)HC2 acts in ^f
Note that if C 2 is trivial, then σ% = σd(HCl).
We now make a further, simplifying assumption.
A3. For all DeQ), such that σ^Φ0, σ^ consists of simple eigenvalues, and for

This assumption is made to simplify the treatment and presentation. In the last
section the more general case, where A3 is not assumed, will be discussed.

The set of /c-body thresholds Σk(φ) is defined by

k = Σk(0), in particular Σ2 = (J σd.
D

We set

Σ(φ)= U °k(<P)> Σ = Σ(0).

For any C, we let Σc(φ) denote Σ(φ) for the operator Hc(eiφ).
Throughout this paper we fix E as follows,

Ee{κeΣ2\κ<Σ°3}.

In case {κeΣ2\κ<Σ®} is finite, E = Σ^ is also allowed. Let
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For De@E let n(D) be the number of points in σ^c\[_Σ°2,E\ and let

be these eigenvalues with the corresponding normalized eigenfunctions chosen
such that φiJίz) is analytic in G [cf. Lemma 2.10(2)]. Let

n(D)

Pί,(z) = |#,(z)X#,(z)|, P f (z)=Σή(z) , (1.19)

and

r),(z9ζ) = &± +λi

D-ζ) , i = 1,..,n(D), (1.20)

where m^2 = m^ 1 + m^1, and pD is the relative momentum of the centers of mass of
C1 and C2.

For DE@EWQ decompose JRD(Z, £) with respect to E by setting

Σ ) l , (1.21)
i = l

where

E{z,ζ) = RD(z,Q(l-P*(z)). (1.22)

We define the following Hubert spaces and operators associated with the set of
channels related to scattering below E.

To simplify notation, we set

n(D)

Σ Σ = Σ

with elements ύ = (u, {τ^})

D,i

(1.23)

(1.24)

(1.25)

W(z)ΰ = V(z)u + Σ W^(z)τι

D, (1.26)

rl

D(z>0, (1-27)

Go(z,O=ί + V(z)Ro(z,ζ), (1.28)

G(z,ζ)u=G0(z,ζ)u+ YJG
i

D{z,ζ)τi

D = lJ{z)+W{z)Rι{z,ζ)]ύ. (1.29)
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For φ Φ 0 we also utilize another decomposition of RD(z, ζ) corresponding to a
single channel, associated with the threshold λ = 2!D. We write

RD{z9 0 = Rλ

D(z, 0 + IΦUΦ^iz, 0<ΦD(Z)\ , (1-30)

where

Rλ

D(z,ζ) = RD(z,ζ)(l-Pί

D(z))' (1.31)

The relevant spaces and operators are redefined as ^λ

z)>τ, (1.32)

RUλ(z9 ζ)ύ = R0(z, ζ)u + |φ i(z)>r i(z, ζ)τ, (1.33)

GA(z,0δ = G0(z,0«+ 0 ^ , 0 1 , (1.34)

Wλ(z)u=V(z)u+WD(z)τ. (1.35)

2. Resolvent Equations

The basic resolvent equation utilized here is the Weinberg-van Winter equation
cf. [16]. The /-connected and the r-connected parts of the resolvent, Ifaζ) and
Ir(z, ζ), are defined by

/z(z,0= Σ Σ R0(z,QVai{z). ...
Dn-ίC ...CD2 ( α i . . . α n - i )

•RDn_1{z,ζ)Vai{z)...RDi(z,ζ)Van_i{z), (2.1)

Dn-ιC ...CD2 ( α i . . . α n - i )

.^(7)^^(2,0^/^0(2,0, (2.2)

where Σ ^s o v e r a ^ chains of decompositions Dn_1C ... C D2 such that D^
D n _ i C . . . C D 2

arises from D J + 1 by joining two clusters of Dj+1, and Σ ^s o v e r aU
( α i . . . α n - i )

(αj . απ_ i) such that the particles of the pair oίn_j belong to the same cluster of Dj
but to different clusters of D + 1 ? j = 2,..., n — 1.

The disconnected part £>(z, 0 of the resolvent is given by

D(z,ζ)= Σ Σ(-l ) f c ~Hfc-l ) !^>0. (2.3)
k^2 Dk

We then have the following two forms of the Weinberg-van Winter equation.

O, (2.4)

Q. (2.5)

Equation (2.4) is given in [32], II, (6.38), and (2.5) is obtained from (2.4) by
taking adjoints and replacing (z, ζ) by (z, ζ). Note that

In order to study the connected kernels we make the following
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Induction Assumption

σe(Hc(z))QΣc(φ) + e2iφR +

for all systems C with less than n particles, where Hc(z) is considered as an
operator in Htl for t=±s, 1 = 0,-2.

Lemma 2.1. σ(HDk{z))Qσ(HCί(z)) + ... +σ(HCk(z)) + e2ίφR+ and

RDk{z,ζ)e Π ^ ϊ 2 2 ^
t = ±s

1 = 0, -2

O, Hj; 2 ®

wiίλ i/Dk considered as an operator in Htl, t=±s, 1 = 0,-2, Hρ'~
2®H~s'~2,

HP»®HL and Ll

PD®HlD respectively, and DDDk.

Proof. Let us consider the space HS

PΌ®H^, the other cases are similar.
Let H0(z) be the closed operator in Hs

pjD®H^ defined as H0(z), but with
domain Hs

p>
2®H^2. From the assumptions Al and A2 it follows that Va(z) is

Ho α — ε-bounded, where Ho α is the operator z2k2/2m(X in //^ s with domain H^s'2.
This implies that J^(z) is H o — ε-bounded, and hence

k , ^ f_s (2.6)

w h e r e \\'\\St-s=\\'\\H£.®i%D.

From (2.6) follows that HDk(z) as an operator in H~^®Hs

kD is closed on @(H0),
and the HI)k(z)-norm is equivalent to the iί0-norm.

Moreover, the ε-boundedness implies that Hc(z) is sectorial with arbitrarily
small opening angle (see [29]) where Hc(z) is considered as an operator in HI
with domain Hs

k'
2. Then we can apply Ichinose's lemma [17] and the induction

assumption to obtain

and hence for ζ in the complement of this set

RDk{z)e<M(H-p*®

Lemma2.2. For 2 ^ f c ^ n - 2 , ImζφO,

® -
-_2

2>αn. t ) ,

where ( α l 5 . . . , an__ x) defines a connected graph, and H^_~χ

2

ai are the spaces defined by
(1.1) and (1.2) wiίft L2 replaced by H±s~2.

Proof We follow the proof of [10], using the representation

CO

= J e» e -«S" e -» M ' *«.....e-ff?- 1 •"-'* (2.
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valid for Im ζ < 0 in the sense of uniform convergence in

Moreover, e~Holf is uniformly bounded in @&}1~*>~2,11~*) and hence by Al
VΛle~Hoιt uniformly bounded in #(#-*• ̂ i f ^ " 2 ) for ίe[ε,oo), ε>0. Then the
argument of [10] yields

(2.9)
0

in the sense of uniform convergence in

and the lemma follows.

i

Lemma2.3. Let (av ...,an_1) define a connected graph, and VDn — Σ Va.. For

2^ί<.n-2, ImC + 0,

Proof. We use the representation

00

VDn-iRDnJ0=i^VDn_ie-H0^te-H^^+lt'...'e-H^n-2'"n-l\ (2.10)

where H'Dn_ι = H%i + VDn_., valid for I m ( < 0 in the sense of uniform convergence
in

by Lemma 2.1 and the same proof as in Lemma 2.2.

Lemma2.4. Ir(ζ)e^(H~s'-2,Hs'-2)for ImζφO.

Proof A typical term is

Kn.RD2(0- ••••Kk+RDn_k(ζy ..,VaιR0(0. (2.11)

We prove by induction that for i = 1,..., n — 1

iΰi+1 ϊMs;:2ln-) - ( 2 1 2 )

For i = l (2.12) holds by Lemma 2.2. Compactness of the term given by (2.11) is
(2.12) for i = n-l.

Assuming now (2.12) for i = k, we shall prove (2.12) for ί = k+1. We write

VDn^RDnJζ)). (2.13)
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By (2.12) for ί = k and Lemma 2.3 we get

(1 - VDn_kRDn_k(ζ))VXkRDn_k+i(ζ)-.... VxR0(ζ)

e<$(Hk-£-\Hl'-JJ®^(H^-k

2

+)® ...®m-M

s

::2%n_) (2.14)

Lemma 2.2 implies

where k'Dn_k is the set of internal momentum vectors of particles in clusters of Dn_k

with exception of a possible common particle with α f e + 1 together with the relative
momenta of centers of mass of clusters of Dn_k and ock+ v

From (2.13)—(2.15) follows (2.12) for ί = k+ 1, and the lemma is proved.

Corollary 2.5. ^ ( O e ^ " 5 ' 2 , ^ ' 2 ) far ImC + 0.

Lemma 2.6. Ir(ζ)e%(H-\Hs) for ImCΦO.

Proof. This is proved in the same way as Lemma 2.4 on replacing — 2 by 0 and 0
by 2 in Lemmas 2.2-2.4.

Lemma 2.7. For -a<φ<a, ζφΣ(φ) + e2iφR+

Ir(z, ζ)e^(H~s' ~ 2, Hs> ~ 2)n%(H~\ Hs)

and the functions Ir(z, ζ) and It(z, ζ) are analytic in z and ζ.

Proof. By successive applications of Lemma 2.1 and Al, A2 it is proved that

Then compactness follows from Lemmas 2.4 and 2.6 and Corollary 2.5 by
analytic continuation.

Lemma 2.8. σe(H(z))QΣ(φ) + e2ιφ R+, where H(z) is considered as an operator in Htl

for t=±s, 1 = 0,-2.

Proof. It follows from Lemma 2.1 and an ε-boundedness argument, that

||/Γ(z,C)H0 for |C|->oo, | A r g C - i

in any of the spaces ^(HtJ\ t= ±s9 1= -2,0.
Then by Lemma 2.7 and the analytic Fredholm theory (cf. [31]), (1 - Jr(z, ζ))'1

is meromorphic in C\{Σ(φ) + e2iφR+} with values in (HtΛ). It then follows from
(2.5) and Lemma 2.1 that

R(z,C) = D(z,ζ)(l-/ r(z,C))-1 (2.16)

is meromorphic in C\{Σ(φ) + e2iφ R + } with values in £%(Ht>l), and the lemma is
proved.

In the proof we have used the induction assumption which by the lemma is
verified for systems of n particles. The verification for 2-body systems is
straightforward.
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Lemma 2.9. The operator 1 — lx(z, ζ) has the same null space when considered as an
operator in Ht>ι for t=±s,0 and 1 = 0,2. The same holds true of the operator
H(z) — ζ, and σd(H(z)) is the same when H(z) is considered as an operator in H1'ι for
t=±s,0 and 1 = 0,2.

Proof. For 1 — It(z, ζ) this follows from Lemma 2.7. Moreover,

l-Iι(z,ζ) = D(z,ζ)(H(z)-ζ) (2.17)

and hence

IM). (2.18)

We recall the basic property of discrete eigenvalues and eigenfunctions of H(z).

Lemma 2.10. 1) σr

d(φ) = σd(H(z))nR = σp(H)\Σ, and σc

d(φ) = σd(H(z))\R accumulates
at most at points of Σ(φ), is contained in the sector bounded by the half-lines
Σ\ + R + and Σ°2 + e2ιφ R + , and is independent of φ unless "absorbed" in the essential
spectrum Σ(φ) + e2ίφ R + .

2) For λeσd(φ) there exists a basis {φ\(z)}^ι of J^(H(z) — λ), such that the
vector-valued functions φ\(z) are analytic in Θ for λeσr

d(φ) and analytic in
{z = ρeiφ\ρ>0, φ^Argλ if Argλ^O}, ί=l...dλ = dimJT(H(z)-λ).

3) For λeσd(φ) the inverse Fourier transforms φ\{z) of the eigenfunctions are
of the form

where k depends on λ and z.

Proof. 1) and 2) are proved in [2] and [4], and 3) in [11].

Definition 2.11. For λeΣ we define the set of resonances Mλ by

&λ= \J {κeσc

d(φ)\κ is between {λ + e2ίφR+} and {λf + e2ίφR+}},
-a<φ<0

where λ'=min{μeΣ\μ>λ}.
We ςet W — ̂

We have

$λ= \J {κeσc

d{φ)\κ is between {λ + e2iφR+} and {λf + e2iφR+}}.
0<φ<a

For φe( — a,a) we set

σd(φ) = {κe C\σe(φ)\^(l - Ir(z, K)) + {0}} ,

and for φ Φ 0

δdiφ) = σ » π R = σp, σc

d(φ) = σd(φ)\R.

By analyticity and unitary equivalence, σd(φ) is ̂ -independent in the same way as
σd(φ). We define

Mλ= \j {κeσc

d(φ)\κ is between {λ + e2iφR+} and {λ'+ e2iφR+}},
-a<φ<0
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We shall now derive a decomposition equation for the resolvent based on the
Weinberg-van Winter equation in the form (2.16), valid in ^(Ht>l) for t= + s,0,
Z = 0 , - 2 .

We decompose D(z, ζ) corresponding to a fixed energy E by splitting off from
each operator RD{z, ζ) the parts arising from bound states of the clusters Ct of D
with total energy less than E. Using the notation of Sect. 1, by (1.21) and the 2n d

resolvent equation we have for

n(D)

+ R0(z9 0 ( 1 - PE

D(z) - VD(z)RE

D(z, 0 ) (2.19)

and for Dke@'E> 2^k^n-l

RDk(z, 0 = R0(z, 0(1 - VDk{z)RDk(z, 0) (2.20)

Introducing (2.19) and (2.20) in (2.3) and using the notation (1.23), (1.24), we
obtain from (2.16) the following representation of R(z,ζ).

Lemma 2.12. For ζeC\{(Σ(φ) + e2iφR+)vσd(φ)}

R(z9ζ) = J(z)R1(z9ζ)Y{z9ζ)9 (2.21)

where

7(z, 0 =*te 0(1-/r(z, 0 Γ 1 (2.22)

and

X(z, 0 = ̂ ( 2 , 0 , ( ^ ( ^ 0 } ) (2.23)

with

XEfr0=- Σ (1-PE

D{Z)-VD(Z)RED(Z,Q)
De2>E

+ Σ (-l?-Hk-iy.(l-VDk{z)RDk(z,0) (2.24)
DkeS)E

and

Xi

D(z,ζ)=-(φi

D(z)\, De®E, i=ί...n(D). (2.25)

We have the following identities

Lemma 2.13.

R(zίζ)G(z,ζ) = J(z)Rί(ziζ) in @(H\HS>2), (2.26)

G(z,ζ)Y(z9ζ) = I in @(HS). (2.27)

Proof. By Lemmas 2.1 and 2.6 and the proof of Lemma 2.8

X(z, ζ)emHs, Hs), Y(z, 0e®(H\ HS).

From Al and A2 follows that G{z,ζ) defined by (1.29) satisfies
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We prove (2.26), then (2.27) follows from (2.26) and Lemma 2.12. By the second
resolvent equation

R(z,QG0{z,Q = R0(z9ζ) (2.28)

and

= R(Z,ζ)V^z)RD(z,ζ)(HD(Z)-ζ)\φι

D(z)yD(Z,ζ)

= \φi

D{Z)yri

D{Z,ζ)-R{Z,ζ)\Φi

D(Φ,

hence

. R(Z, QGUz, 0 = IΦU.φr^z, 0 (2.29)

and (2.26) follows from (2.28), (2.29).
For φή=0 we obtain, starting from (1.30), the following alternative decom-

position of R(z,ζ), proved in the same way as Lemma 2.12.

Lemma 2.14. For φ + 0, λ = λi

DzσD

ά, ζeC\{(Σ(φ) + e2ίφR+)uσd(φ)}

R(z,ζ) = Jλ(z)Ruλ(z,ζ)Yλ(z,ζ), (2.30)

where

Yλ(z, 0 =Xλ(z, 0(1 - Ir(z, 0Γ1 =(!?(*, 0, Y&z, 0) (2.31)

and

Xλ(z,ζ) = (X°λ(z,ζ),Xi

D(z,ζ)) (2.32)

with

X°λ(z, ζ) = - (1 - ή(z) - VD(z)Rλ

D(z, 0)

+ Σ (-ί)k-\k-ί)\(ί-VDk(z)RDk(Z,ζ)) (2.33)

X j , ( z , θ = - < ^ ( z ) l , (2.34)

where

We have

Xλ(z, ζ)e@{H\ Hs

λ), Yλ(z9 ζ

and the following identities, proved as Lemma 2.13.

Lemma 2.15.

R(z,QGλ(z9Q = Jλ(z)RUλ(z9Q in @(Hs

λ,H
s>2), (2.35)

Gλ(z9QYλ(z9Q = I in ^(Hs). (2.36)
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3. Limiting Absorption Principle

In this section we prove the existence of the limits on the continuous spectrum of
the operators Ir(z,ζ), Iι(z,ζ), Y(z,ζ), and G(z,ζ) in topologies related to the
Hs-spaces and establish the analyticity properties of the limiting operators.

The statement

means that the following limits exist in the uniform operator topology of

ε | 0

ε|0

Lemma3.1. For D = {CVC2} and αnC ; .φ0, j = l,2,

Va(z)e @{H-^ 2®Hs

kD\ H

Proof. It is straightforward to verify that

and the lemma follows from Al and A2.

Lemma3.2. For D = {C l 5C 2}, αnC^ + 0,7=1,2 and i=ί ...n{D\

WD{z)yD ± (z, λι

D + μe^Kφ'M Va(z) e ̂ {H~p^
 2®HS^2),

where

r^z, ^ + μe2iη = lim fΌ{z, 2!D + μe2** ± *)
ε|0

= limri)(ρeί{φ:rε\^D + μe2iφ).

Proof. This follows from Lemmas 2.10(3) and 3.1 together with a result of Agmon
[1], quoted in [8], Lemma 1.1.

Lemma 3.3. For D = {Cί9C2}, αnC;Φ0,7 = 1,2, i=ί, ...,n(D), φ = 0, μe(0,E-2!D)
and φφO, μ e R +

Λj(z, ^ + μe2U>)Va{z)e<9{H;° 2®Hs

k>
2, Hs>2).

For φ + 0, A = 2j,5 the same holds with Rp replaced by R^.

Proof By Lemma 3.1 it suffices to prove Rl(z,2!D + μe2ίφ)e@(Hs,Hs>2). This is
proved in the same way as Lemma 2.1. Defining H0(z) as a closed operator in Hs

with domain Hs>2 and accordingly by ε-boundedness HD(z) closed on Hs>2, we
obtain

HE

D(Z) = HD(Z)\(1-PED(Z))HS

as a closed operator in (1— P^(z))Hs with domain (1 — P^))HS'2 and graph-norm
equivalent with the iί s ' 2-norm. By the induction assumption and Ichinose's
lemma, λι

D + μe2ιφ is in the resolvent set of H^(z) and hence

Λg(z, 4 + μe2iφ)e @{H\ Hs>2).
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Lemma 3.4. For φή=O, μ e R +

Proof. A typical term containing the singularity is

R0(zX)VJzy..,RDnJz,ζ)Vak + ι(zy..,RD(z,ζ)Van_ί(z). (3.1)

By Lemmas 3.2 and 3.3

The factors RDnJz9XD + μe2i*)Vaic + 1(z), fc = 0,...,w-3, are in ^ ^
by Lemma 2.1.

Hence the term given by (3.1) is in @{H~^2®Hs

k>
2).

The terms without singularity are in &(H~£'2(g)Hs

k'
2) by repeated application

of Lemma 2.1 and hence

By Lemma 2.6, 1^,^ + μe2ίiφ±ε))e^(H^'2(S)Hs

k'
2) and the lemma follows.

Lemma 3.5. For φ = 0, μe(Σ2,E)\Σ2

Iι±(μ)e%(H-s>2).

Proof. We consider the term

Ro(μ)K1---RDnJμ)Kk + ι-..,RD±(μ)Kn-1, (3-2)

where

n(D)

RD±(μ)= Σ IΦΌyr^iμKΦti + Rliμ)- ( 3 3 )
i=l

Using Al and Lemma 2.10(3), it is easy to show as in Lemma 3.1 that

\Φi

DyVΛn_

and hence by [8], Lemma 1.1

^ ^ 2 ) . (3.4)

By a similar proof as in Lemma 3.3

(3.5)

The factors RDn k(μ)Vak + ί are in J*(i ί" s ' 2 ) for fc = 0, ...,w-3 by Lemma 2.1.
Hence by (3.4) and (3.5), Iι±{μ)e@{H-s>2\ and then by Corollary 2.5,
Iι±(μ)eV(H-s>2).

Lemma3.6. For ί=l ...n{D\ φ = 09 2!D + μe(Σ0

2,E)\Σ2 and φ + 0, μeR +

Proof. We consider the typical term, setting ζ = λi

D-

Kn- M)RD±(z> 0 Kk+ Λ - . f e 0 . VJz)R0(z, 0, (3.6)
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where

n(D)

Kn-M)RD+(z90= Σ V^JzU^y^^OiΦ^ + V^^R^ζ). (3.7)

By the proof of Lemma 3.3, Van_ ̂ R^z, ζ)e@{Hs).
By Lemmas 2.10(3) and 3.1 and [8], Lemma 1.1

Hence lr±{zX)e@(H% and then by Lemma 2.6 Ir±(z,ζ)e%(Hs).

Lemma 3.7. For φe(-a,a)9 λeΣ2, ζ = λ + μe2ίφ, μ e R + ,

G±{z, ζ)e@{H\ Hs), Gλ±(z, ζ)e@(Hs

λ, H
s).

Proof. Clearly G0(z,ζ)e@(Hs\ and by Lemma 2.1

GfaQeaiH^H*) for φ = 0, XD>λ

and for φφO, Aj,=|=A.

For φ = 0, λι

D^λ and φφO, ̂  = A we have by Lemma 3.1 and [8], Lemma 1.1

W&z, ζYD±(z, 0 = Tς(z)|^(z)>rί,±(z, 0

and the lemma is proved.

Lemma 3.8. For λ = 2!D, κ = λ + μe2ίφ, φφO,

/̂y ifκe^lλu^tf

λ(^tf

λu^tλ)9 where

iι±(z,κ)em;:

For φ = 0, Jf(\ — It+ }(z, κ))φ{0} ι/αnd only if KEGp, where

There exists ε o > 0 and bases {φj{1){ρeί(Ψi + )ε\κ)}dj{}l of

a basis {φj(z,fc)}^c

=~ί of^C^—I^t^2^)) s u c n t n a t Φ^tjίζ^) ί 5 analytic in ξfor
0 < ε < ε o andfor j=l ...d(

4L) = dim«yK(l-7Z(+ (z,κ:))

for φφO αnJ m H~s>2 for φ = 0.

Proof We consider the case of J ί + for φ < 0 , the other cases are similar. Define the
operators β(ξ) and Kz(ξ,κ;) for 0 < ε < ε o by
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Then K^,K) is analytic in ξ for 0<ε<ε o with values in ^(^f), and by
Lemma 3.4

in the operator norm of ^(^f) where

Kι + (z,κ) = B

Moreover for ρ>0

Evidently, σ(Kt(ξ, K)) = σ{Iι(ζ, κ)\ and by analyticity and unitary equivalence
for fixed φ, this spectrum is independent of ξ for 0 < ε < ε0. Hence we can choose a
circle Γ with center — 1 and radius δ such that

{ζ\O<\ζ+l\<δ}nσ{Kι(ξ,κ)) = 0 for 0<ε<ε o

and
{ζ\O<\ζ+l\<δ}nσ(Kι+(z,κ)) = 0.

Define the projections P(ξ,κ) and P+(z,κ) by

Then

in the operator norm of
This implies that JT(l-Kι + {z, κ))φ {0} if and only if

Clearly

and

On the other hand, it follows from Lemma 2.9 that Jί(\ — It(ξ, K)) is the same
when Ii(ξ,κ) is considered as an operator in H~^2®HS^ and in Jf, and hence

if and only if κe$λ.

Let $ be the dense set of dilation entire vectors. Since P(ξ,κ) is finite-
dimensional, there exists for

a vector
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such that

and by unitary and analyticity

and

To a basis {φj of Jf(\—Kx{ei{-φ ε\κ) corresponds bases ψ (ξ) and ψi+(z) of
Ji{\-K^K)) and JT(l-Kι + (z,κ)) and hence bases

φi(ξ) = B(ξ)ψί(ξ)
and

ί i + ί

of ^ ( 1 — It(ζ, K)) and Λ^(l —Iι + (z, κ)\ and the lemma is proved.

Lemma 3.9. For λ = 2}D, κ = λ + μe2iφ, μeR+ for φή=0,

κe(Σ°,E)\Σ2 for φ = 0,

z/ αnJ on/y if

where Ir±(z,κ)e^{Hs).

Proof This is proved in the same way as Lemma 3.8.

Lemma3.10. For λ = λ[

Ό, ζ = λ + μe2ίφ, μeR + , ζφ$kλκjkλ{0ϊλκjiMλ) for φ + 0 and

ζe(Σ°2,E)\(Σ2uσp)forφ = 0,

and for

Proof This follows from Lemma 3.6 and 3.9 and the fact thatX(z, κ)e@{H\ Hs) (cf.
the proof of Lemma 2.12).

Lemma 3.11. Under the conditions of Lemma 3.10

G + (z,QY+(z,Q=l in@(Hs), (3.8)

GλU)(z9QYλU(z9ζ) = l in@(Hs). (3.9)

Proof This follows from Lemmas 2.13, 2.15, 3.7, and 3.10.
We shall now establish the existence of limits Y+(z, λ + μe2ιφ) for φ + 0 in a

different topology, related to the concept of smoothness. This will be utilized for
the construction of a spectral measure of the operator H(z).
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Lemma 3.12. For λ = A!D, φφO and ZlcR + a bounded closed interval the following
limits exist in ^(J^,L2(A,H% where μeA,

β | 0

Proof We consider the term given by (3.6) and (3.7). By repeated application of
Lemma 2.1 and Al, A2 it is shown that

(3.10)

By a similar proof to that of Lemma 3.3

V^_£z)Rl(z9Qea{HlΏ®LlΏ9H^. (3.11)

By a result of Kato [19] and Lavine [24], quoted in [8] Lemma 1.2, the
following limits exist in ^{L2

D,L2(A,L2

D))

ί . (3.12)
ε|0

From (3.12), Lemma 2.10(3) and Al, A2 follows the existence of the following
limits in @(Hs

kD®L2

PD,L2(A,Hs))

lim Van ^ i φ ^ y ^ λ + μe^^Kφ'M. (3.13)
ε|0

The lemma follows from (3.10), (3.12), and (3.13).

Lemma 3.13. For λ = λι

D, φφO and A CR + a bounded, closed interval such that

the following limits exist in

l
ε

and the following limits in

lim rD(z9 λ + μeW^ + iφί&l} (3.14)
εJ,0

l im Y°{z,λ + μe2i{φ<+->ε)) (3.15)
ε + 0

Proof We write

Yλ(z, C) =Xλ(z9 0 +Xλ(z, 0 (1 - Ir(z, Or %& 0 (3-16)

By Lemma 2.1 and Al, A2, X°λ(z,λ + μe2iφ)e®(β/e\
Then the lemma follows from Lemmas 2.14, 3.6, 3.9, and 3.12 and (3.16).
We conclude this section by establishing the basic analycity properties of the

operators Y±(z,ζ).

I z2 \
Lemma 3.14. For λ = VDeΣ2, λ<E, the ^{Hsyvalued functions Ir± lz,λ+ -— are

\ 2mDJ
analytic in Θ\R+, and for λ+ -^— <λ'

2mD

I o2e2iφ\
lim lAρe^λ+%- = / r2mD I r
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Proof. We consider a typical term containing the singularity, obtained by setting

£ = A+-^-in(3.6)and(3.7).
2mD

It is clear from Lemma 2.1 that for DkeQ)'E,, RDk(z, ζ) is analytic with values in
&{HS

9H
S'2) for zeΘ\([_2mD{E-λ)~]112, oo).

For D2e9E the operator HD2(z)(l -P£2(z)) is analytic in Θ, and

ζeρ{HD2(z)\{l-P*2{z))jP).

By the proof of Lemma 3.3 it is then easy to show that RQ2(Z, ζ) is analytic with
values in @{H\HS>2) for ze(9\([2rnD(E-λ)~]1/2, oo).

By a straightforward proof, given in [8], Lemma 3.15, it is shown that for
λi> <λ> rD +(z>0 i s analytic with values in <%(Hs

p ,H~^2) for zeΘ\R+, and for
ρeV

o2e2iφ

for λj

D2 = λ, rj

D2±(z,ζ) is analytic for zeΘ, and for λj

Di>λ, rj

D2±(z,ζ) is analytic for
ze Θ\(\_2mD{λ - λ)]1/2, oo).

From these observations and Al, A2 the lemma follows.

Definition3.ί4. For λ = λi

DeΣ2 and any set D(/l)cC, we use the notation

Lemma 3.15. For λeΣ2, λ<E, the @{H\Hs)-υalued function

is meromorphic in Θ\R+ with poles at most at points of

Moreover, for λ + - — e (λ, λ')\σp

ί •
lim γΛQe^

Q2e2i

%- f
2mD ) \ 2m

Proof This follows from Lemmas 2.10(2), 3.9, 3.10, and 3.13.

4. Isomorphism of J^(1 + RD (z,ζ)Vό(z))

and JT(G+ (z, ζ)/jr(J(z)R1+ (+z, 0 )

Definition 4.1. ΣD = {pDe R ^ | |pD | = 1},

hι

D = hD = L2(ΣD) for i = l...
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For λeΣ29 λ<E, μe\_λ,λ'\ let

Kμ)= Σ Σ ΘM,,

po,hD) for μeR\(4Λ)

(rDf)(μ)=TD(μ-λi

D)f for feH'PD, μe^ω). (4.2)

For μe(λ,λ') set

Άμ)= Σ Σ Θ Γ » , (4.3)
De@E λn^λ

n(D)

T= Σ Σ Θ7J. (4.4)
De^E i= 1

The operators 7^ are defined such that Tι

Ώ has a unitary extension in
<8(L2

po9L
2((XD9 oo), Λi), and such that

-ι=λ in L2((^,oo),MA)). (4.5)

By (1.15), trace and dilation operators are connected by

TD(μ) = 2-1/2μ-1'2yD(l)UD((2mCuC2μ^2), (4.6)

where {UD(ρ)}ρeR+ is the dilation group in J4?PD.

Lemma 4.2. For zeΘ, ζ = λi

D + μe2iφ,

e2ί«(2πίy' {rι

D + {z, ζ) - r>D_(z9 £)} = T*(μ)TD(μ). (4.7)

Proof. This follows from a well-known formula of scattering theory, see [23],
Proposition 5.5.1.

Lemma4.3. Let λ = λi

DeΣ2, λ<E. For φ = 0f let ρeR + , μe(O,λf — λ), ύeHs and
assume

Then for λ^^

in particular for ρ = 1, T(λ + μ)u = 0. (4.8)

For φ + 0, let ρeR + , μeK+ and assume

Then TD(μρ~2)τ = %

in particular for ρ = (2mDμ)1/2, yD(l)τ = 0. (4.9)

Proof. This is proved in the same way as [8], Lemma 5.4.

Lemma 4.4. Let ύeHs for φ = 0, ύsH\ for φφO. For φ = 0, λeΣ2, λ<E,
μe{λ,λ')\σp,

T(μ)Y±(μ)G±(μ)u=T(μ)ΰ. (4.10)
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For φ + 0, ζ = λ + μe2iφ, ζφέkλuM'λ(!%'λviλ),

UμQ - 2) Yk ± ,(z, ζ)Gλ( ± μ ζ)u = TD(μρ ~2)τ,

in particular for ρ = (2mDμ) 112

Proof. By Lemmas 2.12-2.15, 3.7, and 3.10

JRί±(μ)Y±(μ)G±(μ)ύ =

and for

and the lemma follows from Lemma 4.3.

Definition 4.5. For λeΣ29 λ<E, ζ = λ + μe2iφ,

Jf{G±(z, 0) = ̂ (G±(z, Q)/jr(J{z)R1±(z, 0)

For φ = 0,

For φφO,

Moreover, in accordance with Lemma 4.3 we set

JTQ(G±{z9 0) = Jfo{G±{z, 0)/^(J(z)R1±(z9 0)

The spaces «#"(Gλ±(z,ζ)) and Jί^(Gλ±{z,ζ)) are defined similarly.

Lemma 4.6. Let φφO, λ = A!D, κ = λ + μe2ίφ, and consider RD + (z,κ)V^(z) in accor-
dance with Lemmas 3.2, 3.3 as an operator in £%(H~^2®H^2).

The operator Jλ(z)R1 λ + (z,κ) is an isomorphism of Jr(Gλ + (z,κ)) onto
Jί{\ +RD + (z, κ)Vβ(z)) with the inverse Mκ given by

MκΨ = Ω = {u,τ}, (4.12)

where

u= -(l-Pyz))^(z)y+FD(z)i^(z,κ)^z)Ψ, (4.13)

and

τ=-(φί

D(Έ)\V^(z)Ψ. (4.14)

Furthermore,
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Assume moreover, that Al, A2 hold with Wa(z)e&(Hs>2,Hs) for O^s'^1/2.
Then J(z)R1 λ + (z, K) maps J^0{Gλ + (z9 K)) isomorphίcally onto Jf(H{z) — κ). The same
holds with 4- replaced by —, and

+ RD_(z, κ)VM = ̂ (H(z)- K) .

Proof. It follows from Lemmas 3.1 and 3.3 that

and by [8], Lemma 1.1

Jλ(z)Rί>λ4z,κ)

For ΩeAr(Gλ + (z,κ)) we have by (2.35)

= RD+(z, κ)Gλ + (z, κ)Ω

= 0 in H;f

On the other hand, let ΨeH~^2®Hs^ and

( l + Λ D + (z,ιc)^(z))y = 0. (4.15)

By definition of Mκ, (4.15) can be written

Ψ = Jλ(z)Rίλ+(z,κ)MκΨ. (4.16)

By (4.15) and (4.16)

Gλ+(z, κ)Mκ Ψ = lim (H(ρeiiφ ~ε)-κ)Ψ

εiO

and the isomorphism of Jί{\ -\-RD + (z,κ)V^(z)) and Jr(G+(z,κ)) is proved.
If ΩeJro(Gλ + (z, κ)\ then by Lemma 4.2

and hence

MκΨ = ΩeJf0(Gλ_(z,κ)).

If ΨeJr(H(z)-κ), i.e. ^ e y r ( l + KD+(z,K:)) and ΨeH°>2, and Ω = MKΨ, it

follows from Lemma 4.3 and (4.16) that TD(μρ~2)τ = 0, hence Ωe J^0(GΛ+(z,K:)).

Suppose on the other hand, that ΩeJ^0(Gλ + (z, κ)\ and let

By a result of Agmon [1], quoted as [8], Lemma 1.5, ΨeH8^1'2®^2. Then by
Lemma 3.1 extended on the basis of Al, A2 in the strengthened form, ^ 1

Repeating this argument, we get after k steps
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hence ΨeH02, and we have proved that Jλ(z)Rί>λ + (z,K) is an isomorphism of
J^0(Gλ + (z,κ)) onto Jί{H(z) — K). The same proof holds with + replaced by —,
w h e r e ^ is defined by (4.12)-(4.14).

It is clear that

JT{H{z) -κ)Q JίiX + RD±(z, κ)VD{z)).

Conversely, if ΨeJr(l+RD±(z,κ))V^(z))9 and MKΨ = Ω, then by (4.16)

This implies

and hence TD(μρ~2)τ = 0.
As seen above, this implies ΨeJί(H{z) — κ), and the lemma is proved.

Lemma 4.7. Let φή=0, λ = λι

DeΣ2, κ = λ + μe2ιφ, and consider RD + (z,κ)V^(z) as an
operator in @(Hp*>2®Hs

k>*).
There exist εo>0 and for 0<ε<εo bases {ΨJiξ)} of Jf{H{ξ)-κ\ ξ = ρeiiφ~ε\

and a basis {Ψi + (z)} o / ^ ( l + Λ D + (z,/c)Fό(z)), such that ψ.(ξ) is analytic for ρ>0,
0 < ε < ε o , and

\imΨlQe^-*)=Ψi + {z) in H;*>2®H*£.

The same holds with + replaced by — and φ — s by φ + ε.
Ifκeσp(H(z)\ there exist εvε2 and functions Ψ^ζ), ξ = ρeιa, analytic with values

in H~£2®H%£ for ρ e R + , φ — ε 1 < α < φ + ε2, and such that {Ψ^z)} is a basis of
Jί(¥ί(z) — K), and {Ψ^ζ)} generates a subspace ofJ^(H(ξ) — κ)for φ — ε1<a<φ and
φ<a<φ + ε2.

Proof Since

l-Iι{ξ9κ) = D{

we have

JfiX + RD(ξ9 κ)VD(ξ)) = Jί(H{ξ) -κ)Q^(l- Ifa K)) . (4.17)

Moreover,

(z9κ)VD{z))Qjr(ί^Iι + (z9κ))9 (4.18)

which can be seen as follows.
Let

Then by Lemma 3.1, V^(z)ΨeHs, and

lim (H(ρei(φ -ε^)-κ)=- Urn (HD(ρei(φ ~ε)) - κ)RD + (z, K) V'Ό{Z) Ψ
ej.0 εiO

εiO

^z)Ψ = 0 in Hs.
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Hence by Lemmas 2.1, 3.2, and 3.3

lim (1 - llQei{>φ ~ ε), K)) Ψ = lim D{ρeί{φ ~ ε), K) (H(ρeί{φ ~ε)-κ)Ψ

= 0 in H-p

For a fixed e ^ O ^ o ) , let {Ψ^-^)} be a basis of Λ^(tf(e i (*-βl))-κ;). Then by
(4.17) and Lemma 3.8 there exist analytic functions Ψt{ξ) and limiting functions
Ψi + (z) such that

and

By analyticity of ^ ( ^ κ )F^(^) this implies

and then for ε[0

It is clear, that {ΨJtξ)} is a basis of ^Γ(if(ξ)-κ;) for all ξ with 0 < ε < ε o (we
could start from any εe(0,εo)), and that {Ψi+(z)} is a set of linearly independent
vectors. Conversely, a basis {^(z)} of t/Γ(l+^D+(z,?c)Fo(z)) by (4.18) and
Lemma 3.8 is boundary value of a linearly independent set of analytic vectors
{Ψi(ξ)}> which by analytic continuation are in JΓ(\ +RD(ξ9 κ)Vή(ξ)). Thus {Ψt(z)} is
a basis of JT{l + RD+(z, κ))V&z)).

The same proof holds with + replaced by — and φ — ε by φ + ε.
If κeσp(H(z)), by Lemma 4.6

Then the above construction yields a basis {Ψ^z)} of Jί{H(z) — K) and
functions Ψ ^ ξ ) , ξ = ρeία analytic for φ — εί <a<φ and ίFp^), analytic for φ<a

2, such that

lim Ψγ\ρe^~ε)) - ψ.(z) in H _ s ' 2

ε|0

lim ^ 2 ) ( ρ e ί ( < p + ε)) = ψ.(z) in
ε|0

It follows, that ψ.(ξ) defined by

for φ

for α

for

is analytic in £, and the lemma is proved.

Lemma 4.8. For μe(Σ°2,E)\Σ2,

^ ) ) = J 0 (G + (μ)) = J 0(G_(μ)) = ̂ (G_(μ)), (4.20)

)ύ = JRί_(μ)ύ for ueJr(G±(μ)), (4.21)
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and JRί±(μ) is an isomorphism of Jf(G±(μ)) onto J^(H — μ) with the inverse Mμ

given by

MμΨ = Ω, where Ω = {w,0, ...,0}, u=-VΨ.

Proof. It follows from Lemmas 2.9, 2.10, and 3.8, that Jf(H — μ) coincides with
Jf{\+RQ(μ)V) where l+R0(μ)V is considered as an operator in H~s'2, and
JT(H-μ)QHs>2.

IϊΩeJT(G + {μ))9 then JRί+(μ)ΩeH-s>2, and

hence

By Lemma 4.3 this implies T(μ)Ω = 0, so ΩeJfo(G+(μ)).
Clearly, Jr

0(G+(μ)) = Jlr

0(G_{μ))9 since

G+(μ)-G_(μ)=W{R1+(μ)-Rί_(μ)},

and we have shown (4.20) and hence (4.21).
If ΨejV{H~μ), then ΨeHs2, and -VΨeH\ so Ωeϊl\ Ψ = JR1±{μ)Ω, and

and the lemma is proved.

5. Construction of Wave Operators and 5-Matrix

Lemma 5.1. Let λ = λι

D, and let A be a Borel set such that A is a compact subset ofR +

for φ Φ 0 and of (0, λ' — λ) for φ = 0, and such that

(λ + A e 2

p

ThenforfgeJf and for fand/or g replaced by functions in L2(A,HS) we have for

2*)f9TDM^

^$ i«)-R(φ,λ + (μ-iε)e2iη}f,g)dμ. (5.1)

For φ = 0

Σ Σ l{Ti){λ + μ)Yi

D±{λ + μ)f,Ίi

D(λ + μ)Yi

D±{λ + μ)g\Ddμ
De@E λh^λ A

= lim - ^ J ({R(λ + μ + iε) -R(λ + μ- iε)}f, g)dμ. (5.2)

The left hand side of {5.1) or (5.2) defines a bounded, sesquilίnearform on #f x $?.
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Proof. This is proved in the same way as [8], Lemma 7.1, utilizing Lemmas 2.12,
2.14, 3.10, 3.13, and 4.2, and writing xA^D(z)\f as a function in L2(A,hD).

Definition 5.2. For (pφO and λeΣ2, λ<E, we denote by <3λ(φ) the set of all Borel
sets A such that Δ is a compact subset of R+ and

φA)n( $λu$f

λu @λvdl'λ) = 0.

The operators Eλ(φ, A)e^{M?) are defined for Ae^λ(φ) in accordance with
Lemma 5.1 by the sesquilinear forms

(Eλ(φ, Δ)f, g) = lim ~ J ({R(φ, λ + (μ + iε)e2iη
εs,o 2,πι

,λ + (μ-ίε)e2i*)}f,g)dμ figetf. (5.3)

Lemma 5.3. For fixed φ + 0, the operators Eλ(φ,A) satisfy the following conditions:

for Δte9λt{φ), i = l,2. (5.4)

For any finite set {Ak}™=ί of pairwise disjoint sets in @λ(φ\

UΨ,A), (5.5)

ψ,Δ). (5.6)

Proo/ This is similar to the proof of [8], Lemma 7.6, utilizing Lemmas 5.1, 2.14,
3.13 with simple modifications due to the presence of the term (φ'D(z)\ in ij(z).

Definition 5.4. For φφO, λ = λi

DeΣ2, Δe$\(<p) we set

Fλ±(φ,Δ) = χΔ(μ)TD(μ)Yλ±(φ,λ + μe2iη, (5.7)

Fλ±(φ,Δ) = Fλ±(φ,Δ)\Eλ(φ,Δ)sr. (5.8)

For <p=0 and 2 a compact subset of (0,λ' — λ)\σp(H) we set

Σ Σ Θ T ^ + μ)^,±μ + μ), (5.9)

(5.10)

We shall now establish the basic properties of the local inverse wave operators
Fλ±(φ,A) associated with each channel for φφO as given by (5.7), (5.8).

Lemma 5.5. The operatorsFλ±(φ, A) are in $(jήf,L2(A,hD)\ and

φ,A) = Fλ±(φ,A). (5.11)

Proof The first statement follows from Lemma 3.13 and [8], Lemma 1.3. Then it is
proved as in [8], Lemma 7.10 that Eλ(φ,A) = 0 implies Fλ±(φ,A) = 0, using
Lemmas 3.10, 5.1, and 5.3 and [8], Lemma 1.3, and 5.11 follows.
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Theorem 5.6. The operators Fλ±(φ,Δ) are 1 — 1 and bίcontίnuous from E;(φ,A)j4?
onto L2(Δ,hD). Moreover, for ΔQΔ and ύeL2(A,hD)

Fλ±(φ, Δ)Eλ(φ, Δ)F^(φ, A)u = χAύ. (5.12)

Proof. Let feEλ(φ,Δ)je. Then by Lemma 5.1 and (5.3)

| | / | | = sup \(Fλ(φ,Δ)f,Fλ(-φ,A)g)LHAthD)\
IUll

This proves that Fλ(φ, A) is 1 — 1 and F^* is bounded. It is then proved as in
[8], Lemma 7.12 that flt{Fλ±{φ,Δ)) is dense in L2(A,hD) and hence Fλ±(φ,Δ) is
onto L2(A,hD).

Theorem 5.7. The operators Fλ±(A) defined by (5.9) and (5.10) are isometries from

E(λ + A)je onto £ £ ®L2{λ-XD + Δ,hD).

There exist unique isometric operators F±(λ,λ') from E((λ,λ')\σp(H))ffl onto

Σ Σ ®L2(λ-ϊD,λ'-vD\hD)
DeSlε W ί A

such that for A a compact subset of (0, λ' — λ)\σp{H),

F±{λ,λ')\E(λ + A)je = Fλ±(A). (5.14)

For AQ(0,λ'-λ)\σp{H)and

β= Σ Σ θ«i,, ^eLW-λ^λ'-λtihJ,

De,E ^
Σ Σ

Moreover,

!)ύ= s-limeitHJe-ίtHίύ. (5.16)
ί->± oo

Proof. The first statement is proved, utilizing Lemma 4.4 and (5.2), in the same way
as Theorem I of Kato [20], cf. [35], Theorem 1.6 and [8], Theorem 7.13. Since
σp(H)\σp(H) consists of isolated points μ such that £({μ}) = 0, the operators

F±(λ9λ') defined on (J E(λ + Δ)j^ by (5.14) immediately extend to isometries on

E((λ,λf)\σp(H))je. The identity J5.15) is proved for A Q (0, λ' - λ)\σp(H) as in [35],
see also [8], and extended to A Q (0, λ' — λ)\σp(H\ using the isometric property of
F(λ, λ'). The identification (5.16) of the operators F~ 1(λ, λ') with the wave operators
defined in the time-dependent theory is proved in the same way as in [35], in fact
the invariance principle holds.

Definition 5.8. For φφO, λ = λi

DeΣ2, Δe^λ(φ), the local wave operators

Wλ±(φ,A)e@(L2(A,hD\ Eλ(
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are defined in accordance with Theorem 5.6 by

Wλ + (φ, Δ) = Fχ+(φ, Δ). (5.17)

The local scattering operators Sλ(φ, Δ)e&(L2(Δ,hD)) are defined by

Sλ(φ9 Δ)= W~+\φ, Δ)Wλ_(φ, Δ). (5.18)

For φ = 0 the wave operators

W±(λ9λ')e@( Σ Σ ®L2((λ-2}DA'-^DlhDlE((λ,λ')\σp(H))j<ί?\

are defined in accordance with Theorem 5.7 by

W±(λ,λ') = Fl1(λ9λ'). (5.19)

The scattering operators

are defined by

S(λ, λ') = W+ \λ9 λ')W-(λ, λ'). (5.20)

It follows from Theorem 5.7 that S(λ, λ') is a unitary operator on

Σ Σ

which commutes with Σ Σ ® lx - λh + nil1) f° r ^ £ (̂ 5 ^' — λ).
De@E λύ^λ

It follows from Theorem 5.6 that Sλ(φ, Δ) is a bicontinuous isomorphism of
L2(Δ,hD) which commutes with χΛ(μ) for zϊgA

To obtain a representation of S(λ,Λ/) and Sλ(φ, Δ) in terms of the scattering
matrix, we need the following result.

Lemma 5.9. For φ + 0, λ = VDeΣ2, ΔeGλ(φ\ UEJ^ and veHs

po,

(Fλ ± {φ, Δ)Eλ{φ, Δ)u9 χA(μ)TD(μ)v)LHA>hD) = e2i«(Eλ(φ, Δ)u, \ 0j,( - φ)>υ)

+ lim ^ ({R(φ, λ + (μ + iε)e2i(p) - R(φ, λ + (μ - ίε)e2i(p)}u,

WD{ - φyD( -φ,λ + (μ± iε)e ~ 2iφ)υ)LHΔt ^. (5.21)

For φ = 0, λeΣ2, λ<E, λ + AQ{λ,λ')\σp(H), ueJf and

ve Σ Σ
De@E λn^

(F±(λ,λ')E(Δ)u,χA(μ)T(λ + μ)v)

Σ Σ IΦi,(-<P

Σ
bίkλ

(5.22)
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where χA(μ) = Σ Σ ®XΔ{μ)andv = Σ Σ ®VD-
De@E λjb^λ De@E λn^λ

Proof. This is proved in the same way as [8], Lemma 8.1 utilizing Lemmas
2.12-2.15, 4.2, and 5.5.

Theorem 5.10. For φή=0, λ = λι

DeΣ2, Ae@E(λ), the local scattering operators
Sλ(φ,A) and their inverses Slι(φ,Δ) have the following representations for
feL2(A,hD) and a.e. μeA,

(Sλ(φ, Δ)f){μ) = χA(μ)yλ(φ, μ)f(μ), (5.23)

{S; \ψ, Δ)f)(μ) = χΔ{μWλ- \φ, μ)f(μ), (5.24)

where £?λ(φ,μ) and its inverse έ?^1(φ,μ) are defined by

yλ(φ,μ) = l-2πie-2i«TD(μ)ίYλΛ-φJ + μe-2i«WD(-φ)γT*(μ), (5.25)

^λ-
1(φ,μ)=ί+2πie-2i^TD(μ)[Yλ+(-φ,λ + μe-2iηWD(-φ)rT*(μ). (5.26)

For fixed φ(t>)0 the operators 6fλ(φ,μ) form a norm-continuous function of

with values in &(hD), and £f~ι{φ,μ) a norm-continuous function of

with values in &{hD). Moreover,

. (5.27)

For φ — 0 the scattering operators S(λ, λ') and their inverses S " 1 ^ , λ') have the
following representations for

fe Σ Σ ®L2((λ-ϊD,λ'-2}D),hD)
De@E λbύλ

and a.e. μe(0, λ'— λ\

λ, λ')f)(μ) = χiλι λΊ(μ)£fλ(μ)f(μ), (5-28)

(S- \K λ')f(μ) = χ(λ} λΊ(μ)Srλ- \μ)f{μ), (5.29)

where the scattering matrix ^λ{μ) and its inverse 6^λ~
1(μ) are defined by

(5.30)

(5.31)

where we have set E = λ' in (2.23).

The operator ^λ(μ) is unitary on Σ ®nD an^ norm-continuous for

μe(0,λ'-λ)\σp(H).
Moreover,

( ^ (5.32)
D,i
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and

\-9?~1{μ)e^iYJ ®hlj\. (5.33)
\D, i )

Proof. This is proved as [8], Lemma 8.4, utilizing Lemmas 4.2, 5.1, and 5.9.
We proceed to study the analyticity properties and limits for φ->0 of

<9p

λ~
1(φ,ρ2/2mD) and <9p

λ(φ,ρ2/2m), establishing the connection of these operators

with the diagonal elements [Sfλ(ρ:ιl2m^)]λ>λ and &?

λ~
1(ρ2/2rnD)~]λλ of the S-matrix

on the corresponding energy interval.

Theorem 5.11. For λ = 2fDe Σ2, the &(hD)-valued functions Sf^z) = ̂ λ(φ, ρ2/2mD) and
y>~ γ(z) = <f~ x(φ, ρ2/2mυ) are meromorphic for ze Θ\R+ with poles at most at points

of ( i A u J ; J a n d (J^uJ/respectively.

Moreover,

O 7 ^ 7 " ^-\Q2l2mD)\λY, (5.34)
22rnD)\λ)* (5.35)

in the uniform operator topology of &(hD\ uniformly for ρ in any compact subset of
{(λ,λ')\σp(H)γ.

Proof. By (4.1) and the identity

eml2ΎD(e)=yDWUD(Q) (5.36)

we have, setting μ = ρ2/2mD

ρ). (5.37)

Introducing (5.37) in (5.25) and (5.26), we obtain for φφO, taking adjoints and
replacing φ by — φ,

i>_ [ψ,λ+

= l + 2πiz-2mDlD{\)Yi

D_ (z,λ+ ̂ - j Wj(z)y£(l). (5.38)

and similarly

ί 2 i

D + [z,λ+ £-j WD(z)y*(l). (5.39)

By Lemma 3.14, £f*{z) and 5^~i*(z) are meromorphic for ze&\R+ with poles
at most at points of (J?'ΛuJ?λ)" and {0lλ\j3k'$ respectively, and for

D
lini &*(z)= 1 +2πiβ-

2mDγD(ί)TD_ Lλ+ - M Wί(ρ)y*(l), (5.40)
i>^o+ y 2mDJ

() ρ D γ D ( ) i ) + [β,+ £^ ^ ^ ( l ) . (5.41)
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By (5.30), (5.31), and (5.37), the right hand sides of (5.40) and (5.41) coincide
with \_Sfχ 1(ρ2/2mD)~]λλ and ί^λ(Q2/2mDy]λf λ respectively, and the lemma is proved.

Corollary 5.12. There exist closed null sets Nλ±C(λ,λ% such that
[_&?{

λ~
1\Q2βmD)-\λίλ is invertible forρe{(λ9λ')\Nλ{±)Y,and

lim ^λ*(2) = ( [^(ρ 2 /2m D ) ] λ f λ )- 1 , (5.42)

^ (β72m I ))]λ > A)-1 (5.43)

in the uniform operator topology of &(hD), uniformly for ρ in any compact subset of

Proof. This follows from Theorem 5.11, (5.27) and a result of Kuroda [21].
We finally turn to the question of the connection between resolvent resonances

and poles of the S-matrix.
The treatment of this problem is more complicated than in the two-body case

(see [7]), partly because of the inherent difficulty due to the possibility of
embedded eigenvalues and partly because of the possibility of spurious poles of

/ z2 \\~x

— Ir±lz,λ+ -— due to the method, using the Weinberg equation.

We shall not give a complete answer here, but prove the following results
which seem to cover most cases.

z2

Theorem 5.13. Let λ = λι

neΣ2, and κ = λ+——eMλβ'λ (β'λβj) for φ<0 and

Ψλ) for φ>0, and define the operators TK(±) and ZK(+)by

l = (u9τ)ejV{Gk±)(z9κ)9 (5.44)

*(l)σ, (5.45)

where EλΩ = τ.

The operator Tκ + is an isomorphism from Jf(G + (z, K)) onto Ji{Sf^~ 1}(z)) with
the inverse Zκ + .

K ( - )

Proof. We consider (Tκ + , Zκ+) for φ <0, the proof in the other cases is similar. For
brevity we set Tκ+ = Tκ, Zκ+ =ZK and G + = G A ± , 7± = 7A + , Λ l λ ± = R 1 ± , WA= P .̂

1) WD(z)2πimDz-2y*(l)yD(l)Eλ = G+(z,/c)-G_fe 4
By Lemma 4.2

= W{z){R1+(z9κ)-R1_{z9κ)}

= G+(z9κ)-G_(z9κ)9

since R0(z, ξ) is regular at ζ = K.

2) Zκ maps Λ%S^*(z) one-to-one into Jf(G + (z,κ)), and TKZK = 1.
Let σeJf(&£{z)) and Ω = Zκσ, i.e. by (5.38)

(5.46)
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Applying Zλ to (5.46), we get by 1)

Ω - m D Y _ ( z , κ « z ) 2 π ^ ^

= Ω+Y_(z,κ)(G+(z,κ)-G_(z,κ))Ω = 0. (5.47)

Applying G_(z,κ) to (5.47), we get by (3.9)

G+(z,κ)Ω = 0. (5.48)

From (5.44)-(5.46) follows

TκZκσ = σ. (5.49)

Also, if ZκσeJί{Jλ(z)R1+(z,κ)\ then by Lemma 4.3 7κZκσ = 0, so by (5.49)
σ = 0, and 2) is proved.

3) Tκ maps Jf(G+{z, k)) one-to-one into Jί{^{z)\ and ZKTK = 1.
Let ΩeJr(G+(z,κ)\ and let σ = TκΩ. Then by 1) and (4.11) of Lemma 4.4

2πiz^

= σ + 2πiz-2yD(l)EλY_(z,κ){G+(z,κ)-G_(z,κ)}Ω

= σ-2πίz-2yD(l)EλY_(z, κ)G_(z, κ)Ω

= σ-2πίz-2γD(l)Ω = 0. (5.50)

By (4.9) of Lemma 4.3, TκΩ = 0 for ΩejV{J{z)Rlλ+(z,κ)\ so Tκ maps
Jr(G+(z,κ))intoJr(&'*(z)).

By Lemma 4.6, if ΩeJf(G + (z,κ)) and TκΩ = 0, then ΩeJϊ(G_(z9κ)). This by
Lemmas 4.6 and 4.7 and the assumption that κφ<%'λ implies that Ω = 0, so Tκ is one-
to-one.

By 2), TK(ZKTKΩ) = TKΩ and hence ZKTKΩ = Ω, and 3) and thereby the theorem is
proved.

We now consider the case, where κe0tλr\0t'λ for φ<0 (λe&'λnάλ for φ>0),

but Yt(ζ,λ+γ~ J has a simple pole at ζ = (2mD(κ-λ))1/2 and
} V 2mDJ

corresponds to an eigenspace of Jί{H(z) — κ). We first make the following
observation.

Lemma 5.14. Assume that for φ <
J M >)0

yD(l)EλΩ = 0 for all Ωejr(Gr+)(z,κ)) (5.51)

/ ζ2 \
and that Y^-\ζ,λ+ -— has a pole of order 1 at ζ = z, i.e. for ζ near z

\ 2mJ

where Ac+e@{H\H\) and Y-(ζ9λ+ —) is regular at ζ = z.
( + ) \ 2m]2mD

Then y*{~ 1}(C) is regular at ζ = z, and

^̂  (5.53)
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Moreover

Gr+)(z,κ)Y-+)(z,κ) = I. (5.54)

Proof. We consider Y_ for φ<0. By Lemma 3.11 and (5.52), for ζ near z

G-(U+&)A

(5.55)
ζ-z \ 2mD) \ 2mD)

This implies (5.54) and G_(z,κ)A_ = 0, hence by (5.51)

γD(l)EλA_=0. (5.56)

For ζ near z

yλ*(ζ)=l+2πίmDΓ2yD(l)EλY_ (ζ,λ+ £^j W(ζft*(l). (5.57)

By (5.52) and (5.56) £f*(ξ) is regular at ζ = z, and £f*(z) is given by (5.53).

Theorem 5.15. Assume that (5.51) and (5.52) hold. Let TK(±) and Z K ( ± ) be defined by
(5.44) and (5.45) with 7T)(z, K) replaced by 7-}(z, 4

The operator Tκ + induces an isomorphism from

onto e/Γ(e!^ι*
(~1)(z)) with the inverse Zκ + induced by Zκ +

Proof. This is proved as Theorem 5.13, replacing Y(-{z, K) by Ϋ- (z, k) and utilizing
Lemma 5.14.

Remark 5.16. Under the assumption of Theorem 5.15 we obtain from Lemma 4.6
and Theorem 5.15 a decomposition

^ K)) = Λ ( G + f e *)) + MG+& κ))/Jro(G+{z9 K)) (5.58)

such that

J^0(G+(z,κ)) = Jr

0{G_(z,κ)) is isomorphic to Jί(R{z)-κ)

and

J>'(G+(z,κ:))/J>0(G+(z,κ:)) is isomorphic to

and similarly for Jf{G_{z,κ)).

Theorem 5.17. 1) Let κ = λ-\ , and suppose that
2mD

Then ^{

λ~
γ\ζ) has a pole at ζ = z if and only i

2) Suppose that (5.51) and (5.52) hold.
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Then ^~1]{ζ) has a pole at ζ = z if and only if

κe@λum'λ(@'λu$λ) and Jί{G{±}(z, κ))/Jfo(G{±}(z, k)) φ {0}.

We consider the case of 5^(0 for φ < 0, the other cases are similar.
1) By Lemmas 4.6 and 4.7 and Theorems 5.11 and 5.13, the following state-

ments are equivalent.
a)
b)
c)
d) i

e) z is a pole of £ff{ζ)
f) z is a pole of &>λ{ζ).

2) By Lemmas 4.6, 4.7, and 5.14 and Theorems 5.11 and 5.15, the following
statements are equivalent.

a) κe®λ and Jf{G+{z9 κ))/Jfo(G+(z, κ))Φ {0}
b) i c e ^ and > ( G _ ( I , fc))/J^(G_(z, ίc))* {0}
c) ^(^-^RίO};
d) I is a pole of ^ * ( 0 ;
e) z is a pole of Sfλ(ζ).

6. Degenerate Thresholds

In this section we briefly indicate the extension of the above results to the general
case, where A3 is not satisfied, as it happens when there are symmetries in the
system. We now assume that Al, A2 hold and moreover that rnDί=mD2 iϊ^Dί=λj

D2

as it is the case if this coincidense is due to permutation symmetry. In Sect. 1, for

dι

D = dim

and choose in accordance with Lemma 2.10(2) φii)(z\j=\ ...dj,, such that {φ%{z)}
is a basis of Jί(βCl + HCl — λι

D) and φ%z) is analytic for zeΘ for each;, and such
that (φ%(z),φ%(z)) = δkj for zeΘ. Set

Then Pβ{z) and R^(z, ζ) are defined as before, and the definitions of the various
n(D)

spaces and operators are modified in an obvious way, replacing i by ij and ^ by
ί=i

n(D) dh

Σ Σ with r ^ r j j for j=ί ...nι

D. Thus, X now has the components (XE9{X^})9
£ = 1 j = l

D e ^ £ , i=l . . .n(D), j=ί ...dι

D, for λ = ̂ , X λ has the components (XE, {X%}),
j=l...d!D.

The results of Sects. 2-4 are now extended accordingly in a rather obvious way.
The proof of Lemma 4.3 in the general case requires an additional argument, for
which we refer to [8].
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The local inverse wave operators of Sect. 5 are constructed as before, but now
the operators Fλ + (φ, A) for φή=0 map onto

I f ®Lz(Δ,hD).
λjj — λ k — 1

The basic properties of the inverse wave operators are derived in the same way,
utilizing the generalized Lemma 4.3.

The scattering matrices £fλ(φ,μ) and their inverses ^1(φ,μ) in £%(hD) in-
troduced in Theorem 5.10 are replaced by operators in

Σ Σ®h

whose matrix elements can be written in the following form, utilizing (4.4) and the
assumption mDi = rnDi, for λι

Di = λ^2 = λ, k = 1 ... d^, 1=1 ... dj

D2, setting μ = Q2/2mD,

(^(1), (6.2)

frMM). (6 3)
It then follows from Lemma 3.15, that each element of the matrices £f*{z) and

5^A~
liH(z) has the right analyticity properties and limits for φ-»0, and we conclude

that Theorem 5.11 and Corollary 5.12 hold with £fλ{z) and ^ λ ~ 1(z) replaced by the
above defined matrices of operators and ί^?

λ(Q2/2mD)']λ}λ and ί^λ'
ί(Q2/2mD)']λ λ

replaced by the partial scattering matrices related to the threshold λ, with the
elements

^ V . φ 2 / 2 m D 2 ) = 1 - 2 n i m D j D 2 ( l ) Y l % λ + ρ2/2mD2)W*{ρ)yUl), (6.4)

( ^ ~ 1 ) A 1 A ^ V 2 T O ^ (6.5)

Theorem 5.13 holds with Tκ± and Zκ± defined by

T+Ω = 2πίz~2 X Σ θ y D ί l ^ S O , ΩEJV(G{±(Z,K))

λn = λ k=l

λb = λ k=l

The proof is similar, utilizing the previous modifications. In Lemma 5.14, (5.51) is
replaced by the condition

TK{-Ω = 0 for all Ωejr(Gκι-+)(z,κ)

and (5.52) is assumed. Then (5.53) holds in the form of (6.2) and (6.3) with Y
replaced by % and (5.54) holds in the same form.

Theorem 5.15 is then generalized in the same way as Theorem 5.13,
Remark 5.16 follows, and Theorem 5.17 is proved as before.
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In the case of permutation symmetry the problem of coincidence of thresholds
could also be treated by reduction of H(z) and H0(z) on subspaces of functions of a
given symmetry (cf. [5]).
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