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Abstract. We show that for an Ising spin system of arbitrary spin with a ferromagnetic
pair interaction and a "periodic" external magnetic field there is a unique equilibrium state
if and only if the magnetization is continuous with respect to a uniform change in the
external field. Hence, if the critical temperature Tc is defined as the temperature where the
spontaneous magnetization (which is a non-increasing function of the temperature)
becomes positive, then the equilibrium state is unique for T> Tc and is non-unique for
T<TC (when the external field is zero). This implies that the correlation functions have a
cluster property for T>TC.

We also show that for an anti-ferromagnet consisting of two sublattices there is a
unique equilibrium state if and only if the staggered magnetization is continuous with
respect to a change in the staggered field.

I. Introduction

We consider an Ising spin system with a ferromagnetic pair inter-
action in a finite box A on a d-dimensional lattice Έd, i.e. at each point p
of the lattice there is a spin σp = ± 1, and the conditional probability of a
spin configuration in the box given a configuration outside it is pro-
portional to

k Jp.qσpσq + £ σjHp + h+ £ jp_Λ . (1)
\ J]

Jp.qσpσq + £ σjHp + h+ £ jp
p+qeΛ pεΛ \ qφΛ

Jp = J _ p ^ 0 is the pair interaction, ]Γ Jp< oo, and Hp + h an external
peΈd

magnetic field. The reciprocal temperature β has been included in the
Hamiltonian. The external field consists of a uniform part h and a
periodic part Hp9 i.e. Hp = Hp + g when g is contained in some subgroup
G of Έd. A boundary condition for the box A is specified by giving a
probability distribution bΛ(dσ) for the configurations outside A.

The (equilibrium) state of the system in A is the probability distribu-
tion for configurations in A defined by (1) together with bΛ or equivalently
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by the family of correlation functions

<σA>H,h,Λ,bΛ=(Πσi) f 0 Γ 4 £ ^ -
\peA / H,h,Λ,bΛ

An equilibrium state of the infinite system1 is defined to be a family
of correlation functions (σA}HJιb for the finite subsets A oϊΈd obtained
as the limit of correlation functions for a sequence of finite boxes with
some boundary conditions:

(σA)H,h b — π m (GA)H h Λ b f ° r a ^ finite A . (2)

We say that a sequence of boxes tends to infinity if they increase
and if every finite subset of TLd is contained in some A of the sequence,
and if |Λz|/|Λ|->0 for any /;>0, where Aι is the set of points in A with
distance at most / from its complement, and \A\ denotes the number
of points in A (van Hove convergence). The letter b indicates some
arbitrary boundary condition, and bΛ= + or - will indicate the boundary
conditions defined by putting all spins outside A= + 1 or - 1. The
statement, <σ4>0 > h f b does not depend on the boundary condition is
equivalent to the statement that the equilibrium state is unique, Do-
brushin [1].

For a finite system the average magnetization m(H,h,A,bΛ)
1 v \ , dF{H,h,A,bA)

γτ7 Σ σp) is equal to , where F(H, ft, A, bΛ)
\Λ\ peΛ I H,h.Λ,bΛ vn

-log I Yje~EΛ{σ)\ is proportional to the free energy. Since F{H,h,A,bΛ)
Ml

is a convex function of A and h has a limit, F{Hr h\ which is independent
of the boundary condition for the periodic Hamiltonians we consider, [9],
the latter is also a convex function of h, and thus

m(tf, K b) = lim m{H9 h, A7 bΛ) =

Λ->OO dh

for any boundary condition whenever this derivative exists. It follows

from the convexity of F{H, h) that the right and left derivatives —^-f-^

dh~
always exist and are right and left continuous respectively, and that they
differ at most at a denumerable set of ft-values.

When Hp = 0, F(0, h) is analytic in ft for ft + 0, Lee and Yang [9]. The
spontaneous magnetization m* is defined, for # p = 0, as the right
derivative of F(0, ft) at ft = 0,* = hm . (3)

Λ-o+ dh
1 For details see Dobrushin [1], Lanford and Ruelle [6] and Ruelle [10].
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II. Main Theorems

Our results can now be formulated as follows:

Theorem 1. There is a unique equilibrium slate for the infinite system,
i.e. the (σAyH,h,b do not depend on the boundary condition and have the same

invariance (periodicity) as the Hamiltonian if and only if —^— exists.
oh

This happens if and only if m(H, h, b) is independent of the boundary
conditions.

When Hp = 0, h φ 0, Theorem 1 combined with the Lee-Yang Theo-
rem [9], assures the existence of a unique equilibrium state. This has also
been proven recently by Ruelle [11], using similar methods (see comment
later). For the case with no external field Hp = 0, h = 0 we get:

Theorem 2. When the external field is zero there is a unique equilibrium
state for the infinite system if and only if m* = 0. This happens if and only if
<σp>0 0 b = 0 for all boundary conditions.

For any partitioning of TLά into two disjoint congruent sublattices
L o and L1 such that L o is a subgroup of TLά and Lx its coset we can extend
our result to the anti-ferromagnetic spin system "adjoint" to the ferro-
magnetic system we have been considering up to now. The adjoint system
is obtained as follows. Call the spin variables of the adjoint system
σp = ± 1 and let its interaction be Jp_q = Jp_q ̂  0 if p and q are contained
in the same sublattice and jp~q= — J p _ g ^ 0 otherwise, and let the
external fields be hp= — Hp, Hp= —h if peL0 and hp = Hp, Hp = h if
peLx. Hp is then a "staggered field" and hp is a uniform field if Hp was
a "staggered field". (The fact that L 0 + L 0 = L 0, Lo + L1=L1 and
L1+ Lί=L1, which is easily verified, guarantees that Jp_q as defined
above is actually a translation invariant pair interaction and that Hp

is periodic, Hp+g = Hp for g e Lo, ifhp is uniform.) We call F(H, h) the free
energy of the anti-ferromagnet. By the transformation σp= — σp for
p E Lo, σp = σp for p e Lγ this system is changed into the ferromagnet we
have been studying and F(H, h) = F(H, h). We then have the following
result:

Theorem 3. For the anti-ferromagnet described above there is a
unique equilibrium state if and only if the "staggered magnetization"

\Λ\ peLi peL0 / H,h,Λ,bΛ

does not depend on the boundary conditions, which happens if and only if

' l h ) . ,
— exists.
dh
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The proofs of Theorem 1—3 follow from the following lemmas, which
concern the lattice gas associated to the spin system defined by the
"occupation numbers" ρp = ̂ (l 4- σp). Their proofs depend on the
recently derived inequalities by Fortuin, Ginibre, Kasteleyn (F. G. K.) [2],
which say that if / is a function of the ρp in a finite box A which is increas-
ing in each variable separately then </> is an increasing function of the
interactions and the external fields at the lattice points if the pair inter-
actions are ferromagnetic and the fields are of arbitrary signs. Because
σA is a finite linear combination of the ρB for B Q A, and conversely, the
uniqueness of the state of the spin system is equivalent to that of the
lattice gas.

Lemma 1. < ^ ) H ) f c j ± = lim (ρAyH,h,Λ, + exist and have the same
Λ-* 00

symmetry as the Harniltonίan, (^+ g )H,ι 1 ) ±
 = (^) i ί j , ) ± far g&G. In

addition,

lim ^ W , + = <QA>H,H, + > (4)
n —* h ~r

lim (ρAyH,h>,- = <QA>H,h,-> (5)
h'-*h-

Proof. (Some of the ideas used in the following proof are due to
at least two authors, Griffiths and Lieb: private communications.) The
F.G.K. result applies to f = ρA because this is an increasing function
of the ρp. This implies that (ρA}H,h,Λ', + = (QAΪH^Λ, + if Λ' 2 A, because
the latter can be obtained from the former by letting an infinite positive
magnetic field act on the sites in Λ'\Λ. Hence (ρA}H h +— lim (ρA}H h Λ +

exists and (ρA)Hίh> + g <ρA)H,h,Λ, + T h u s a l s o

lim {ρA}H,h'>+ ^ lim <ρA>H,h',Λ,+ = <ρA>H,h,Λ,+ ->
h -*h+ h'->h +

and letting A-> 00 we see that lim (ρA}H,h', + ^ ^A>H,h, + B u t F.G.K.
h ' ~ ^ h ~\~

also tell us that (ρA}HtK + S (ρA)ii,h\ + w r i e n h S h\ so

<QA>H,h,+ ^ J ί ψ <QA>H,h>,+
h -+h +

and (4) is proved. (5) is proved analogously.
The symmetry of the (ρA)Hihί ± follows from the uniqueness of taking

the limit A->co with these boundary conditions which is again a
consequence of the F.G.K. inequalities.

Lemma 2.

<QA>H,h,Λ, - ^ <QA>H,h,Λ,bΛ = <QA>H,h,Λ, + » ( 6 )
and

0 ^ <QA>H,h,A, + - <QA>H,h,Λ, - ^ Σ l<Qp>H,h,Λ, + ~ <Qp>HthtAt-'] (7)
peA
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The corresponding inequalities for the infinite volume limits to be referred
to as (6') and (7') are thus also valid.

Proof. (6) follows directly from the F.G.K. result because the field
acting on any spin in A caused by a fixed configuration outside A lies
between that caused by the boundary condition — and by the boundary
condition -f. (7) follows by observing that the F.G.K. inequalities apply
to the function fA = Γ̂ ρp — ρA, which is increasing in the ρp.

peA

Lemma 3. , — — exists if and only if <σp>H>Λf + = <<7P>H,Λ, _.

Proof. The assertion will follow if we prove that

— ή T T — = ] i m 77Γ Σ <σp>H,H, ± = Ί7T Σ <σp>H,h, ± = ̂ 7>H,H, ± (8)
on /i->oo \Λ\ p e Λ \l I p e Γ

where Γ is the "unit cell" of Hp and |Γ| is the number of points in Γ,

because by Lemma 2 we know that (σp}H h + = <Cσp)π Λ -» s o (̂ ) i

that <σp>H>Λ>+ = <σp>Hfhf _ if — ^ — - — a / Γ ~ ~ conversely. To

prove (8) we first show that the right hand side is equal to lim m(H,h,A, ±).
yl-^oo

Consider first the boundary condition -f. For any ε > 0 let Λε be a box
containing Γ such that (σp}H h?vlε + g (σp}H,h,+ + ε ^ o r a ^ P e ^ Then
for any gf e G and /t such that Aε + g QAWQ have for all p e Γ:

\σp/H,h, + ~ \σp + g/H,h, + = \σp + g/H,h,Λ, + = \ ° p + fi(/H,h,yle + s!, + /QX

= <θp>H,h,Λε, + ^ <σp>//,fc, + + ε

Using the decomposition m(H,h,Λ, +)= -—- Σ ^ <σp + g>//,̂ ,/i,+
p p ^

geG

and the van Hove condition (9) implies that (σ }H h + g ljm m(H9h,Λ, 4-)

^ lim m(H,/z, y l , + ) ^ <σ >H ft + + ε for any ε, which means that
Λ-+ co ' '

lim m(H,h,A, + ) = <σp>H>Λ> + , and similarly for the boundary condi-
• Λ u 3F(H,Λ) . . u . ,

tion —. As mentioned above — „ , , - is right continuous and

exists and is equal to lim m(H, K A, b) except at most at a denumerable

set oί points. Hence — - , , - = lim — = lim (σΌ)H h + lor
oh hn-+h+ dh hn^h+ v ' n '

some sequence hn-+h +. But by Lemma 1 ( σ ^ ) ^ ^ + -• (σp}H,h, + > s o (8) is
proved for the boundary condition + — is treated analogously.
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The proof of Theorem 1 now follows directly from the lemmas: By
Lemma 1 {QA}H,H,± exist. By Lemma 3 the right side (7') vanishes if

and only if— exists. When the right side of (7') vanishes then by
Oil

(6') (ρA}H,h,b is unique and has the same symmetry as the Hamiltonian.
If the right side of (7') does not vanish there are at least two states with the
same symmetry as that of the Hamiltonian.

Theorem 2 follows from Theorem 1 because by Lemma lm* = < σ p ) 0 0 +

and by symmetry - ra* = <σp>0 O . , s o they are equal if and only if
w* = 0.

Theorem 3 follows in an obvious way from Theorem 1 by the trans-
formation σp = —σp if peL0, σp = σp of peLί which transforms the
staggered magnetization of the anti-ferromagnet into the magnetization
of the ferromagnet.

III. Concluding Remarks

(i) The uniqueness of the equilibrium state for a ferromagnet with

interactions Jp-q ^ 0, H — 0, h φ 0 was first proven by Ruelle [11] using

arguments similar to those used in this paper. What we have done is to

show, with the help of F.G.K., that for a ferromagnet with pair inter-

actions and with Hp periodic and h uniform the continuity of '
C Yl

is sufficient (and necessary) for the existence of a unique equilibrium
state. (The inclusion of Hp has further permitted us to extend this result
also to anti-ferromagnets.)

(ii) The correlation functions ^σAyθthh + 0 are also analytic in h and
real analytic in the temperature T since the (σA}0Jι+ were proven to
have this property, Lebowitz and Penrose [7].

(iii) We note that our results are also valid for a system of spins
σp taking values — 5, — S -f 2,... S for S > 1 which interact with a ferro-
or anti-ferromagnetic pair interaction as in (1). This is true because the
F.G.K. inequalities are still valid for such a system if the ρp are defined
by Qp = j>(σp + S) [2], and also the Lee-Yang Theorem holds [4]. One
only has to consider the functions f| (Qpf

p and CA Σ £p — Π (QPT
P

psA peA peA

with arbitrary integers 0 g np ^ S and CA large enough instead of ρ^
and fA used above.

(iv) We remark in connection with Theorem 2 that the uniqueness and
translation invariance of the equilibrium state implies that it is ergodic
and hence has the clustering property: {σA+aσB}-^(σA} (σB} in the
Cesaro sense as |α|->oo [10]. This implies in particular that there is no
long range order when m* = 0.
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(v) It follows from the Griffiths' inequalities [4] that m*(T) is a
non-increasing function of the temperature. Hence Tc is uniquely defined
by the conditions: m*{T) = 0 for T> Tc, m*{T) > 0 for T< Tc. It is known
furthermore that at high enough temperatures m*(T) = 0 and that for
many systems, e.g. all two or higher dimensional ones, m*(T)>0 at
low enough temperatures2. Hence for these systems 0 < T c < o o . The
value of m*{Tc) is not known in general (it can, however, be shown that
m*(Tc)= lim m*(Tc — ε), Lebowitz [8]). It follows from our theorems

that if m*(Tc) = 0 then the correlation functions at Tc are independent
of the boundary conditions and cluster.
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