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Some Remarks on the Gribov Ambiguity
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Abstract. The set of all connections of a principal bundle over the 4-sphere with
compact nonabelian Lie group under the action of the group of gauge
transformations is studied. It is shown that no continuous choice of exactly one
connection on each orbit can be made. Thus the Gribov ambiguity for the
Coloumb gauge will occur in all other gauges. No gauge fixing is possible.

§1. Introduction and Notation

Let 21 denote the set of all vector potentials (connections) for a fixed principal
bundle P with gauge group G over a base space M. The group of the bundle G is a
compact nonabelian group and M is an oriented Riemannian manifold. For each
Aetyi, let FA denote the field (curvature two form with values in the Lie algebra g
of G) of A and ||F^||2 the norm square or action. Let (5 denote the group of gauge
transformations of P (the automorphisms of P which induce the identity map on
M). Since (5 is a group of transformations on P, it induces a group of
transformations on 21. If φe (5 and AeW, we denote this transformation by φΆ. It
is easy to see that φ A = A — (DAφ)φ~l where DA is the co variant differential. In

local coordinates, DA=- -- \-Ay so that (φ A)y= — - — φ~1 + φAγφ~1. Also,

Let 9ΐ = 9I/(5 the orbit space of 2ί under ©, i.e., the set of equivalence classes
where A and B are equivalent if there exists a φe(δ such that B = φ A. In the
Feynman approach to quantum field theory one wants to make sense out of
j*£-H^II 2{ }3fA/le~^F^22A, where the integrand of the numerator may
21 21

be constant on orbits of (5. This introduces a difficulty because the orbits are
expected to have infinite measure. One should really integrate over 5ft, an intractable
space. The physicists attempt to get round this difficulty by choosing a particular
gauge, that is, choosing in a continuous manner one vector potential on each orbit
this choice is a map s:9t-»2I such that p°s = I where p: 91̂ 51 is projection. They
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integrate over s(9l) with a weight factor the Jacobian change of variables of
p:s(5l)->ϊl. The determinant weight factor is interpreted as the integral of a
probability measure along the fibers (Fadeev- Popov ghosts).

To describe the particular gauge used, fix ,4e2l, and let ίfA = [A + τ',D!

Aτ = Q,
]. Fixing A makes the affine space 91 a vector space isomorphic to

), equivariant 1-forms on B with values in g. The set £?A is easily seen to
be the orthogonal compliment to the tangent space of the orbit of @ at A for D% is
the adjoint of the operator DA:C

co(A°(S)g)^CGO(A1(S)g). When M = R4, P the

trivial bundle, and A the 0 vector potential, then yA=\τy\ Σ ~ϊ~L =®\- ^n

[ y = QOXy }

general, since £fA is perpendicular to the orbit at A, it does not intersect the orbit of
A near A, except at A. Generically, A remains transversal to the orbits near A. One
expected that £fA was a gauge : it intersected each orbit exactly once. We shall call
£fA a generalized Coloumb gauge.

Recently Gribov [1] observed for M = R4, P the trivial bundle, G = SU(2),
A = 0, and appropriate conditions at oo, that the Coloumb gauge intersected A at a
large distance from A. He also discussed in detail the following situation. When

3

M=R4, any A is equivalent to a B with £0 = 0, where B = B0dt+ £ BjdXj Let

; ^40=0], the set of vector potentials for the trivial SU(2) bundle over
IR3 depending on a parameter t. The subgroup of (5 leaving 2ί0 invariant as a set is
the smooth functions of R3 into SU(2). With appropriate conditions at oo, Gribov

3 ^>shows that the Coloumb gauge £ -r-̂  = 0 intersects the orbit through the 0
j = ι °xj

vector potential at a large distance from 0. More recently Jackiw et al. [2] have
examined these ambiguities of the Coloumb gauge.

Since the Coloumb gauge is not a gauge, one naturally asks whether a true
gauge exists. With no conditions at oo, it is easy to exhibit some — algebraic gauges
for example. When conditions are imposed at oo, it is far from clear that gauges
exist. The purpose of this note is to point out that if the conditions at oo amount to
studying M = S4 = #4u oo the unit sphere in IR5 (or M = S3 for any fixed time), then
topological considerations imply that no gauge exists, i.e., no map s exists. We also
study the infinite dimensional bundles, connections, and curvature associated to
p:2ϊ-»2I/© = 9l. Though our results hold for any compact connected semi-simple
group G, for purposes of clarity we restrict our attention to G = SU(JV), N> 1, and
we assume M is compact. The condition at oo imposed by Gribov is that the gauge
transformation from R3 (or R4) to G extends to S3 (or S4) with φ(co) = I. The
topological arguments will then still apply.

§ 2. Results and Outline of Proofs

Let ®A = [φe<5:>φ A = A'], the isotropy or stability group at A. Since φΆ = A
— DAφ-φ~l, φe &A if and only if DAφ = 0. Hence such a φ is determined by its
value at a single point m of M. If E is the TV-dimensional vector bundle over M
associated to the standard representation of SU(ΛΓ) on (C ,̂ then (5 is isomorphic to
C°° sections of Hom(£,£) which are special unitary at each point. Let HA denote
the holonomy group of A at m. Then φe &A if and only if φ(m) commutes with HA
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and lies in SU(JV). We call A irreducible if HA is an irreducible subgroup of SU(JV).
When A is irreducible, φeG)A if and only if φ(m) lies in the center of SU(ΛΓ)
= {e2πllNI} = ZN, the cyclic group of order N. Since ZN leaves every A fixed, we
introduce ©^©/Z^ which acts on 21. Let & denote the set of irreducible
connections in 21, and let 91% = έ%/®. We remark that if P is a nontrivial SU(2)
bundle over M and H2(M,Z) = 0, then ^ = 21. For a reducible vector potential A
would split E into a direct sum of two line bundles trivial over M.

Theorem 1. J* is an open dense set in 21 and 9l<% is open and dense in 91. & is a
principal bundle over yi@ with group ©.

The topology of © is the C°° relative topology as an open set in Hom(E,E).
The C°°-topologies of the orbit spaces 91 and 5ft^ are the topologies as discussed in
Ebin [3] and Palais [4]. They deal with the more difficult situation where 21 is
replaced by the space of metrics of M and © by Diff(M), the group of
diffeomorphisms of M. The group Diff(M) is more complicated than the group of
gauge transformations because the exponential map does not cover a neigh-
borhood of the identity in Diff(M) whereas it does for ©. In short, the topology of
91 is determined by the local slices ί?A. 91 is a metrizable Hausdorff space. 9l<% is an
infinite dimensional C°° Riemannian manifold whose tangent space at an orbit
through B is isomorphic to <^B and the inner product is given by —tΐ(τ1 Λ*τ 2 )
where B + τ e^, j = 1,2.

Theorem 2. The homotopy groups πJ.(J
>) = 0.

The closed set C = 21 — & is a stratified set—the union of sub-manifolds of 21. If
ceC, one can find an infinite dimensional subspace of the tangent space to c in 2ί
orthogonal to C at c. As a result there is a neighborhood ^ of c in 21 such that
Ti^U — ̂ nC) = 0. Suppose /:S/->^c2I, Sl the boundary of an /+! simplex A.
Since 21 is affine, we can extend the map linearly to /:zl->2l, with the interior of
the simplex possibly intersecting C Use a small subdivision and the simplicial
approximation theorem to find a map g homotopic to / so that the image of each
small simplex under g lies in some (JU. Now move the k dimensional skeleton off C
inductively beginning with k = Q and ending with fe=/+1. The final map is
homotopic to g and lies in &.

The set C is a bifurcation set and has been analyzed for the group Diff(M)
acting on the space of metrics by Fisher and Marsden [5] and Bourguignon [6].
The techniques used in the proof of Theorem 2 also show that the metrics with
trivial isometry group is a classifying space for Diff(M).

If a continuous gauge s:ϊt-»2C were to exist, then sj^ :9l^->^ would give a
cross section of the principal bundle 3d, in which case ̂  = 91^ x ©. Since 7 (̂5) = 0,
we could conclude that πy((5) = 0.

Theorem 3. π/©)Φθ for some j, for M = S4 (or S3).

Corollary 4. No continuous gauge s:9il->21 exists, for M = S4 (or S3).

To study the topology of ©, we introduce some exact sequences. By definition,
O-^Z y-^©-*©-^. Hence, if © is connected, π^ffiJΦO; in general .̂(©) = ̂ .(©) for
j>l and 0->π1((5)^π1(©)^ Z]V^π0(©). To analyze (δ, let (5m denote the gauge
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transformations that are the identity at m. We have 0-»©m->©->SU(JV)->0. Hence
πJ.+ 1(SU(]V))->π/©m)^π/©)^π/SU(AΓ)). In particular, since π/SU(N)) = 0 for
; = 1 and 2, ̂ (©J^©) for /-O and 1.

Theorems. ©m is weakly homotopic to the set of all maps {(M,m)->(SU(JV),/)}
when dimM^4. When M = Sr, π/©m)^πj+,(SU(AΓ)).

To see this, let D± denote the upper (lower) hemisphere of Sr and
P± =P\D± = D± x SU(ΛΓ). The principal bundle P is determined by a patching map
ψ of the equator Sr~1-+SU(N). When r = 4, the homotopy classes of such maps is
determined by an integer fe, the Pontrjagn index or minus the second Chern class
of P. If φe®, then φ — {φ + ,φ~} where φ± :D± -*SU(N) and φ~ =ψφ + ψ~l on the
equator ST"1. Let m be the north pole of Sr so that φe©m implies φ(m) = L Let
β:φ^φ+ mapping ©m->[φ + :(D+

9m)-*(S\J(N),I)~] = jf. Clearly β is a homomor-
phism with kernel JΓ = [φe©m; φ+ :D+ ->/] which is the same as the maps
φ~ :(D~,5r~1)->SU(AΓ),/)). Since 3? is contractible, the map φ-*φ~ of ©m to JΓ is
a weak homotopy equivalence. Moreover (D~, 5r~ 1)^(5f><, n) so the first part of the
Theorem holds for Sr. When dimM = 4, the same argument applies with D+ a ball
about m and D~ =M — D+ since c^ =0 and c2 can be localized. When dimM<4, P
is trivial so that ©m = \_φ :(M, m)—»(SU(./V), /)]. Smoothing homotopies [7] and the
fact that the smash product Sj ΛSr = Sj+r gives the second statement of Theorem 5.

Theorem 3 and the subsequent Theorems 6 and 7 follow from Theorem 5, the
known homotopy groups for SU(JV), and the homotopy exact sequences for
O-^Ztf-*©-*©-^, 0-*©m->©->SU(N)->0. We provide some details using mini-
mum information about πJ (SU(Λ/')) (see Toda [8]).

When r = 3, π0(©j£π3(SU(ΛO) = Z Since π0(©w) = π0(©) and
π1(©)->ZΛ-^π0(©) = Z, π,(©)φO for M = S3. When M = S4, π0(©) = π4(SU(N)) = 0
for N>2. Hence π1(©)φO for M = S4 and G = SU(N\ N>2. For SU(2), we noted
that πχ©) = πχ©) for j=2 or 3 while π2(©J^π6(SU(2)) = π6(53)-Z12. But
π3(©)-*π3(SU(2))^Z-^π2(©m)^Z12 ^π2(©)->π2(SU(2)) = 0. Hence either π2(©)
or π3(©) is not zero. This completes the proof of Theorem 3.

Note that ©m acts on 21 without fixed points, for a gauge transformation
leaving both a point of P and a vector potential fixed is the identity. The last
sentence of Theorem 5 implies that 2ϊ-*2l/©m has no cross section.

Theorem 6. For M = S4, $1% is simply connected when N>2. For SU(2), ΪIΛ is
simply connected for Pontrjagn index k odd and π1(9ίl^) = Z2 for k even.

Since ^ is homotopically trivial, π^ϊl^^πoί©), which is 0 if © is con-
nected. But π0(©) = π0(©J = 0 for N>2 as noted above. For SU(2),
π0(©m) = π4(SU(2)) = Z2. Thus π0(©) is 0 if and only if —/e© does not lie in the
connected component of © (from the sequence 0->Z2->©->©->()). The map — /
can be connected to a map φe©m, i.e. a map of (S4, ra)->(S3 = SU(2), /). It turns out
that this map is the suspension of a map S3^>S2 of index k. Hence φ is
homotopically trivial, i.e. lies in the component of the identity, if and only if fc is
even.

Theorem 7. The principal bundle & with group © has no flat connection.

Since & is connected, so is 91̂ . When 91̂  is simply connected, a flat connection
would imply a continuous gauge. By Theorem 6, we need only consider the case
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N = 2 and k even. Let (50 be the component of the identity in (5, so that ^/(50 is the
simply connected double cover of 91̂ . A flat connection for & over 9i@ implies a
cross section for J* over jy©0 with group ©0. This does not exist because

πj(@0)φO for some j. In fact ^.(©0)=^(<5) forj>0. But π/(©)^π/(©J^π4+/(S3)-Z2

for / = 0, 1. From the sequence 0->π1(©)^π1(©)^Z2^π0(©)^π0(©), we can
conclude that π1(©)φO.

Theorem 8. For every direction A + sμε^A there exists anA + τe3"A such that A + τ
is tangent to the orbit at A + s0μ.

Thus in every direction, the generalized Coloumb gauge eventually has a
tangent to an orbit this gives an infinity in the determinant of the Jacobian for the
Fadeev-Popov approach. Theorem 8 is proved by noting that the tangent space to
the orbit of A + μ is [(DA + μ)f, /eCw(/t°(x)#)]. So we want to find an s03τ
= (DA + s0μ)f and DAτ = 0. Hence (DADA + s0DA°μ)f must equal zero. Since the
symbol of D*°μ is not nonnegative, the self-adjoint operator D*°μ is not
nonnegative. Hence for sufficiently large s0, D%DA + D%°s0μ has a null space. Set

for

Theorem 9. The set [τ ^ + τe^] is the horizontal space at A of a connection of
the bundle & with group ©. The curvature of this connection is a 2-form which at A
assigns to the pair τ1 ? τ2 with Dfoj = Q,j = 1, 2 the Lie algebra value (DADA)~ 1(b*(τ2)
— fof^τj, where bτ is bracket by τ.

Since (5 acts as a group of isometries on 91 and J*, © preserves the orthogonal
complement to the fiber. Hence we have a connection. Locally, ^A is a cross
section, so gives a connection with 0 curvature. The curvature of the desired
connection is computed by the usual formula for the difference of two curvatures
in terms of the difference of the connections. In a subsequent paper we shall study
the characteristic classes of 91̂  in terms of the curvature above as well as the
characteristic classes of the tangent bundle of 91̂  in terms of the Riemannian
curvature of 91% for the metric that ̂  defines on ϊl^. Note that for G abelian,
brackets are 0 so that the adjoint of bracket, b* = Q. Hence the curvature is 0 and
the connection is integrable. An integral submanifold provides the gauge for
quantum electrodynamics.

Since ϊl^ and ϊl^ are paracompact, one way to avoid the difficulty posed by
the Gribov ambiguity is to use a locally finite covering {i^} and a subordinate
partition of unity {/^}. For 9l^5 the generalized Coloumb gauges £fA are cross
sections locally. Use the Fadeev-Popov trick locally and weight by /^. On
reducible connections A ε 9ί , the £PA are only slices and intersect nearby orbits in a
compact submanifold, an orbit of the stability group <&A. This is not a serious
difficulty for one can still find a local cross section. This partition of unity
argument would be useful if the covering used could be made explicit.
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