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Abstract. The recently developed concepts of generalized and universal spin
structures are carried over from the orthogonal to the symplectic and unitary
cases. It turns out that the analogues of Spmc-structures, namely the Mpc-
structures and Ml/c-structures, are sufficient to avoid topological obstructions
to their existence. It is indicated how this fact can be used in the geometric
quantization of certain suitably polarized symplectic manifolds with arbitrary
second Stiefel-Whitney class, where the usual Kostant-Souriau quantization
scheme breaks down.

1. Introduction

In field theory, an important criterion for a Riemannian manifold M1 to be a
reasonable model of space-time is that it admit spinors [7]. The conventional
method of dealing with this problem is to require that M has a spin structure [15].
The bundle of spinors over M is then the complex vector bundle associated to the
corresponding principal bundle of spin frames over M and the spin representation
of its structure group Spin on the space of spinors S.

On the other hand, in geometric quantization, one can apply the same idea to a
symplectic manifold M and require that M has a metaplectic structure. The bundle
of symplectic spinors over M is then the complex vector bundle associated to the
corresponding principal bundle of metaplectic frames over M and the metaplectic
representation of its structure group Mp on the space of symplectic spinors S. In
some sense, this contains the complex line bundle of pure symplectic spinors over
M, which provides for an explicit realization of the bundle of half-forms and the
BKS pairing and hence plays an important role in geometric quantization. For
more details, we refer to [14].

1 For simplicity, we work with Riemannian (+ + ... +) rather than Lorentzian (H— ... —)
manifolds M and assume them to be even-dimensional, but this does not affect our arguments
concerning spin and spinors. We also tacitly assume M to be oriented (so that in particular, the first
Stiefel-Whitney class \v1(M)eί/1(M,Z2) of M vanishes)
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Finally, consider a (n almost) hermitian manifold M and require that M has a
metaunitary structure. Then one has the complex line bundle associated to the
corresponding principal bundle of metaunitary frames over M and the repre-
sentation of its structure group MU on (C defined as the square root of the
determinant. This line bundle is a square root of (the dual of) the canonical line
bundle of M and is used in various contexts; see e.g. [1,2].

There is a topological obstruction to the existence of spin structures on a
Riemannian manifold M, of metaplectic structures on a symplectic manifold M,
and of metaunitary structures on a (n almost) hermitian manifold M: In all three
cases, such structures will exist iff the second Stiefel-Whitney class
w2(M)eH2(M, Z2) of M vanishes. Moreover, whenever w2(M) = 0, the set of
inequivalent spin structures resp. metaplectic structures resp. metaunitary struc-
tures on M can be brought into a 1 — 1 correspondence with the first cohomology
group H\M,ΊL2) of M with ^-coefficients. See [5, 15, 14, 1, 10].

However, there exist interesting manifolds, such as the complex projective
spaces Pn(C) with n even, whose second Stiefel-Whitney class is nonzero and for
which the above methods do not apply. In particular, in geometric quantization,
where PΠ((C) appears as the quotient of energy surfaces for the (n+ l)-dimensional
harmonic oscillator, the conventional Kostant-Souriau quantization procedure
breaks down if n is even.

2. Generalized Spin, Metaplectic and Metaunitary Structures

To resolve this dilemma, let us introduce the concept of a generalized spin structure
[8,18] and the analogous concepts of a generalized metaplectic structure and
generalized metaunitary structure: Fix a Lie group G which contains TL2 as a
discrete central subgroup, and consider the extension modZ2

SpinG(2n) = Spin(2n) x ΈG (2.1)

of the spin group Spin(2n) by G, where 2n = dimM. We have the commutative
diagram

1 1

i I
1 > 7L2 > Spin(2n) -̂ -> S0(2n) > 1

Ί
> SpinG(2n) -̂ -> S0(2n) > 1 (2.2)

G/Z2_



Universal Metaplectic Structures 271

with exact rows and columns, where σ is the double covering of S0(2n) by Spίn(2n),
and the homomorphisms σG, ζ, η are given by

σG[A#] = tφ4), ζ(,4) = [A 1] , ηlA,g ] = [0] (2.3)

for A^8pin(2n\ geG, where the square brackets indicate taking equivalence
classes modZ2. Then a generalized spin structure on M is a SpmG(2n)~structure on
M. Applying the homomorphism η to the (transition functions of the) principal
bundle of generalized spin frames over M, we obtain a principal (G/Z2)-bundle
over M, which we shall call the canonical prolongation of the given generalized spin
structure (to G/Z2). For the symplectic case, we replace S0(2n) by Sp(2n,R),
Spin(2n) by the double covering group Mp(2n, IR) of Sp(2n, IR), and SpinG(2n) by

MpG(2π, IR) - Mp(2n, IR) x z2G , (2.4)

while for the unitary case, we replace S0(2n) by U(n\ Spin(2n) by the double
covering group MU(n) of U(n), and SpinG(2n) by

M(7G(n) = MΪ7(π)xZ 2G, (2.5)

using the same notation for the homomorphisms. Moreover, fix a representation
T : G-*Aut(V) of G on a complex vector space V taking the nontrivial element of
TL2 C G to — idv. Then the direct product of T with the spin representation
Spin(2n)-*Aut(S) yields a representation T:SpinG(2n)-+Aut(S) of SpinG(2n) on the
space S = S®V of "spinors with coefficients in F". Hence given a generalized spin
structure on M, we can define the bundle of generalized spinors over M as the
complex vector bundle associated to the corresponding principal bundle of
generalized spin frames over M and the representation T of its structure group
SρinG(2n). For the symplectic case, we replace Spin(2n) by Mp(2n, IR) and SpinG(2n)
by MpG(2n, IR) to obtain the space S — S® V of "symplectic spinors with coefficients
in F" and the bundle of generalized symplectic spinors.

As a well-known example [3, 2, 11] to be discussed extensively below, we
consider the Spmc-structures, Mpc-structures and M(7c-structures, where G= (7(1),
G/Z2 = (7(1), the homomorphism 77 is the squaring map in the second component,
and Γ is the defining representation of G= 17(1) on F = (C. The particular feature
here is that S = 5 since S is a complex vector space anyway, so that the generalized
(symplectic) spinors are just ordinary ones.

In general, there is still a topological obstruction to the existence of generalized
spin structures on a Riemannian manifold M, of generalized metaplectic structures
on a symplectic manifold M, and of generalized metaunitary structures on a(n
almost) hermitian manifold M, but it involves a weaker condition than the
vanishing of the second Stiefel- Whitney class. For example, if G= (7(1), then in all
three cases, such structures will exist iff the second Stiefel-Whitney class
w2(M)eH2(M,2£2) of M is the reduction mod 2 of an integral cohomology class, i.e.
iff there exists a cohomology class cleH2(M, TL] such that w2(M) is the image of c{

under the homomorphism H2(M, 7L}-*H2(M, Z2) of cohomology groups induced by
the homomorphism TL-*TL2 of coefficient groups [2, 11]. This raises the following
natural question : Can we choose G in such a way as to make this obstruction vanish
altogether? We shall show that this can indeed be done, and that moreover there
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exists a distinguished SpwG-structure resp. MpG-structure resp. M(7G-structure on
any M, which we shall call the universal one.

From the aforementioned criterion, it is clear that in the symplectic and
unitary cases, the topological obstruction will already vanish for G^ (7(1) : In fact,
the symplectic case reduces to the unitary case since U(n) is the maximal compact
subgroup of Sp(2w,IR), so that any symplectic manifold becomes an almost
hermitian manifold with respect to some compatible almost complex structure.
For the statement in the unitary case (where the tangent bundle of M is a complex
vector bundle), choose c± to be the first Chern class of M (which is what the
notation above was supposed to suggest). However, this argument is not sufficient
for our purposes since we are also interested in singling out specific Mpc-structures
and MI7c-structures, respectively, and in studying connections.

The idea of the construction is very simple [4] : All we need is a homomor-
phism χ:Spin(2n)-+G taking the nontrivial element of TL2 in Spin(2n) to the
nontrivial element of TL2 in G. Indeed, given χ, we define a homomorphism

χ':Spin(2n) —+ SpinG(2n)

A * - > ί ( ' }

and observe that χr factors through the covering homomorphism
σ :Spin(2n)->SO(2n) to yield a homomorphism χ" :SO(2n}-*SpinG(2n) which is a
right inverse to the homomorphism σG : SpίnG(2n)-^SO(2n). Therefore, applying χ"
to the (transition functions of the) principal SO(2n)-bund\Q of orthonormal
frames of a Riemannian manifold M, we obtain the desired principal SpίnG(2n)-
bundle of universal spin frames of M. Moreover, under the induced χ"-equivariant
homomorphism χ" of principal bundles over M, a given metric connection in M -
i.e. a principal connection in the bundle of orthonormal frames of M - maps to2 a
well-defined principal connection in the bundle of universal spin frames of M. In
particular, the Levi-Civita connection in M - i.e. the unique metric connection in
M with vanishing torsion [12] - maps to what we shall call the Levi-Civitά
connection in the bundle of universal spin frames of M. Obviously, this technique
also works in the symplectic and unitary cases, and we use the same notation for
the homomorphisms.

To get an impression of how large G has to be chosen in order for the desired
homomorphism χ to exist, note that G has to contain the image of χ as a Lie
subgroup H whose Lie algebra ΐ) is nontrivial. (Otherwise, H would be discrete and
hence trivial since Spin(2n\ Mp(2n, IR) and MU(n) are connected, and χ could not
take the nontrivial element of TL2 there to the nontrivial element of TL2 in G.) This
leaves the following possibilities :

a) Spm(2)^ϊ/(l):ί) = M(l)^R
b) Spin(4)^SU(2) x SU(2):fy = su(2) or ί) = sw(2)0sw(2). This important special

case is analyzed in [4] and was one of the starting points of the present work.
c) Spin(2n) (πφ 1, nή=2) resp. Mp(2n, IR): These Lie groups are simple, so that

ί) = spίn(2n) = so(2n) resp. f) = mp(2n, IR) = sp(2n, IR).
d) ML7(n):ϊ) = w(l)^IRor l) = su(n) or I)

We use the concept of mappings of connections as explained in [12, p. 79f.]
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In particular, we see explicitly that in the unitary case, it is sufficient to work
with G— L/(l) because we have the homomorphism

at our disposal which is the square root of the determinant. In other words, we
have the commutative diagram

MU(n) -*-> [7(1)

2 (2.8)

U(n) -^ U(l)

As before, we define a homomorphism

MUc(n)

and observe that χ' factors through the covering homomorphism σ :MU(n)->U(n)
to yield a homomorphism χ": U(n)-*MUc(n) which is a right inverse to the
homomorphism σc :MUc(n)-+U(n). Therefore, applying χ" to the (transition
functions of the) principal [7(n)-bundle of unitary frames of a(n almost) hermitian
manifold M, we obtain the desired principal Ml/c(rc)-bundle of universal me-
taunitary frames of M. Moreover, under the induced χ"-equivariant homomor-
phism χ" of principal bundles over M, a given almost complex metric connection
in M - i.e. a principal connection in the bundle of unitary frames of M - maps to2 a
well-defined principal connection in the bundle of universal metaunitary frames of
M. In particular, the hermitian connection in M - i.e. the unique almost complex
metric connection in M with connection form of type (1,0) [12] - maps to what we
shall call the hermitian connection in the bundle of universal metaunitary frames of
M. Finally, we have the commutative diagram

MUc(n)

(2.10)

I7(n) -̂  ί7(l)

In the orthogonal and symplectic cases, on the other hand, the choice G = [7(1)
has to be combined with using reductions of structure group: In fact, notice first
that the embedding K : U(n)-+S0(2n) resp. K : ί7(n)->Sp(2n,R) lifts to an embedding
κ:MU(n)->Spin(2n) resp. K :M[7(n)-»Mp(2n,R) such that the diagram

M ί7(n) -£-> Spin(2n) MU(n) -£-> Mp(2n, R)
σ σ resp. σ i (2.11)

U(n) -̂ -> S0(2n) U(n) -^ Sp(2w,R)

is commutative. (In fact, as double covering groups, Spin(2n), Mp(2n,R) and
MU(n) corresponds to certain subgroups - namely {!}, TIL and TTL - of the fun-
damental groups π1(SO(2w)) = Z2, πj(Sp(2n, R)) = TL and π1(U(n)) = Z, respec-
tively. But K induces a homomorphism K^ of fundamental groups taking TIL to {1}
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resp. to 2Z, so that by a general theorem K lifts to a homomorphism k which is
then easily seen to have trivial kernel) Hence K also induces an embedding

κc : M Uc(n) — > Spinc(2n) κc : M Uc(n) — > Mpc(2n, IR)

' ( }

and we obtain the commutative diagram

M t/c(n) -̂ > Spinc(2n) MUc(n) -^ Mpc(2n, IR)
χ"\ \σc [σc resp. *"j [σc jσc , (2.13)

[/(n) -̂  S0(2n) ί/(n) -*-> Sp(2n,lR)

where the composition κ°^χf' is precisely the homomorphism introduced in [3].
Finally, we have the commutative diagram

Spίnc(2n), Mpc(2n, IR)

\^ resp. *c x-J \! . (2.14)

U(n) -̂ -> 17(1) U(n] -̂ U 17(1)

Now we assume we are given a Riemannian resp. symplectic manifold M, together
with a compatible almost complex structure turning it into an almost hermitian
manifold, so that the bundle of orthonormal resp. symplectic frames of M has the
bundle of unitary frames of M as a distinguished reduction of structure group from
S0(2n) resp. Sp(2n,IR) to U(n). Applying κc°χ" to the (transition functions of the)
latter, we obtain a canonical 5pmc-structure resp. Mpc-structure on M, which we
shall call the hermitian one, and which has the universal M [7c-structure on M as a
distinguished reduction of structure group from Spinc(2n) resp. Mpc(2n,IR) to
MUc(n). The canonical prolongation (to 17(1)) of all these - as a principal 17(1)-
bundle, or equivalently, a hermitian complex line bundle over M - is, due to (2.10)
and (2.14), just the determinant bundle ΛnTM of M, i.e. the dual of the canonical
line bundle of M, with first Chern class

Moreover, under the induced (κ;c°χ//)-equivariant resp. Jeί-equivariant homomor-
phisms κc°χ" resp. det of principal bundles over M, the hermitian connection in M
- as a principal connection in the bundle of unitary frames of M - maps to2 what
we shall call the hermitian connection in the bundle of hermitian 5pmc-frames resp.
Mpc-frames resp. in the determinant bundle of M. In particular, the latter is the
unique metric connection in the hermitian complex line bundle ΛnTM with

curvature -ρ, where ρ is the Ricci form of M [12], and cί =c1(M) is represented by

the 2-form — —-p.
4π

We still have to discuss to what extent the constructions of the previous
paragraph depend on the choice of the compatible almost complex structure. Note
that if M is a Riemannian resp. symplectic manifold and P is its orthonormal resp.
symplectic frame bundle, a compatible almost complex structure J on M can be
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identified with a reduction of structure group Q of P from S0(2ri) resp. Sp(2n, IR) to
U(n) Q being a principal £/(π)-bundle contained as a subbundle in the principal
SO(2n)-bund\Q resp. Sp(2n, IR)-bundle P (over M). Now in the orthogonal case,
such a reduction of P need neither exist nor be unique (up to an isomorphism of
principal L/(π)-bundles over M): As counterexamples, note that M — S2n does not
admit any compatible almost complex structure if nή= 1,3 [12], while checking first
Chern classes shows that M = PΠ((C) admits two inequivalent almost complex
structures, J and — J, (inducing the same orientation) if n is even. In the symplectic
case, on the other hand, such a reduction of P always exists and is unique (up to an
isomorphism of principal l/(n)-bundles over M) because U(n) is a maximal
compact subgroup of Sp(2n,lR). Therefore, on a symplectic manifold M, a
hermitian Mpc-structure always exists and is unique up to an isomorphism of
principal Mpc(2n, Unbundles over M unfortunately, this does not mean that it is
unique as an Mpc-structure on M.

In fact, let Jί and J2 be two compatible almost complex structures on M
defining two reductions β1 and Q2 of P as above, and let Pk = Qkx V(n}Mpc(2n^)
be the associated principal Mpc(2n, R)-bundles and

(lid)

the principal bundle homomorphisms defining the two corresponding hermitian
Mpc-structures on M (k = 1,2). If / : Ql -+Q2 is an isomorphism of principal U(ri)-

bundles over M, it induces an isomorphism /^/XM^M^IΠ.IR) : jPι~*^2 °f
principal Mpc(2n, IR)-bundles over M as well as an automorphism / : P-»P of the
principal Sp(2n, IR)-bundle P over M taking Qί cP to Q2 c P, such that the diagram

(2.17)

is commutative. Now it is known [10, 15] that this is not sufficient for the two
Mpc-structures to coincide. However, any two Mpc-structures on M differ by a
uniquely determined element of the first sheaf cohomology group
H1(M, C°°(M, U(ί))) since this operates in a simply transitive manner on the set of
Mpc-structures on M, and the previous argument shows that the two discussed
above actually differ only by an element of lmd° [10]. Here, d° is the connecting
homomorphism

dQ:H°(M9C"(M,Sp(2n,1Kft) - >Hl(M, C^M, 17(1))) (2.18)

in the long exact cohomology sequence induced from the short exact sequence

1 --- >ί7(l) --- >Mpc(2n, IR) --- >Sp(2π, IR) --- >1 (2.19)

of Lie groups.
Under the isomorphism Hl(M,C^(M,U(ϊ)))^H2(M,Z) given by the first

Chern class, lmd° is mapped to the 2-torsion subgroup of H2(M,Z). Thus if
H2(M, Z) has no 2-torsion, the hermitian Mpc-structure on M is independent of the
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compatible almost complex structure J used in its definition and will therefore be
called the universal one. Otherwise, we speak of the "universal" Mpc-structure on
M only if some choice of J is understood. In any case, the hermitian connection
depends on the choice of J.

3. Applications to Geometric Quantization

It is known that compatible almost complex structures on a symplectic manifold
(M, ω) may be viewed as a particular case of Lagrangian vector subbundles of TCM
(also called polarizations if they satisfy additional requirements one of which is
involutivity). More precisely, compatible almost complex structures J bijectively
correspond to those Lagrangian vector subbundles F such that the restriction of
the sesquilinear form (X, Y)H> — iω(X, Y) to F is positive definite. For short, such an
F is called positive definite, too. The correspondence assigns to J its eigenbundle
F=T1'°M for eigenvalue ί; moreover, the latter is involutive if and only if the
Nijenhuis torsion of J vanishes. In addition, the eigenbundle T°' 1M for eigenvalue
-us T°>1M = T1>°M and satisfies T1>°M®T°>1M = T<CM.

Now the second author has proposed [9] a geometric quantization method
(extending that of Kostant-Souriau) which consists of the following steps: First, a
connection on the bundle of symplectic frames of M is distinguished by a given
pair of Lagrangian vector subbundles satisfying F®G=T€M. This is done in a
way very similar to that yielding the hermitian connection on an almost hermitian
manifold. Then this connection is lifted to one on a suitable bundle of generalized
metaplectic frames (of type Mpc(2n, IR)) such that the projection of its curvature to
u(l) C mpc(2n, IR) is just — 2πίω. Next, using F and G once more, the structure group
is reduced from Mpc(2n, IR) to a suitable subgroup carrying a representation which
allows to associate a complex line bundle L with 2c1(L) = 2[ω] + c1(M), where
[ω]eH2(M,IR) denotes the cohomology class of ω. The sheaf of sections in L
which are covariant constant along F serves to construct the quantizing Hubert
space in a manner entirely analogous to the Kostant-Souriau theory.

A complex line bundle L with connection satisfying the above condition on its
first Chern class will be called a quantum bundle - not to be confused with the
prequantum bundle Lκs introduced by Kostant [13] and Souriau [16] which has
first Chern class [ω], if it exists.

Compared with the Kostant-Souriau theory, the underlying structure group
Mp(2π,IR)x (7(1) is replaced by its quotient Mpc(2π,IR), allowing to abandon
physically superfluous restrictions. Only the latter group has a direct physical
interpretation, as it consists of all automorphisms of an irreducible Weyl system
projecting down to the symplectic group (for this assertion, see [17], but note the
different terminology used there).

In case the given Lagrangian vector subbundles satisfy F@G = T(CM, G = F,
and F is positive definite, the above quantization method can be combined with
the use of universal metaunitary and metaplectic structures. This choice of
Lagrangian vector subbundles selects a reduction of the bundle of symplectic
frames of M from Sp(2n, IR) to U(n\ and under this reduction, the aforementioned
connection distinguished by F and G is the hermitian connection with respect to
the almost Kahlerian structure on M induced by F.
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Now consider diagram (2.13) and let Q and P be the unitary and symplectic
frame bundles of M, respectively further let Q and P be the universal metaunitary
and metaplectic frame bundles of M, respectively. Since Q and P are equipped with
the hermitian connection, we have to consider the hermitian connection on Q and
P as well to obtain the following commutative diagram of principal bundles with
connection

(3.1)

In the case of interest, MUc(n) is indeed a suitable subgroup of Mpc(2π,lR). We
have three characters of MUc(n) at our disposal, namely det°σc, η and

χc:MUc(n)~> E7(l)

\_A, λ] i—>χ(A)-λ

However, all three complex line bundles arising by associating C to Q with one of
these characters have first Chern class c1(M), and thus cannot be quantum
bundles. But since H2(M,Z)^H1(M,C00(M, 17(1))) operates in a simply transitive
manner on the equivalence classes of generalized metaunitary and metaplectic
frame bundles (with structure groups MUc(n) and Mpc(2π,lR), respectively) [10],
this lack can be compensated for by twisting Q and P with the cohomology class
i(2[ω] — c^M)) whenever the latter is integral. This will change the first Chern clas-
ses of the complex line bundles associated via det^σc, η and χc to Cj(M), 2[co] and
f(2[ω] + c1(M)), respectively; thus the last one will be a candidate for a quantum
bundle.

Let us make the twisting procedure more explicit, so that it also applies to the
representing frame bundles and the connections thereon. The cohomology class

|(2[ω] — c^M)) being represented by \ 2ωH ρ , choose a hermitian complex
V 4^ / / i

line bundle K with connection such that its curvature is \ — 4πίω <

which is possible if and only if the above class is integral [13]. Then consider the
homomorphisms

τ : MUc(n) x 17(1) -> MUc(n) τ : Mpc(2n, IR) x U(l) -» Mpc(2n, IR)

Applying these to (the transition functions of) the Whitney products Q x MK and
P x MK, where K is the LΓ(l)-frame bundle associated to K, we obtain new
generalized metaunitary and metaplectic frame bundles Qω and Pω (including lifting
maps σc

ω' Qω~^Q and ^ω' ^ω"*-^ respectively. Moreover, the hermitian con-
nections on Q resp. P combine with that on K to yield connections on Qω resp. Pco.

Finally, application of χc to (the transition functions of) the M(7c(π)-bundle Qω

yields a principal [7(l)-bundle L with connection whose associated complex line
bundle is the desired quantum bundle. In fact, it is just the quantum bundle
considered in [6].

In contrast, application of η to (the transition functions of) Qω or Pω yields a
principal L/(l)-bundle L^s with connection whose associated complex line bundle
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is the square of the Kostant-Souriau prequantum bundle Lκs whenever the latter
exists.

The relations between the relevant principal bundles are summarized in the
commutative diagram

(3.4)

where all principal bundle morphisms are compatible with the respective con-
nections.
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