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Abstract. The conditions under which a tensor field can be regarded as an energy-
momentum tensor are discussed. The problem connected with dilatational and conformal
symmetries are exhibited.

1. Introduction

In most of the Lagrangean theories of relativistic fields it is assumed
that the trace of the energy-momentum tensor is proportional to the
square of the mass of the particle. Therefore for a massless field the trace
should vanish. The validity of this assumption in the case of free fields
can be explicitly verified.

In this note we are going to show - without having recourse to
Lagrangean theory - that in a theory of strictly interacting, quantal
fields with a mass gap a symmetrical, local, Poincare covariant, locally
conserved tensor field with a vanishing trace can not be used as an
energy-momentum tensor since it gives rise to vanishing generators
of the Poincare group.

This result can be used as an criterion to detect massless particles
in the theory: the vanishing of the trace of the energy-momentum tensor
entails the existence of massless particles.

We are going also to show that the dilatational current built with
help of this tensor field yields a vanishing charge.

Contrary to the naive intuitive judgment the conformal current gives
rise to a vector charge which does not always vanish and coincides with
the energy-momentum vector. This result is verified by inspection on the
model of scalar fields. It gives a prescription how to build an energy-
momentum vector out of traceless tensor fields.

Finally we give the necessary and sufficient condition which have
to be fulfilled by a tensor field in order that it can be used as an energy-
momentum tensor.
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2. Preliminaries

We list the relevant assumptions.
We shall deal with a Quantum Field Theory described by Wightman's

axioms.
In particular, the Poincare group is unitarily implemented in the

Hubert space 2tf by the operators U(A, a\ where A are the 2 x 2 matrices
belonging to SL(2, C) and a = (aθ9 al9a29a3). The generators of this
group satisfy the Lie-Cartan relations

[Pμ,Pv] = 0, (2.1a)

lM^PJ = i(g^Pa-g^Pp), (2.1b)

+g β γM a δ

y.-9aγMβδ).

We assume that the mass spectrum of P2 contains a discrete eigenvalue
m2 =1= 0 separated by a gap from the eigenvalue zero of the unique vacuum
state Ω and the continuous part of the spectrum.

The operator algebra is spanned by a finite set of local, Poincare
covariant, strictly interacting fields {φ} acting as operator-valued
distributions in ffl and in the 4-dimensional Minkowski space. By strict
interaction we mean that each field of the set interacts with another either
directly or through the mediation of the rest of the fieldsί.

We assume that the states φ(f)Ω9 φ e {φ} for / e ^ 4 with non-
vanishing support for p2 = m2 in the momentum space contribute on
the mass shell m2. Then the free asymptotic fields {φin} and {φout}

 e χ i s t

and are different from zero and we assume additionally that they form an
irreducible set.

Let us take any local, Poincare covariant, hermitean tensor field
Tμv(x), where x = (x0, xu x2, x3), is a point in the Minkowski space, which
is local with respect to {φ}2, with the properties

Tμv=Tvμ, (2.2a)

3*7;v = 0, (2.2b)

Tμ

μ = 0, (2.2c)

U(A,a) Tμv(x) U(A,a) = Λ-lσ(A)Λ;1<(A) Tσρ{A(A)x + a), (2.2d)

where A(A) is the representation of the group SL(2, C) in the Minkowski
space. The relations (2.2a-c) are the standard ones satisfied by an ir-

1 The meaning of strict interaction among the fields is explained in more detail in
references [11], [5], and [6].

2 We could as well consider Tμv quasilocal with respect to {φ}.
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reducible (\, y) representation of the Lorentz group with spin one. From
(2.2c-d) and

U(A9 a)Ω = Ω (2.3)

follows immediately that

(β,Tμ v(/)O) = 0. (2.2e)

Our goal is to disclose some properties of the field Tμv as well as of the
translationally non-covariant, locally conserved currents

Dμ(x) = xλTλμ9 (2.4)

Mμλv = xλ Tμv - xx Tμλ, (2.5)

Kμv = (2xvxλ-x2gγλ)Tλ

μ, (2.6)

which we are going to call dilational, rotational and conformal currents
resp.

3. The Dilatational and Translational Symmetries

To begin with let us examine the case of the dilatational current (2.4).
Dμ(x) is a local field operator, local with respect to Tμv as well as to {φ}.

We have the

Statement 1. The charge D induced by the current Dμ(x) exists and
is a self-adjoint operator. D and Pμ have a common dense domain of analytic
vectors.

The proof of the existence of the charge D induced by the translation-
ally non-covariant current

Dμ(x) = xλTλμ(x)

runs essentially along the same lines as that of Kastler et al. [3] for
translationally covariant currents and was given by Reeh [12].

To show that D is an essentially self-adjoint operator we observe that

for each φ e {φ}, is a local field, relatively local with respect to {φ}.
Notice that D is time-independent, in spite of the fact that it does not
commute, in general, with the translation generators; we have namely

Λn in

• + i [ P o , β ] = 0 .
dx0 dx0

Hence the field ί [D, φ] has the asymptotic form
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where φ{£ and φ^ belong to {φex} and c{a'b) are numerical coefficients,
which may also depend on d. Following Kraus and Landau [4] as well as
Snellman [14] it is easy to show that D acts additively and is bounded on
the dense set Ge x of asymptotic states describing a finite number of
particles with the wave functions in the momentum space belonging
to Q) and these states are analytic vectors for D with an infinite radius
of convergence. Since Ge x is dense in jtf* we may apply to D the well
known theorem of Nelson [9] stating that if an operator, hermitean on a
dense set G, possesses a dense set Ga n of analytic vectors and Gan C G,
then this operator is essentially self-adjoint.

The vectors Ga n are also analytic for Pμ.
This accomplishes the proof.
In view of this statement we shall not go wrong by using in the

computations the formal expression

μ3xxλTλ0 (3.1)

instead of D; everything said below can be put in a rigorous form, if
needed.

f lTλκ,Pμ-\ = idμTλκ (3.2)
we have

ίD,Pμ]μxxlTλ0,Pμ]

= ixo$d3xdμToo + iμ3xxidμTiO.

For μ = 0
lD,P0-] = id0$d3xxlTi0 (3.4)

in virtue of (see [11])
$d3xTOμ = <xPμ (3.5)

a — a real number.
This equality should be understood in the spirit of the procedure of

Kastler, Robinson and Swieca ([3], [13], [15], [10]). Of course, Pμ does
not depend on time x0. According to our Statement 1. (3.1) does not
depend on time too, therefore it follows from (3.4) that

[D, P o] = - ίd0 J d3xx° Too = - if d3x Too = - ίaP0

again because of (3.5). Proceeding in a similar way for μ = 1,2,3 we get
eventually

lD,Pμ]=-mPμ. (3.6)

It is easy to show that
[ D , M μ v ] = 0 . (3.7)

From (3.6) we get
2 (3.8)
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or by exponentiating3

eirDP2e~irD = e2arP2 (3.9)

where r is real, — oo < r < -f oo.
Let us take any vector Ψm2 belonging to Jf and satisfying the eigen-

value problem

P2ψm2 = m2Ψm2.
We have

eίrDP2Ψm2 = m2eίrDΨm2 = e2arP2eirDΨrn2. (3.10)

We see that eιrDΨm2 is an eigenstate to the eigenvalue exp( — 2ar)m2

of P2. This leads us to the conclusion that for α=t=O we may produce
nonvanishing eigenstates of P2 with eigenvalues arbitrary close to m2,
which contradicts our assumptions. Therefore we have α = 0, irrespec-
tively whether D vanishes or not.

We have the

Statement 2. The vector charge induced by the current Tμv vanishes.

It is well known ([11], [5], [6]) that this vector charge is proportional
to Pμ under the assumptions listed in Section 2. The immediate implica-
tion of the Statement 2 is the conclusion:

If the theory has a mass gap (m2 Φ 0) the energy-momentum tensor
of the field theory has a non-vanishing trace.

4. Rotational (Lorentz) Symmetry

Let us turn towards the rotational currents (2.5). It can be shown
along the same lines as it was outlined in the proof of Statement 1 for the
case of dilatation that these currents give rise to a selfadjoint tensor
charge. If we recall the results obtained by Divgi and Woo [2], which
hold true under our assumptions, this tensor charge is proportional to
the tensor of the Lorentz generators Mμv.

In a formal notation we have

μ μ μ (4.1)
β - a real number.

In order to show that β = 0 let us consider

Since Mμv does not depend on time and α = 0 (see Statement 2) we get

P J = 0 . (4.2)

This is allowed because of Statement 1.
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On the other hand it follows from (2.1b) that

ίβMμv9 PJ = ίβ(gvλPμ - gμλPv). (4.3)

The only way to reconcile (4.2) and (4.3) is to put β equal to zero. To
summarize we have the

Statement 3. Under the assumptions listed in Section 2 the currents
Mμλv, defined by (2.5), give rise to a vanishing tensor charge.

Statement 3 confirms our conclusion that Tμv, satisfying (2.2c), can
not be used as a energy-momentum tensor, as long as m2 φ 0.

5. The Conformal and Dilatational Symmetries

At last let us examine the currents (2.8). Also in the case of these
currents we are able to show that they give rise to a time independent,
self-adjoint vector charge Kμ.

Using again the formal expressions

$(2xμxλT*-x2Tμ0)d3x = $K0μd
3x = Kμ (5.1)

and taking into account that α = β = 0 (Statement 2 and 3) we get that

lPμ,Kv-]=2ίgμvD (5.2)

as well as
Kμ] = i(gβμKa-gΰcμKβ). (5.3)

We are going now to show that D = 0 and Kμ = yPμ. We show by inspec-
tion on the model consisting only of scalar fields that y may be different
from zero.

Taking any state Ψm2, defined in Section 3, we shall show that Kv Ψm2

belongs to the Hubert subspace J"fm2 characterized by the mass eigen-
values m2, and D = 0.

We have shown that α = 0. Thus by (3.6) D commutes with Pμ and
(5.2) yields

(P2 - m2) Kv Ψm2 = [P 2 , X v] Ψm2 = 4iPγD Ψm2. (5.4)

Since the vector on the right hand side belongs to Jfm2 and (P2 — m2) is
non zero on the orthogonal complement of J^m2 we conclude

v m 2 m 2 (5.5)
and

(5.6)
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From (5.6) and the fact that i[D, φ~\ where φ e {φ} is local with respect
to {φ} as well as that the free fields {φin} or {φout}, belonging to the mass
m2, form an irreducible set, follows4

D = 0. (5.7)

As far as Kv is concerned it follows from (5.2) and (5.7) that Kx is a
translationally invariant vector charge. Since i[Kv, φ\ is local with
respect to {φ} and all fields {φ} interact with each other in a strict sense,
the energy-momentum conservation law as well as the irreducibility of
the fields {φin} imply that Kv differs from Pv by a numerical multiplicative
factor, viz.

Kv = γPv (5.12)
γ - a real number.

Contrary to a naive intuitive feelings that a conformal current should
give rise to vanishing generators Kμ (i.e. γ = 0) we shall show in the
Appendix that γ does not need to vanish. To this end we examine the
model consisting only of a set of scalar fields {φ}. Taking into account
that the charges are determined uniquely as operator expressions
bilinear in the incoming or outgoing fields [7] and with the help of the
Araki and Haag asymptotic procedure [1] we are able to find the exact
form of these expressions and e v a l u a t e ' ^ 5 .

The results of this section can be comprised in the

Statement 4. In a field theory with a mass gap the charge D induced
by the current Dμ, defined by (2.4), constructed with the help of a traceless
tensor Tμv, vanishes.

Statement 5. Under the same premises as Statement 4 the conformal
current Kμx, defined by (2.6), gives rise to a vector charge proportional to Pμ

in general different from zero.

Statement 5 provides us with a method in recovering the energy-
momentum vector using a traceless tensor field.

6. When a Tensor Field can be a Good Candidate for an Energy-
Momentum Tensor

It seems to be obvious from the preceeding discussion that every
genuine tensor field is a poor candidate for a current, in particular for an
energy-momentum tensor as long as a mass gap is present.

4 From DΩ = 0 and Dφ(f)exΩ = 0 for each φ e {φ} follows i [D,φ(/)] e x Ω = 0; the
Reeh and Schlieder Theorem as well as the irreducibility of {φex} imply then [D, φex] = 0
and finally (5.7).

5 A similar result computed also for the model of scalar fields was obtained by Miss
M. Karlic using different techniques (private information).
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However, not every tensor field satisfying (2.2a, b, d) with a non-
vanishing trace can be used as an energy-momentum tensor.

The condition
Tμ

μφ0 (6.1)

is a necessary but not a sufficient condition for that purpose.
To see this more clearly let us consider the following example of a

tensor field Aμv which in addition to (2.2a, b, d) and (6.1) satisfies

μ3xA0μ = aPμ: α + 0, (6.2)
and

O, (6.1a)

(Π+rn2)Aμ

μ*0. (6.1b)

The relation (6.2) has to be again understood in the sense of Kastler,
Robinson and Swieca.

If this field has the asymptotic free fields Aμv >ex belonging to mass
mφO then these asymptotic fields have also the properties (2.2a,b,d)
but do not need any longer to satisfy (6.1); definitely they do not satisfy
(6.2), i.e.

\d3xAOμex = 0.

It is easy to find in the Borchers class of Aμv a whole set of tensor fields,
say A'μv, which satisfy (2.2a, b, d) and (6.1), have the same asymptotic
fields as Aμγ but violate the condition (6.2); e.g. the field

A'μv= jΆμv (6-3)

belongs to this set [in virtue of (6.1a)].
Notice that both fields, Aμv and A'μy9 are irreducible when ^4μv, in is

irreducible. Thus irreducibility of the fields is irrelevant for their ability
to induce a charge.

Of course, we may find also in the same Borchers class another set of
fields, say Aμ\, which again satisfy the conditions (2.2a, b, d) and (6.1)
and - although their asymptotic fields vanish - yield the proper charge,
i.e. satisfy (6.2); e.g. such a field is

^ A μ y (6.4)

[again in virtue of (6.1b)].
We conclude from this simple consideration that the elements of the

Borchers class are equivalent as far as the Lehmann, Symanzik, and
Zimmermann limit is concerned; they yield the same S-Matrix. They
are not, however, equivalent for the Araki and Haag limit [1]; not all
of them yield the same charge. Thus the notion of the Borchers class is
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relevant for the Lehmann, Symanzik and Zimmermann limit but not
for the Araki and Haag limit and for the theory of currents and charges.

We have the obvious

Statement 6. Every field Aμv can be split in a variety of ways into a
Lehmann, Symanzίk, and Zimmermann field and into an Araki and Haag
field, viz.

where W(z) is a polynomial in z and W(0) = 0, W(ί) = 1, both belonging
to the same Borchers class as Aμv.

We return to the question what is the necessary and sufficient condi-
tion for Tμv to be a good candidate for an energy-momentum tensor.

As we mentioned already earlier, it follows from known theorems
[7] [6] that in an expansion of Tμv in terms of normal products of free
asymptotic fields only the bilinear term contributes to the charge. To
be more exact the relevant part of Tμv as far as the charge is concerned is

(Ψ(lpl σ; S, /), Tμv(x) y([p'], σ'; S', /')) .

Here
Ψ([p],σ;S,t) (6.6)

denotes a one particle state of momentum p, p2 = m2, in the Wigner
basis, where [/?] indicates that p is taken in an arbitrary but fixed Lorentz
tetrad system {ί/mpin1,n2,n3} and σ is the spin variable σ=-S,
— S + 1,..., S while / labels the fields belonging to the same spin index S
(see e.g. [8]). The state (6.6) transforms under the Poincare transformation
according to

U(A,a)Ψ([p],σ;S9t)

with $)s

σσ (A) being the (2S+ l)-dimensional representation of the
rotation group (A eSU(2j). Let us introduce the variables

P P':

s2

s 2 < 0 ;

P + P
2 ' '

2 = m 2 , sr = O,

reV+: r2^m2.

(6.7a)

(6.7b)

(6.7c)
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Using these variables we can write

, σ;S, /), Tμγ(x) Ψ&p'lσ':S\ I'))
(6.5a)

= eίsx pSS'll'ί \

where F is a polynomial in rμ. Then

\<Px\dp\ dp'θ(p) θ(p') δ(p2 - m2) δ(p'2 - m2)

ΣΣΣΣΣΣ«ί
S S' σ a' I I'

= {2πf

= βPμ

- dόp dόp'

2p0 2pf

0

ω= +

a+(p)a(p')δ(s)F0

]/p2 + m2

(6.8a)

(6.8b)
PO - PΌ = OD

(6.8c)

where β is some constant. In (6.8b) we omit the summation indices.
(6.8a) is a shorthand notation for a properly smeared out operator
expression depending on the parameter R (R>0) taken between two
quasilocal states. The exchange of the integrations in (6.8b) is legitimate
since the expression decreases sufficiently fast when .R->oo as the
consequence of m2 Φ 0.

If

and fλ is not singular for s->0, then (6.8) vanishes, i.e. j8 = 0.
If

then

(2π) 3 J-j-~α + (p)α(p')^o μ (0,p) =βPβ (6.9)
4pO po = ω

with β Φ 0.
Thus we have the

Statement 7. The necessary and sufficient condition for Tμv(x) to yield
a non-vanishing charge is that

pSS'll's Ό>\_fiSS'll'( \
Γ μvσσ'KP* P ) ~ Γ μvσσ'^Λ ')

defined in (6.5), has the properties

nv(o,p)u=ωφo

and is a polynomial in pί9 p2, p 3 as well as

FJfcr) ΦO.
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Appendix

The computations reported below, although straightforward, are
lengthy. Therefore we shall only outline the main steps in obtaining the
final results.

For Γμv, which meets the requirements listed in Section 2, we get

e-«p-^(Ψ(j,:jl Tμv(x) Ψ{p';k)) = Fμvjk{p,p')
(B.I)

= Λjk(s2) {3s2rμrv + r2(sμsv - s2gμy)}
where

p,p'eV+, p2 = p'2=m2 + 0. (B.la)

j and k label the underlying scalar fields, s and r are given by (6.7), Ψ
stands for a one particle state, Λjk is a nonsingular matrix, a function
of s2 for which

Ajk = Akj = A~k. (B.lb)
We assume that

(B.lc)

To obtain (B.I) and (B.Ib) we used the properties of Tμv [for (B.I) transla-
tional and Lorentz covariance, the symmetry, tracelessness and local
conservation of the tensor, for (B.lb) - the hermiticity and the TCP
covariance]. If we drop (2.2c) we get for Tμv (with Tμ

μ φ 0)

(Ψ(p;j\ Γμv(x) ( β 2 )

= Bjk(s2) rμrv + Cjk(s2) (sμsv - s2gμv)
with

Bjk = Bkj = B~k Cjk = Ckj = C~k. (B.2a)

If Bjk(0) Φ 0 and Cjk(0) φ Q it is obvious from the Statement 7 that only
the term Bjkrμrv in (B.2) is responsible for inducing the energy-momentum
vector Pμ. It is also obvious from (B.I) that Tμv can never induce an
energy momentum vector different from zero.
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We get the local Araki and Haag tensor fields Tμ

A

v^x and Tμ££
corresponding to Tμ v and Tμv in (B.I) and (B.2) resp. by the substitution

ί ' ι M 2 ) A M

in Fμvjk(p,p') etc., by applying the action of this expression on
:(Pex(χ) ΦexOO' a n ( * finally by putting x = y. Notice that

Hence we get

Tf-% =Σajk: {3 Πx ί(dx

μ - δj) (dx - dζ) φs{x) φkiy)~\x=y

iy (B.3)

ajk = constant matrix
and

T ; v

A ; e

H

x = Σ b j k : l(dx

μ - dl) (d* - dζ) Ψ j ( x ) φk{y)\ : x = y

(B.4)
Πxgμv~]>φjφAx)

(with ψj = φ j j e x ) . If we put in (B.4) bjk = — 4cjk = δjk we get the standard
free field energy-momentum tensor.

To evaluate Kμ it is enough to compute only one of its components,
because of the covariance properties of Kμ. Thus we shall concentrate
on the evaluation of Ko. Notice that formally

μ 0 0 0 μ λ 0 μ
+μ*χχ2τ00=$d*xx2τ00

 ( R 5 )

in virtue of Statement 2 and 4. The existence of the vector charge Kμ is
ensured by our considerations in Appendix A, therefore we do not need
to bother about smearing the operator over x with proper test functions.
Let us examine the expression

' θ(p0) θ(p'o) δ(p2 -m2) δ(p'2 - m 2 ) (B.6)

where Ψ and Φ are arbitrary one particle states in J4? and

Φ(p: k) = {Ψ{p: k), Φ), etc. (B.6a)
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A straightforward computation yields

(Ψ,K0Φ)=-(2π)3μPΣΦ{p'2ζ'k) <*<*>-«)*>
(B.7)

P =P

p'o = ω

where ω = | / p 2 + m2. On the r.h.s. of (B.7) the surface terms like

2( .) or

were left out as it can be shown by power counting of p that they do not

contribute to the expression.

If we take into account the functional form of FOOjk presented in

(B.I) as well as that

vp0 " ' " dPi """ 8PodPi

the relevant terms in (B.7) yield the result

(Ψ,K0Φ)

(B.8)
ω

= - (2π)3 J —— Σ Ψ(p;j) Ajk(0) Φ(p; k)\~- -9ω +

= (2π)3 6 J ̂  ω Σ ̂ , (0) (y, αe

+

x(p;7) aex(p'; k) Φ)

Now A_yfc(O) can be diagonalized (it is a real, symmetrical matrix) and

the assumption about strict interaction among the fields can be exploited,

which leads us to

or, inserted in (B.8), yields (5.12) with
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