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Abstract: We discuss the spectral properties of the Laplacian for domains Q with
fractal boundaries. The main goal of the article is to find the second term of spectral
asymptotics of the counting function N(X) or its integral transformations: ©-function,
^-function. For domains with smooth boundaries the order of the second term of
N(k) (under "billiard condition") is one half of the dimension of the boundary.
In the case of fractal boundaries the well-known Weyl-Berry hypothesis identifies
it with one half of the Hausdorff dimension of dQ, and the modified Weyl-Berry
conjecture with one half of the Minkowski dimension of dQ. We find the spectral
asymptotics for three natural broad classes of fractal boundaries (cabbage type, bub-
ble type and web type) and show that the Minkowski dimension gives the proper
answer for cabbage type of boundaries (due to "one dimensional structure" of the
cabbage type fractals), but the answers are principally different in the two other
cases.
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1. Introduction

The classical Weyl-Berry conjecture is related to the spectral counting function N(A)
for the Laplacian in a bounded domain Q C Jî , d ^ 1, with smooth boundary dQ.
Let us consider the spectral problems for the Dirichlet Laplacian — A~\

W on fl, Y = 0 on dQ
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and the Neumann Laplacian — A+:

-A¥ = k'F onfl, — - = 0 on 3D.
on

Let
N±(k) = #{kf < k}

be a counting function for the eigenvalues kf of the operators — A±. Weyl's con-
jecture has the form

N±(k) = co(d)\Q\kd/2 ± cx(d)\dQ\ttd-X)l2 + o(k«~l)l2\ k-^oo, (1)

where Co, c\ are constants depending only on the dimension d of the phase space,
\Q\ is the volume of Q9 \dQ\ is the area of the boundary surface.

The standard method of study of N(k) is based on its integral transformations.
The simplest one is the following:

0±(f) := / e-^dN^k) = / />*(*,*,*)</* = Tr etA± , (2)
-oo Q

where p±(t,x,y) are the Green functions for the heat equation %£ = Ap with
Dirichlet or Neumann boundary condition.

Instead of 6±-functions one can work with g-functions (or resolvents):

or with the Fourier transform of dN±(k) (which leads to the wave equation).
For domains with smooth boundaries the asymptotic expansions of the integral

transformations are well known. Say

ao(Q) = \r (€\ co(d) \Q\,

(Minakshasandaram expansion, see, for example [McSi,Ka,Mo]). Here F(s) is the
Gamma function. A similar expansion is valid for Q±(k), k —> oo. The formal in-
version of these expansions gives Weyl's expansions (1) for iV±(A). However this
inversion is valid only for the first term of ±

N±(k) = co(d)\Q\kd/2(\ ± o(l)), k -> oo (5)

(Weyl's law). The remainder can be specified (Seeley [Se]):

AT±(A) = co(d)\Q\kd/2 + O{k^-), k -> oo . (6)

As for the second term in (1) it's known that in the general smooth case formula
(1) is valid under an additional "billiard condition" (Ivrii [Ivl,Iv2]). Let us mention
that Ivrii's condition is generic, but it can be checked only for several simplest cases.
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If the boundary is very irregular then the question about billiard condition cannot
be posed at all because the billiard trajectories are not determined.

If Q is an open set, \Q\ < oo, and dQ is irregular, then one can determine the
Dirichlet and Neumann Laplacian in terms of the closure of the Dirichlet form

on the spaces CQ°(Q)9 C°°(l2) correspondingly. For the Dirichlet Laplacian the
spectrum is discrete, and the leading term for N~(A) (Weyl's law) has the same
form (5), Melrose [Me].

The main goal of our paper is to find 'the second term" of the spectral asymp-
totics in the case when the boundary of the domain is irregular (fractal). We'll dis-
cuss the generalized form of the Weyl's conjecture (1) (in most cases in a weaker
form: not for AT(A), but for it's integral transformations (2), (3)).

We shall work only with the Dirichlet Laplacian because for the Neumann
Laplacian the spectrum, generally speaking, is not discrete and the counting function
N+(A) does not exist even when the domain has only one irregular point on dQ.
The simplest example of such a domain is given by the union of open nonintersect-
ing balls B(xn;rn) with radii rn and centers at xn (Fig. la). In this case k = 0 is the
point of Spess(—A+). B. Simon [Si] (see also [JaMoSi]) showed that the Neumann
Laplacian in a bounded domain may have an absolutely continuous spectrum.

Let's return to the Dirichlet Laplacian. In the well-known paper [Be] M. Berry
discussed the diffraction and scattering of waves by rough ("fractal") surfaces and
formulated the following physical hypothesis (Weyl-Berry conjecture): if boundary
dQ has Hausdorff dimension h = h(dQ) < d and corresponding Hausdorff measure
\dQ\h, then

N~{X) = co(d)\Q\Xd/2 - d(d,h)\dQ\hXh'2 + otth/2% X -> oo . (7)

The spirit of this conjecture can be traced back to the classification of fractals by
their Hausdorff dimensions which became very popular after Mandelbrot's book [Ma]
on fractals in nature. However very soon Brassard and Carmona [BrCa] showed that
Berry's hypothesis fails and constructed corresponding counterexamples. In fact it is
possible to give a very simple example of such a type. One can consider the system
of balls B(xn;rn) with 5 Z ^ < oo (Fig. lb) and with Dirichlet boundary condition.
The spectrum and N~(A) don't depend on the location of the balls, but only on
the set {rn}. On the other hand different rearrangements of the balls in the space
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(for fixed {rn}\) can generate arbitrary Hausdorff dimension h(dQ) in the interval
[</,</-1].

The physical reason why the Hausdorff dimension cannot be used for the descrip-
tion of the fractal boundary in spectral problems is trivial: the Hausdorff dimension
describes the "content" of the boundary as a geometrical set of points, but it is not
related to the description of the boundary layer of the domain.

Weyl-Berry conjecture with the Minkowski dimension m = m(dQ) and the
Minkowski content |3Q|W in formula (7) instead of the Hausdorff dimension and
the Hausdorff measure is known as the modified Weyl-Berry conjecture (MWB
conjecture). M. Lapidus in a long series of papers (see [Lal,La2] and references
there) proved a few essential results, supporting the MWB conjecture. In particular
he proved that in the one-dimensional case the MWB hypothesis is valid [Lai]. In
[Lai] one can also find necessary and sufficient conditions for Minkowski measur-
ability of the dQ for an open set Q C 5R. Together with J. Fleckinger they showed
[LaFl,La2] that for any dimension d

N~(X) = co(d)\Q\Xd/2 + O{Xm/2\ X -> oo . (8)

Hua and Sleeman [HuSl] found effective constants C± such that the remainder
in (8) can be estimated from above and below by C±Xm/2. The estimate from below
is proved under an additional strong geometrical condition on Q (existence of a
suitable tessellation).

It turned out to be the case that the modified Weyl-Berry conjecture also fails.
The simplest "argument" was mentioned in [BrCa,FlVa2]: one can remove a count-
able set of isolated points from the domain without changing N(X)9 but if these points
are judiciously chosen, we can vary the Minkowski dimension and Minkowski con-
tent at will. However this argument requires only a slight specification of the conjec-
ture: the only regular by Wiener part of the boundary has to be taken into account in
the conjecture. This specification is very natural because boundary conditions cannot
be posed at isolated points, and these points must be removed from the boundary set
before evaluating the Minkowski dimension. The essential examples were studied by
J. Fleckinger and D. Vasiliev [FIVa, FlVa2] and later for a wider class of domains by
M. Levitin and D. Vassiliev [LeVa]. They constructed selfsimilar fractals such that

N~(X) = co(d)\Q\Xd/2 - cx(d9X,dQ)Xm/2 + o(Xm/2), k -* oo ,

where the function c\ is bounded and strictly positive, but oscillates as X —• oo (see
[FIVa]). M. Lapidus and C. Pomerance [LaPo] gave another example where formula
(7) is valid but the coefficient c\ cannot be expressed through the Minkowski content
\dii\m of the boundary. Even though these examples disprove the modified Weyl-
Berry conjecture they support its main part because the order of the second term of
N~(X) in these examples is equal exactly to m/2.

The main purpose of the present work is to single out broad classes of fractals
(without assumptions on selfsimilarity or geometrical conditions which allow to sep-
arate variables) for which spectral asymptotics can be found. The second goal was
to answer the following question: is the order of the second term of spectral asymp-
totics always related to the Minkowski dimension of the boundary? In particular,
suppose that N~(X) has two terms of asymptotics as X —» oo:

AT (A) = co(d)\Q\Xd/2 - d(d,dQ)Xs/2 + o(Xs/2\ X -> oo (9)
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(we can call s = s(dQ) as a spectral dimension of dQ). Is it true or not, that s(dQ) =
m(dQ)? Of course it is true for d = 1 due to the Lapidus result. For dimensions
d > 1 formula (8) leads to the inequality s ^ m. The answer for the last question
is complicated and more often negative. First of all let us mention that the second
(boundary) term of the spectral asymptotics may not exist or may have a more
complicated form than in (9). But even if the asymptotic formula (9) is valid,
then the spectral dimension s in the majority of interesting cases from the physical
point of view is not connected with the Minkowski dimension of dQ, and it has an
absolutely different geometrical (physical) meaning.

Let us mention that the term "domain with a fractal boundary" may have different
meanings. One can understand it as a domain whose boundary is a closed fractal set
in the Mandelbrot [Ma] sense, i.e. the boundary of the domain is a connected Cantor
type set with an additional hierarchical (selfsimilar) structure. The physical idea of
fractals in nature is different (see M. Berry [Be]). These are usually objects like
clouds, Earth lithosphere, Solar magnetosphere, etc. The main feature of these objects
is the existence of a homogeneous (or regular) main media, "matrix," and a system
of multiscaled obstacles imbedded in the matrix (drops forming the clouds, cracks
in Earth lithosphere, vertices, dislocations, etc.). Fundamental problems appear when
someone describes the physical processes in the interface (scattering of acoustic or
electromagnetic waves by the clouds, propagation of the seismic waves through the
lithosphere, generation of the magnetic field on the solar wind on the surface of the
Sun, absorption of high-frequency vibrations or heat energy by thin coverings with
multiscaled inclusions and so forth).

Let d = 3. We single out three broad and natural types of fractal boundaries:
cabbage type, bubble type and web type. A cabbage type fractal contains a countable
system of smooth 2-dimensional "cracks" which converge to the outer boundary of
the domain. A typical cross section is given in Fig. 2. The exact definition can
be found in Sect. 2. A bubble type fractal is a domain with the smooth boundary
without a countable set of balls. A 2-dimensional analogue is given in Fig. 3. Web
fractals are smooth domains without a countable system of "almost parallel" tubes.
A typical cross section transversal to axis of tubes is given in the same Fig. 3. In
this paper we consider only a very special type of web fractals: the direct product
of a 2-D bubble type domain and an interval. Then the problem can be reduced to
the 2-dimensional problem for bubble fractals.

Fig. 2
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Fig. 3

For cabbage type domains the boundary has fractal structure in the normal di-
rection only. We show that in this case the spectral dimension s coincides with the
Minkowski dimension m, and moreover under some natural assumptions the MWB
conjecture is valid. In the other two cases the MWB conjecture fails. In fact, the
answer depends on the electrostatic properties of the boundary. In bubble type do-
mains the spectral dimension s depends on the Newton capacity of the bubbles, in
web type domains it depends on the logarithmic capacity of the circles in a cross-
section of the web. In particular we show that if radii of the bubbles (or circles
in the cross-section of the web) are decreasing fast enough then s = d — 1, and
at the same time the Minkowski dimension can be an arbitrary number between
d - 1 and d.

Let us mention that in the case of a smooth boundary the second term in (9)
depends on mes(dfl). It leads to the assumption that formula (9) with s = d - 1
could be valid for bubble type domains if ]C rf - 1 < oo. However it is not true. In
Sect. 3 we show that s = d — 1 if J2 rf~2 < °°* *n o u r n e x t article we will show
that s may not be equal to d — 1 if ^2 rf~l < °°» ^ut S ri~2 = °°.

Remark 1. In fact we find the second term of asymptotics only for the integral
transformation (2) or (3) of N~(A). It gives some information about the asymptotics
of N~(A)9 and in particular it gives the exact value of the second term of spectral
asymptotics of N~(A) under the assumption that this term exists (i.e. the spectral
dimension is defined).

2. Cabbage Type Domains

We will start this section by recalling the definition of the Minkowski dimension of
the boundary dQ of an open set Q c 3?̂ . Then we prove the Minkowski measura-
bility of cabbage type domains and find the asymptotic behavior of the ©-function
for the Dirichlet Laplacian in these domains.

Definition 1. Let (dQ)e be an e-neighborhood of the boundary and mes(d(2)+ be
the Lebesgue measure of the interior part (dQ)f = (dQ)e fl Q of this neighborhood.
We say that dQ is Minkowski measurable if there is a constant m such that
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mes(dQ)£j^~m has a nonzero limit as e—*0. The constant m = m(dQ) is called
the Minkowski dimension of dQ, and the limit

is called the Minkowski content of dQ.

For example, if Q is a domain with a compact smooth boundary, then m(dQ) —
d — 1 and the Minkowski content is equal to the surface area of dQ. If Q = 3^\{0}
and dQ consists of one point, then m{dQ) = 0 and the Minkowski content is equal
to the volume of the unit rf-dimensional ball.

Now we give a definition of domains with fractal boundaries of cabbage
type. Let domains Qo, Q\ C 3^ be given by equations Qo = {x : F(x) > 0}, Q\ =
{x : G(x) > 0}, where F,G : & -> &, d ^ 1, are smooth functions (at least C2

class) without critical points at their zero level sets: VF(x)=t=0 as F(JC) = 0,
VG(x)4=0 as G(x) = 0. We assume that the boundary dQo is compact and one-
connected, and | V F ( x ) | > y > 0 as \F(x)\ ^ 1. In this case the level sets {JC :
F(x) = s}, \e\ ^ 1 will be smooth one-connected surfaces. Let domains Qo, Q\ have
nonempty intersection and their boundaries be transversal, or Qo C Q\.

Definition 2. We say that the domain Q has a fractal boundary of cabbage type
if Q has the form {see Fig. 2):

Q = Qo\ [jrn ,
\n=l

where
rn = {x: F{x) = n~", x £ QY}

with an arbitrary fix positive constant a > 0.

Theorem 3, If Q has a cabbage type boundary, then dQ is Minkowski measurable
with

(10)
9

1 + a

\dQ\m = c(a)/ \VF(a)\~^ da, r = dQ0H Qu c(a) = (2/a)*(l + a ) .

(11)Proof We fix some S from the interval (0, 2n+g)) ^ ^ a v e ry smaH 8 > 0. Then
we represent dQ in the form of four nonintersecting sets:

= dQQ, GX = U rH9 G2 = u rn9 G3= u rm,
n>n\

where

For any set 0 we denote the a-neighborhood of (? by (S)e- Since dQo is smooth
and compact we have

mes(G0)e ^ Cs.
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Let fn = {x : F(x) = n~*} (and therefore, Fn = fnnQi). From the fact that
|VF(jc) |>y>0 when |F(x)| ^ 1 it follows that the distance p = p(x,dQ0) be-
tween any point x C fn and 3&o = {* ' F(JC) = 0} does not exceed y""1/!""":

p(x,dQ0) ^ y~ln~* for JC G fw, n ^ 1 . (12)

Thus (G\ )£ is located inside the /^-neighborhood of dQo with

he = y-x
n-« + e = y-^ifc"^ + e ^ C£^+ < 5 ,

(the last inequality follows from the fact that S < 1/(1 + a)) and therefore

mes(Gi)g ^ Cfi*+<5.

Let us estimate mes(G2)e. The measure of the e-neighborhood of Fn does not
exceed Cs with a constant C independent of n. Since G2 consists of at most [n{\
surfaces rn, we have:

mes(G2)e ^ Ce-e-^+s = Ce*+* .

Thus
mes(G0)e -h mes(Gi)£ + mes(C72)£ ^ C a ^ + 5 . (13)

Now we will show that

mes(G3)£ ~ const. • s^ as s -+ -fO .

From (12) it follows that

pe := max P(JC,3G0) ^ C"2* + £ = C e * " ^ + £ ^ Ce 5 ^)^ 1 , ^ > 0 . (14)
*€(G)

The last relation in (14) is valid due to the inequality d < l/2(a -hi).
We denote by /(<r) the ray emitted from a £ dQo in the direction of the internal

normal to 8QQ:

Since the angle 0 between l(a) and VF(JC) at the point x € l(a) is a smooth function
of x, and this angle is n/2 at dQo, we have 0 — n/2 + O(p) for p(x,dQo) ^ 1.
Together with (12) it gives

0 = n/2 + O(n"a) for JC £ fw, n ^ n2 . (16)

Let T; = 5Q0 H Qi be the edge of T, r~ be ^ip£-constriction of T and T+ be
^4pe-extension of F on 3(2o, i.e. r~ = {x : JC 6 F, p(x,Ff) >Ape}, T+ consists of
F and all points x € 3£0 such that p(x,F')<Ape. Here 4̂ is a big enough constant
which will be chosen a couple of lines below. Let

= \x:x£ (J (fn)e, x e l((r) with some o e F± I ,
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(G3)° = \x :x G U (£)«. * € /(<r) with some a G T (17)

The transversality of dQ0 and dQ\ together with (14), (16) imply that (G3)J" C
(G3)e C (G3);J" if A is big enough. The surface area of F+\F~ does not exceed
Cpe, and the thicknesses of (G3)e does not exceed ps (see (14)). Together it leads
to the following relations:

mes(G3)e = mes(G3)7 + O((p£)2) = mes(G3)+ + O((pe)
2). (18)

From here and the inclusions (G$)~ C (G3)J* C (G3)j" we get that mes(G3)e =
mes(G3)J? + O((pe)

2) and therefore

mes(G3)e = f dx '), > 0, s -> -hO . (19)

According to (14) the layers (Fn)e, n ^ n2, are close to dQo. Hence one can
rewrite the last integral as a repeated one and integrate first along l(o\ and then
along F. From (16) it follows that the intersections l(a) with the layers (Fn)e,
n ^ «2 are intervals A = A(n,a,e) with the distances between a' — l(a)f)fn and
the ends of A equal to e(l + (2(pe)). We will use the values of F as coordinates
along /(<x). Let da be the element of the surface area of F. Then we have

mes(G3)e = / (20)

where U'A means the union of intervals A for rt\ ^ n ^ #2-
Since J = , v / l ., at a G 3&o and the Jacobian 7 is a smooth function, we have

J = TTTFT̂ T 4- O(pe) when p(x9dQQ) ^ p.

mes(G3)e =

From here and the fact that the increment of F on l{a) in the p£-neighborhood
of dQo is less than Cpe, it follows that

mes(G3)e = /
1

T I J \
l [UM(/I,(T,6) J

Now we are going to evaluate the internal integral in (21). From (16) it follows
that the derivative dF/dl of F in the direction of 1(<J) is equal to |VF(JC)|(1 +
O(pe)) at points x E l(o) with pipe, dQo) ^ pe. The smoothness of VF implies that
|VF(x)| = |VF(u)|(l + O(pe)) for x e l{a\ p(x9dQ0) ^ pe. Thus

dF
— = |VF((T)|(1 + O(pe))

for x 6 p(x,dQ0) ^ pe.
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By integrating jj- along l(a) and taking into account that F{a') = n~a we get

at the end points x of A(n,(T,e). Let us replace the intervals A(n,a,s) in (21) by the
close intervals A(n,G,e) such that F(x) = n~a ± e|VF(<x)| at the end points of i .
Since the union 1/A consists of at most ri2(e) intervals, the error will have an order

• epE) = O(ST+* ). Thus

! \ ) . (22)

Now the internal integral is equal to the length of the system of intervals

[«-" - e |VF(«r)|, n-' + e \VF(a)\], n, ^ n ̂  n2

on the F-axis. Let us find » = n* from the equation

It is obvious that

The intervals with n>ri* intersect each other and cover the segment

The length h of this segment has order (n*) a, i.e.

The intervals with n G [ri2,n*] do not intersect each other, and their common length
is

2fi|VF((7)|(n* - n2) ~ (2g|VF((r) |)^a^, e -> +0 .

Thus the internal integral in (22) is equal to

[2fi|VF(<r)|
(1-f a)-ho(fi^), fi->+0.

L « J
Together with (22) and (13) it gives (10), (11). Theorem 3 is proved.
The next theorem gives the asymptotic behavior of the 0-function (2) for the

Dirichlet Laplacian — A~ in domains with fractal boundaries of cabbage type. Before
we formulate this theorem we give the corresponding 1-dimensional result which
follows from [La2] and will be used in an essential way to prove the theorem.

Let us recall that we denote by l(o) the ray emitted from a € dQo in the direction
of the internal normal to dQo (see (15)). Let l'(o) be the maximal segment of
l{a) with the beginning point at a on which 0 ^ F{x) ̂  1 and \l'(o)\ be the
length of I1 a). All points of I'a), except <x, belong to the interior of Qo because
|VF(x)| + 0 when 0 ^ F(x) ̂  1 (and F > 0 on Qo, F = 0 on dQ0). We will use
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s = \x — a\ as the coordinates of points x on l(a). We denote by {/„} the system
of subintervals /„ on l'(o) determined by inequalities («-+- l )~ a < F{x) < n~a, n =
1,2,... . Let P(t,s,s') be the 1-dimensional Green fimction for the heat equation
on {/„} with Dirichlet boundary conditions at end points of all subintervals, and

We denote by g(z) the classical Riemann function which is equal to g(z) =
Y^J f° r Rez > 1 and is determined as a meromorphic extension for other z. In
particular, g(z) = ~ Y + Ji°°(M"-r - t~z)dt for 0 < z < 1. Let T(z) = f^e-'t*-1 dt,
Rez > 0, be the Gamma function.

Lemma 4. The following formulas are valid when t —> 0:

and respectively

the estimates of remainders are uniform with respect to a C

Proof Let £> C 3? consist of a system of nonintersecting intervals such that their
lengths \lj\ have an order |/y| ~ Lj~{X+CL) with a > 0 as j - • oo. Then [La2] D is
Minkowski measurable, m(d£>) = j ~ , |3D|m = 21~m(l -m)~lLm, and the count-
ing function of the corresponding 1-dimensional Laplacian with Dirichlet boundary
conditions at the ends of intervals lj has the following asymptotic behavior:

N~(X)= - \D\ V I - 2w-17rm( l - /w)(-g(m)) |5D|m Xml\\ + o{\)) as\\ ( ) ( g ( ) ) | | m \ + {)) oo .

The assertion of the lemma follows from the last formula applied to D = L'(G)
(L = , v* .. in this case) and from (2).

Theorem 5. Let domain Q have a fractal boundary of a cabbage type with
parameter a > 0. Then 6~ -function has the following asymptotics as t —> 0:

(23)

where m = m(dQ) and \dQ\m are defined in Theorem 1, and
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Remark 2. It means that the MWB-conjecture is valid for cabbage type fractals (in
a weaker sense: for 0~-function).

Proof. Let po(t9x9y) be the Green function of the heat equation in Ud:

( 2 4 )

and p = p(t9x9y) be the Green function of the corresponding Dirichlet problem in
Q (we drop the upper index in the notation of the Green function which was used
earlier tp distinguish Dirichlet and Neumann problems because now we are dealing
only with the Dirichlet problem):

% = Ap, xeQ; p = 09 xedQ; p = 5{x-y\ / = 0. (25)
ot

Let p = p - p0. Then

- / = Ap9 xeQ; p = -po, xedQ; p = 0, t = 0. (26)
ot

From po(t,x,x) = (4nt)-d/2 and (2) it follows that

0~(O = / P(t,x,x)dx = \Q\(4ntyd'2 + f p(t9x,x)dx . (27)
Q a

We fix a small to > 0 and take s = $2~v with a small v > 0 which will be
chosen later. We represent Q in the form U\ U Ui U U3 where

Ux={x:xeQ9 F{x)<n^\ nx = nx(e) =

U2 = {x : x e Q9 F(x) > rq*y n2 = n2(s) =

U3 = {x : x e Q, n~* ̂

with a small positive S such that

(28)

We will estimate the integrals / \p(t,x,x)\dx over each of domains Uj, j =
1,2,3, separately. We will show that the integral over U\ does not contribute to the
asymptotics of 0~(t) because the mesU\ is small (U\ is located inside a very thin
neighborhood of dQo). The integral over U2 does not contribute to the asymptotics
of 8~(t) because U2 contains only a small part of the boundary dQ9 and the main
contribution to the asymptotics will be given by the integral over C/3.

We will need the following two estimates. The first one is an obvious conse-
quence of the maximum principle:

\p(t,x,y)\ ^ po(t9x9y) ^ (47tf)-*/2 . (29)

Now let us note that po ^ Q if t ^ to, \x - y\ ^ e = txj2~v (in fact, p0 decays
exponentially as t goes to zero). From here and the fact that for any domain Q the
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Green function p of the problem in Q does not exceed po we get

0 S P(t,x9y) ^ O when \x - y\ ^ e = tl
0

/2~\ t ^ t0 ^ 1 , (30)

where the constant C does not depend on the domain Q.

From (12) it follows that mesUi ^ Cnfa = Cfi*+* ^ a<f^ + * if v is small
enough (v(y~ + 5) ^ f). Together with (29) it gives the estimate:

/ \p(t,x,x)\ dx ^ crd?2tf{"+l)+s/\ O<t^to^\. (31)

Before estimating the integral over U2 let us recall that po(x,y,t) ^ Ct when
x € dQ, p(y,dQ) ^ e, t ^ to ^ 1. From here and the maximum principle applied
to (26) it follows that \p\ < Ct for x e Q, 0 < f ^ t0 ^ 1 if p(y,dQ) ^ e. The
constant C here is independent of *, ,̂ t^ y. Hence

/ |p(/,x,jc)| tfx ^ Q for 0 < t ^ t0 . (32)

with a constant C independent of t, to. Now we represent U2 in the form U'2 U L '̂,
where t/2' is the set of points x e U2 for which p(x,d(2) ^ e, l/^ = l^Wi- T*16

same estimate is valid for mes C/̂  as for mes U\ (see proof of (13)) and therefore
(31) is true for the integral over C/2"- Together with the estimate (32) for the integral
over U'2 it implies that

/ \p{t^x)\ dx ^ O - r f ^ l w , 0 < f £ to . (33)

Domain (7a is located inside a thin neighborhood of dQo, whose thickness de
can be estimated due to (12) as follows:

de := maxp(x,dQ0) ^ Cn7a = C e * " ^ . (34)

On the other hand F(x) ^ «fa = 8^+d when JC € C/3. Since s < 1, y ^ 4- S < 1
and |VF(x)| is bounded in a neighborhood of dQo, it implies p{U^dQo) ^ fi.

We split t/3 into three parts: t/3 = £/3° U C/3 U U", where (/3° consists of the
points x G Us belonging to a small neighborhood of dQ\ ( Q\ was introduced in the
definition of domains of cabbage type), t/3' = (U3 n Oi)\t/3°, t/3

;/ = C/3\(fli U 0

To be more exact we take

U* = {x:x£ U3, x e l((r) with some a e

where l(a) is determined in (15) and F° is the set of points a € dQo belonging
to the ^^-neighborhood of dQo n dQ\. We choose A big enough such that (dQ\)e

does not intersect I/3 and C/̂ . It can be done because dQo and dQ\ are transversal,
and £ < de. Since p(U3,dQ0) ^ e and p(U",Q\) ^ e, estimate (32) is valid for
the integral over t/3". Since <5i = j ^ -2<xd>0 and mest/3° ^ C ^ ^ C e * ^ 1 ,
estimate (31) with 5 = S\ is valid for the integral over £/3°. From here, (31) and
(33) we get

/ \p(t,x,x)\ dx ^ Crdl2tf^^6>l\ 0 < t^ to, df = min(«,«!) . (35)
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Now we will evaluate the integral over Uy We rewrite this integral as a repeated
one and integrate first along l{a) and then along F1 = F\F°:

J\p(t9x9x)\dx = J \ J \p(t9x9x)\J'dl\d<T9
dx

dlda
(36)

Since the Jacobian J1 = 1 at a G dQo, the thickness of U$ does not exceed de

and J' is a smooth function, we have J' = 1 + O(de). From here and (29) it follows
that the error will have an order O(rd/2demesU^) = O(rd/2d2

e) if we drop 7' in
(36). Since d\ ^ Ceife+<5l

5 the error does not exceed the right-hand side in (35).
Thus (35) and (36) imply

f\p(t,x9x)\dx=f I / \p{t9x9x)\dl

(37)

Our next step is to express p in the right-hand side of (37) through the
1-dimensional Green function for the heat equation on the set {/„} of subinter-
vals ln of the ray l'(o) (see Lemma 4) with Dirichlet boundary conditions at points
xn = l\o) n Fn. Formula (37) can be rewritten in the form

J\p(t9x9x)\dx= £ / J \p(t9x9x)\ dl\do

(38)

We cut two small pieces of the length Sn = 6(1+a)<5|/n| from the ends of the
segments /„. Here \ln\ is the length of ln. We denote by /~ the shorter segment The
union (with respect to n and a G f ) of all cut off pieces covers a part of £/3' whose
measure does not exceed Ce(1+a)5mes £/3' ^ Ce^^s. The last inequality follows
from (34). Together with (29) it allows us to replace /„ in (38) by /~ because the
error due to this change does not exceed the remainder term in (38). Thus

J\p(t,x,x)\dx= \ \

(39)

Let Tn9 Qn be two planes through the ends of /~ which are orthogonal to l(o).
Let us show that surfaces Fn9 Fn+\ do not intersect Tn9 Qn in an e-neighborhood of
l(o) if *o (and therefore e) is small enough. Since the angles between l(a) and a
normal vector to rn, Fn+\ have order O(n~") (see (16)) and the curvatures of Fn9

Fn+\ are uniformly bounded, the deviations of these surfaces in the direction of /(<r)
in an e-neighborhood of l(a) do not exceed A(sn~(X + e2) where the constant A does
not depend on n and a. Thus, we have to check that

e(1+a)*|/*| 2:A(en-" + e2)9 n ^ n2

for small enough s > 0. Since F = n~* on Fn and |VF| is bounded, \ln\ has an order
O(n~a - (n + l )~a) = 0{n~a~l) as n -> oo, and it remains to prove that
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if s > 0 is small enough. The last estimate is obvious if S = 0, and therefore it is
valid if 6 is small enough. In fact it is not difficult to check that (28) provides (40)
(otherwise we could choose a smaller bound for S). Hence it is proved that the
surfaces Fn9 Fn+\ do not intersect Tn, Qn in an e-neighborhood of /(a) if to is small
enough.

We denote by Kn the layer between Tn and Qn, and by K% the right circle
cylinder of the radius s with axis /~ and bases on Tn9 Qn (see Fig. 4). Let pn be the
Green function of the Dirichlet problem for the heat equation in the layer Kn. Let
y € l~. We are going to compare the values of the Green functions p = p~ (see
(25)) and pn when x G K%, y G /~. It is obvious that p ^ pn on the bases of the
cylinder K$ because p ^ 0 at Q and pn — 0 on Tn and Qn. On the lateral surface
of the cylinder both Green functions can be estimated as in (30). From here and
from the maximum principle applied to the heat equation in K.% it follows that

^ Pn-Ct when x e Ke
n, yel~, t ^ t0 . (41)

Since functions p =p — po and pn = Pn~ Po are negative, (41) gives the inequality

P ^Pn + Ct when x € K%9 yel~9 t ^ t0 .

Together with (39) it leads to the following estimate:

$\p{t,x,x)\dx-£
a

J
Jn

We choose a new Euclidean basis in W with the origin at the point a and with
coordinates (s,u\ s E 3?, u e 3?71"1, where semiaxes s ^ 0 coincide with /((T). Let
us temporarily denote the free space Green function (24) by p$ in order to stress its
dependence on the dimension d. Let P~ =P~(t,s,s') be the 1-dimensional Green

function for the segment /", and Pn = Pn~ — pi- The Green function pn in the layer

is equal to pi~xP~, and therefore pn(t9x9x) = (4ntYl~d)/2P^(t9s9s)9 x = x(s9u). If
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we substitute it in the last inequality and put t = to we will get

(42)

Now we will use the following simple fact: if qa = qa(t9s9s
r) is the Green func-

tion of the 1-dimensional heat equation on the segment [0,a] then aqa(a
2t,as9as') =

q\(t,s9s
f) and therefore

a a /b2 \
fqa(t9s9s)ds = Jqb -jt9s9s ds .
o o \ a /

(43)

The same relation is valid for qa — qa — p\. Taking into account that \l~\l \ln\ =
1 - 2a(1+a)<5 = \-2th with h = (1 + a)<5(l/2 - v) > 0 allows us to rewrite (42) in
the form

(4nt)^f\p(t9x9x)\dx
Q

J S
(44)

where Pn = Pn — p\ and Pn is the 1-dimensional Green function on the interval /„.
Absolutely similarly one can get a lower bound estimate for the integral in

the left-hand side of (44). We start with formula (38), add two small intervals of
the length Sn = e(1+a)<5|//i| to the ends of the segments l» and denote the extended
segments by /+. Let p+ be the Green function for the layer bounded by the planes
through the ends of /J which are orthogonal to /+. Let p+ = p+ — p0. Let Re

n be
the domain bounded by rn,rn+\ and by the lateral surface of the circle cylinder of
radius s with axes /+. Similar to (41) one can compare p and p+ in RB

n and show
that

p g p+ + Ct when xeRe
n9 y e l»9 t ^ t0 ,

and therefore _
p^p+-Ct when xGRe

n9 y G /„, t ^ t0 .

We can replace p+(t9x9x) by (4nt)(l~d)/2P+(t9s9s)9 where x=x(s9u)9 P+ =
Pn

+ - pi and Pw
+ is the one dimensional Green function for the segment /+. If we

substitute the result in (38) and put t = to9 we will get the following estimate:

* E I \Prt(t,S9S) ds

(45)

The sum of the lengths \ln\ does not exceed the value (34). The sum of the
lengths of added intervals is equal to the a(1+a)<5-part of the first sum and does
not exceed Cs^+d ^ O ^ + 5 if v is small enough (see also the proof of (31)).
Together with the estimate \P+(t9s9s)\ ^ (4nt)~l/2 it allows us to replace /„ in (45)
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by /+ because the error due to this change is not greater than the last term in the
right-hand side of (45). After this we can use (43) and similar to (44) we get

t^O. (46)

These two main estimates (44) and (46) are valid for any dimension d ^ 1,
and in particular for d = 1. Let us recall that we use s — \x — G\ as coordinates on
the segment V(G) of the ray /(tr), and that P(t,s,s') is the 1-dimensional Green
function on the set {/„} of intervals /„ C lr{a) with Dirichlet boundary conditions
at points xn = V(o) n Fn, n = 1,2,3.... Let P = P - p\. Then estimates (44), (46)
remain valid if we replace their left-hand sides by fl,,)P(t,s,s)ds (in fact if we
were interested in estimates only for d = 1 we could get them easier). For a given
small T > 0 let us find t — / ( T ) such that <X22M ~ n+lx^' ^ e n ^ e 1-dimensional
versions of (44), (46) can be written in the following form:

/ P(f(r),s,s)ds ̂

/
I'{a) ~ 2 T )

respectively. Here / x is the inverse function.
Combining (44) with (48) and (46) with (47) we obtain that

(47)

(48)

P(f(t\s,s)dsdo - ^ (4ntfd~l)/2f\p(t,x,x)\dx
Q

t->0. (49)

From the relations f(t) ~ t and f~l(t) ~ t as t —> 0 and from Lemma 4 it

follows that integrals over / '(a) in (49) have order 0(f snra) as t —• 0. Together with
the fact that m e s ( r \ r ' ) ^ CdE ̂  Cta

9 where o = ( j ^ - OL6){\ - v) > 0 it allows
us to replace F' by F in (49). After this formula (49) together with Lemma 4 give
the assertion of Theorem 5.

Theorem 5 is proved.

3. Bubble Type Domains

Definition 6. Domain ficS3 is called a bubble type domain if

where Qo is a bounded domain with the smooth boundary dQo and {Bj} is a set
of nonintersecting balls Bj € QQ of radii rj with the centers at Xj e. (2Q.
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In this article we assume additionally that Y^° rj < °°. In our next publication
we will consider a more general case.

Let Rx be the resolvent of the Dirichlet problem for the Laplace operator in Q9

and Kx(x,y) be the Shwartz kernel of the operator R^, i.e. Kx is the Green function
of the Dirichlet problem for the operator A — L We would like to study the integral

fKx(x9x)dx, A->oo
Q

which corresponds to — c~(A) (see (3)) with z = 1. However, the kernel Kx(x9y)
has a singularity as x —> y. That is why we have to consider the iteration (R^)2 of
the operator R;, and its kernel Gx(x9 y) which is the solution of the problem

=0 ondQ. (50)

The purpose of this section is to show that Weyl's asymptotics with two main
terms is valid for the integral

fGx(x9x)dx, A->oo,
Q

which corresponds to Q~(X) with z = 2. It indicates that the spectral dimension of
the boundary dQ is 2. We also show that at the same time the Minkowski dimension
of dQ can be an arbitrary number in the interval (2,3).

Now we formulate the main result of the section

Theorem 7. Let Q be a domain of bubble type and^n < oo. Then the following
formula is valid for the Green function Gx of problem (50):

/ Gx(x9x)dx =
Q

We need several lemmas in order to prove the theorem. The following lemma
is an obvious consequence of the maximum principle for the Laplace operator.

Lemma 8 (Maximum Principle). Let Q be a bounded domain and

{A - Xfu = 0 inQ9

u g O , (A- k)u ^ 0 on dQ .

Then u g 0 in Q. This assertion is also valid if Q is an exterior domain and u —> 0
as \x\ —• ex).

Proof In order to prove Lemma 8 in the case of bounded Q one can apply the
maximum principle for the operator A — X successively to the functions (—A -f Xju
and u. If Q is an exterior domain it must be noted first that all derivatives of u
tend to zero at infinity if u satisfies the equation (A — X)2u = 0 in Q and u —> 0 as
|JC| —• oo. The lemma is proved.

The next four lemmas are devoted to studying the Green function Gx of the
operator (A - A)2 in the exterior of the ball B(R) of the radius R with the center
at the origin. We will denote this Green function by Tx = Tx(x,y; R). Our purpose
is to find an asymptotic behavior of Tx(x9 y; R) when x = y, X —> oo,/£ —> 0. First of
all let us make two remarks.
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Remark 3. The definition of the Green function Gx for an exterior domain
for example) includes relations (50) and also a decay of Gx at infinity:

lim Gx = 0 . (52)

Remark 4. Function E = gffjj is a fundamental solution of the operator,

= S(x - y) . (53)

8 Jr
i.e.

In particular,

Lemma 9. Lef (A - A)2w = 0 outside of the ball B(R\ and

\u\ ^ a, \(A - A)n| ̂  2j8 when \x\ = R; u -> 0 as |x| -^ oo .

for\x\ZR. (55)

Proof. Let us denote the right-hand side in (55) by v. Due to (54), we have

V\\X\=R = OL + ̂ = ^ a, ( J - A)t;|k|=/J = -2j8 .

Hence, ±w — v satisfy assumptions of Lemma 8 with Q = U3\B(R% and there-
fore ±u — v ̂  0 in $t3\B(R). Lemma 9 is proved.

If \y\ ^ ^ we will denote by y* the point conjugated to y with respect to the
sphere |JC| = R, i.e. y* belongs to the segment [0,y] and |>>*| • |>>| =R2.

Lemma 10. For any R9A>0, \x\ ̂  R, \y\ >Ry the following formula is valid:

" ' 1 + 9

where

£ ^ ( ± 2 ^ (57)
Proof. Recall that

\x-y\ = \x-y*\^ if\x\=R. (58)
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From here, (56) and the first boundary condition in (50) it follows that on
dB(R),

1 f l e -Vi |»- ;*l _ e-Vl\x-y\

= 1 e-Sl\*-y'\ \JL_l + l_e-Vx\x-S\^-i)] . ( 59 )

SnVJ. [\y\ J
Since \y\ >R, we have

|l_^-VA|x-^|(M-i)| ^ y/fy _ y*\ f\A - i\ £2y/J(\y\-R). (60)

In order to get the last inequality we used the facts that |j>*| < R and |JC — jv7* 1 ^
|JC| + | y | ^ 2R for |JC| = R. From (59) and (60) we have

Formula (56), the second boundary condition in (50) and (58) together lead to
the following relations when x € dB(R):

47t|.y||x-yli 4n\x-y\

R

-y'\ _i_ ' c-VIu-vl
1

R -VXlx-vm\r-VX\x-ym\(W'-l) _ i i
1J *c c

4n\y\\x-y*\e ^
From here and the first of inequalities (60) we get that

, \A=R. (62)

From (56) and Remarks 3,4 it follows that (A - Xfg = 0 in $R3\#CR) and g - • 0
as |JC| —> oo. Together with (61), (62) and (55) it gives (57). Lemma 10 is proved.

Lemma 11. For any R,X>0 and \x\ ̂  R,

(63)
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Proof. This estimate follows immediately from Lemma 10 and the inequality
\X—X \ ^ \X\ — \X I ̂  IJCI — K .

Now we can prove the final assertion on the Green function for the exterior of
B(R).

Lemma 12. For any i?, A > 0,

1
I Tx(x,x;R)-

\x\>R

Proof Let us integrate (63) over the exterior of the ball B(R). We have

Similarly
\X\~R -VU\X\-R) d

\x\2

J_ P 1*1 ~R -y/J.(\X\-R) , _ jj?_ J _

It leads to (64). Lemma 12 is proved.
We will need three more lemmas in order to prove Theorem 7.
Let Tt be the Green function (see (50) and Remark 3) in the exterior of the

ball Bh i.e. Tt = Tk{x-xhy-x^rt). Let G^ = G%(x,y) be the Green function for
domain QN = &o\W^##/) • Let

£,=£-0,, G?=£-G?, Tt=E-fi9

where is is the fundamental solution of the operator (A — A)2 (see Remark 4). Then
Gx, G%, Tt are the solutions of the homogeneous equations in domains Q,QN9R

3\BJ
respectively with corresponding inhomogeneous boundary conditions. In particular,

(A-A)2Gx = 09 xeQ; Gx=E, (A - k)Gx = (A - X)E9 x e dQ . (65)

Lemma 13. The following inequalities hold:

0 < GA, G?, Ti^E.

Proof These inequalities for all three functions can be proved in the same way.
Let us prove them for G^, for instance. Let u be a solution of the problem.

(A - k)u = <5(JC - y) in Q9 u = Q on dQ .

From the maximum principle for the operator A — X9 it follows that u ̂  0 in Q.
Thus, Gx is the solution of the problem

(A - X)Gx = u ̂  0 in Q, Gx = 0 on dQ, (66)

and the minimum principle for solutions of (66) leads to the inequality Gx ^ 0.
Hence Gx ^ E. Inequality Gx > 0 follows from (65) and Lemma 8 since E > 0
and {A — X)E = — e

4 , **. < 0. Lemma 13 is proved.
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Lemma 14. The following inequalities hold:

Proof Since Gx = &[ = E on dQN and %? > 0 (due to Lemma 13), we have

0 = Gx - GN
X < Z fi9 xedQN. (67)

If x e dBj, j > N, then Gx = E and 0 < GN
k ̂  E (due to Lemma 13). Hence

0 ^ GA - GN
X <E, x€ dBj, j>N . (68)

On the other hand 7} = £ on dBj and 7; > 0 for any i, and therefore ^2i>N ft>E
on dBj if j >N. Together with (68) and (67) it leads to the inequalities

0^Gx-GN
x <Y,Tu xedQN. (69)

i>N

Similarly one can check that

0 ^ (A - X){Gk -&x)^ X) (A ~ Wi, xedQ. (70)

The assertion of Lemma 14 follows immediately from (69), (70) and Lemma 8.

Lemma 15. Let Q be a bounded domain with the smooth boundary, and Kx =
Kx(x, y) be the Green function in Q:

(A - k)2Kx = S(x - y) inQ; Kx = (A-k)Kx = 0 when x G dQ . (71)

Then the following estimate is valid for the function Kx = ^ ^

-le-yTXfaJQ)
Kk{x,x) ^ — j=— .

Proof Let Qy be a cube with the center at y G Q and the edges equal to d =
p(y,dQ)- Then Qy G Q. We denote by Px = Px(x,y) the Green function of problem
(71) in the cube Qy (with ^-function at the center of the cube). Since function
u = (A — X)Kx satisfies relations (A — X)u = d(x — y) in Q and u = 0 on dQ, it
follows from the maximum principle for the operator {A — k) that (A — k)Kx ̂  0
on Q. In particular, {A - k)Kx ̂  0 on dQy. From the assertion of Lemma 13 with
Q = Q it follows that Kx ̂  0 on Q. Thus, Kx ̂  0 on dQy. Applying Lemma 8 to
Kx — Px in Qy we get that

TTius, if Px=**«-ffix-^-Px then

Kx(x,y)^Px(x,y)9 x e Qy . (72)
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Let us reflect point y with respect to faces of the cube Qx and denote reflected
points by j>y, 1 ^ jr ^ 6. One can easily check that

j=6 e(-
y),

= 6 f-y

^ {A - k)Px(x9y)

when x € 3Qy. Together with Lemma 8 it gives the first inequality for any x £ Qy.
From here and (72) we get that

j=6 e(-VX\x-yj\)

Y: Q n , (73)

Similarly to Lemma 13 we have that Kx(x9y) ^ 0. Assertion of Lemma 15
follows from here and (73) if we put x — y.

Lemma 15 is proved.

Proof of Theorem 7. We fix an arbitrary e > 0 and choose N = N(e) such that

From Lemmas 12, 14 and formula (74) we get that

0 ^ f(G»(x,x)-Gx(x,x))dx g ± .
a ^A

(74)

(75)

Since QN is a domain with a smooth boundary then from the Minakshasandaram
expansion it follows that

f GN
x{x,x)dx = lizd—I—1_ Q\ I X —> 00 . (76)

We fix Ai = X\(e) such that the remainder is less than e/4A when k ^ k\. Then
taking into account the second of the estimates (74) we can rewrite (76) in the
form

£ — , k>kx. (77)
QN

Now we are going to show that

U Bj

\6nk

%ny/l
(78)

If r is the distance between x E £y and the center of the ball Bj C Q, then
p(x,dQ) ^ ry — r, where ry is the radius of Bj. From here and Lemma 15 it follows
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that

I*%(x,x)dx

VII
VII

3

4ny/l

3rj

_vl 3
B 6 X ~ 4nVJ.
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Together with the first of estimates (74) it leads to the inequality

/ GN
x(x,x)dx

U Bj
N

which in its turn gives (78) because G%(x9x) =
and (78) we get that

volQ mes(d£20)
8TC\/I

- GN
k(x,x). From (75), (77)

£

I'
Since £ is arbitrary, it completes the proof of Theorem 7.
The last part of the section contains a proof of Minkowski measurability for

two classes of bubble type domains. We will return to these classes of domains in
our next publication. Here our objective is only to show that under assumptions of
Theorem 7 the Minkowski dimension can be an arbitrary number in the interval
2<m<3 at the same time as the spectral dimension is 2 (due to Theorem 7).

3.1. (oL,f},y)-model. Now we describe a class of bubble type domains in 5ft3 which
depends on three parameters a, jS and y with / J > a > l , a - l > y > 0 . Suppose that
domain QQ contains the unit cube Q, and the lower face of cube Q belongs to the
boundary dQ0 of the domain (see Fig. 5 ). Let's consider a partition of Q by layers
Ln, n = 1,2,3... , of the size An, J2^\ 4 , = 1. We assume that the layers are united
into groups //, each group /} contains &, layers with the same widths /,•:

Ai = - • - = Akl =

Of course ^2 kit = 1.

Fig. 5
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We assume that Nt = 1//,- are integers, and the following two relations are ful-
filled:

Nt ~ coia, kt ~ cxi
y as i -> oo (79)

We represent each layer from J] as the union of the equal subcubes Qtj C Liy

j = 1,2,... ,Nf. Let 2?,j be a ball of radius rtj = rt centered at the central point xtj
of Qtj, and r,- ~ C2*~̂  as i —• oo. Of course, r,- < /,• if i is big enough (/? > a), but
we assume that this inequality is fulfilled for all values of i. It means that balls Btj
are not overlapping.

Definition 16. The (a,P9yymodel of a bubble type domain Q considered below has
the form

Q = Q0\ \JBU . (80)

Remark 5. Let's note that

because Jfc,- ~ c\iy, fy ~ c<>/a, n ~ C2i~^ as i —* oo. Thus, Theorem 7 can be applied
for domain (18) if P > lot + y + 1. It means that in this case (/? > 2a + 7 + 1) the
second term of the spectral asymptotics does not depend on constants a, /?, 7, and it
has the same order as for domains with smooth boundaries. On the other hand we
will show below that dQ is Minkowski measurable with m(dQ) = 2 + *~. Thus,
the Minkowski dimension m(dQ) can be an arbitrary number between 2 and 3
(a — 1 > y > 0), and the MWB conjecture is not valid.

Remark 6. One can consider bubble type domains in space $td with any d > 2.
In this case, a theorem similar to Theorem 7 is valid with the assumption that
^2irtd~2 < 00. The definition of (a,/J,y)-model in rf-dimensional space is the same
as for d = 3, and the analogue of Theorem 7 can be applied to this model if
/? > a ^ j ^ " y + 1 . It means that under this assumption the second term of the spec-
tral asymptotics is the same as for domains with smooth boundaries. On the other
hand, in the rf-dimensional case m(dQ) = d — 1 4- ^ , and it is an arbitrary number
between d — 1 and d.

For simplicity we will consider below only d = 3, although there are no difficul-
ties to take an arbitrary d. In order to formulate the next theorem we need function
F = F(r) , which is the volume of the part of a unit cube covered by the set of
8 balls of the radii r centered at vertices of the cube. Of course F(r ) = |rcr3 if
r ^ 1/2, and F(r) = 1 if r ^ V5/2.

Theorem 17. If /? > a > 1, a — 1 > y > 0, then the boundary of the domain Q =
QQ\ U;,J By G 5ft3 is Minkowski measurable with Minkowski dimension and
Minkowski content equal respectively to

m(8Q) = 2+y-±±, \dQ\m = -^-jFiry-2^ dr .
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Proof. As n/li —> 0 when i —> oo (because /} > a) we may assume that /y < /,-/6
for all i ^ 1. If it is not true for some i ^ io one can include the boundaries of
the balls By, i ^ io, to the outer boundary dQo.

Let i+(fi) = (~ ) 1 / a , /"(«) = (4^i)1/a- Since /, - (c00~a , there is an eo > 0 such
that

/, < e/3 if i ^ *+(e), /,- > 3e if i ^ r ( s ) (81)

if 6 ^ 8o. From now on we assume that 0 < s < 8o.
From inequality r, < /,-/6 and (81) it follows that fi-neighborhoods C#i,7)e of the

balls By are located strictly inside of the corresponding cubes Qy if i < /~(e), and
they cover the layers Z,, if i > /+(fi). It allows us to get the following estimate for
\it = mes((dfi)£ fl Q):

E

From here and the inequality (r, + s)3 — r? ^ 6e(ff + e2) it follows that

E ^ -"^Me^cc ia f lo l + Cifi E ^E

and therefore there exist constants A\9A2>0 such that

Aie1-1^ < it* <A2e
l

One can rewrite these inequalities in the form

< it* <A2e
l~1L^ . (82)

which shows that the Minkowski dimension m(dQ) is equal to 2 + *±! if 3D is
Minkowski measurable. To get the measurability we must prove the existence of
the limit (Minkowski content) \dQ\m := lime^>ofie/e

3~m.
Now we are going to evaluate fie more carefully in order to prove the existence

of the Minkowski content. We represent \it in the form of the sum of three terms
K + fl" + PE"* where fi'e is the contribution to \it of the s-neighborhood of the outer
boundary dQo and of the balls Bitj with i < i~(s), fi" is the contribution to fiB of
the g-neighborhood of the balls By with i € [i"(fi), /+(fi)], p"' is the contribution
to fie of the e-neighborhood of the balls By with i > i+(s). We will start with the
evaluation of /J".

The centers xy of balls By, inside of each group fj of layers of the cube
Q, have a structure of the lattice with the step /,-. Let's fix i e [i~(s), i+(e)] and
consider cubes Q!y with the vertices at centers xy of the balls By. These cubes
(there are (Nj — 1)2(^, — 1) of them) cover completely the group /} of the layers
except for the /,/2-neighborhood of the boundary of the group. The volume of the
noncovered part has order £. If we take all values of i E [i~(s), i+(e)]9 then the
volume of noncovered sets has the order O(e(i+(e) — i"~(s))) = O(el~1^). It leads
to the following upper estimate for /i" :

E F^-^lUNi-lfM-V + Oie1-1*) (83)E
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On the other hand, it is obvious that

M ~ 1 f(ki - 1). (84)

From (79) and the Euler-Maclauren formula it follows that

F (j

J
(l/4co)1 / a

1 y-H-2a

J F(r)r « rfr as £ —• 0 .

Since r, ~ czV* = o(e) when i e [/~(e),/+(fi)], the same estimate is valid for
the sum in the right-hand side of (83), and therefore from (83), (84) it follows that

ase- ,0 . (85)

We can repeat arguments used for getting (82) and obtain estimate (82) for
/Xg -I- ii1" with better constants:

axe}-^ < fi'e + ii'e" < a2s
1-^ . (86)

It is not difficult to check that if we use constants l/«, n with n > 4 instead of
1/4, 4 in the definition of i~(e)9 i+(s\ then relation (85) remains valid with limits
of integration 1/n, n and aua2 -» 0 as n -> oo. It means that

^ ( S l v ^ ^ / F^y~2^ dr as e -+ 0 ,

and the proof of the theorem is completed.

3.2. (a, pymodel. It is the same type of domains as in the (a,^,y)-model but with
y = 0. To be more exact we do not assume the existence of any groups of layers of
equal width. In other words kt — 1 for all i. Thus, cube Q is divided into layers Z,n,
n = 1,2,..., of the widths An with An ~ ^~r, the layers are covered by elementary
subcubes Qnj, and Q = Qo\(l)Bnjr), where Bnj are balls of radii rn centered at the
centers of cubes Qnj. As earlier rn ~ C2n~P, and p > a > 1.

The previous analysis cannot be applied here directly because assumption y > 0
was used essentially. Instead of assumption y > 0 we assume now that sequence An

is regular in the sense that An— An+\ ~ cn"*'1 as n —• oo. In order to formulate an
analog of Theorem 17 we need the following notations. Let P be the parallelepiped
formed from the unit cube 0 g x j , z ^ 1 by shifting its upper face at the vector
(a, 6,0). Let F(a,b9r) be the volume of the part of parallelepiped covered by the
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balls of radii r centered at the vertices of P. Let H(r) be the "mean value" of
F(a,b,r) with respect to shifts:

1/2 1/2
H(r) = 4 f J F(a,b,r)dadb.

o o

Theorem 18. If fl > a > 1 and regularity condition on An is fulfilled, then boundary
of the domain Q = Qo\[jnjBnj £ 5ft3 is Minkowski measurable with

m(dQ) = 2 + - , \dQ\m = - I j JH(r)r-2+L* dr .
a (XJCQ 0

The proof is similar to the proof of Theorem 17, and it is based on a special
partition of Q by the union of the convex polyhedra with the vertices at centers of
the balls Bnj. The majority of these polyhedra are "almost parallelepipeds" similar
to P (with the upper faces shifted with respect to the lower faces). The shifts are
uniformly distributed, and it allows to express fi£ through function H. Formal analysis
is not trivial and slightly bulky. But all technical details can be reconstructed.

4. Planar Bubble Fractals

The objective of this section is to prove an analogue of Theorem 7 for the case of
the 2-dimensional domain Q. As it was mentioned in the introduction, the simplest
case of 3-d web type domains can be reduced to the planar bubble fractals.

Definition 19. A planar domain Q c 5ft2 is called a domain of bubble type if Q =
£2o\(U/^i ^/)» where &o is a bounded domain with the smooth boundary and {Bj}
is a set of nonintersecting circles Bj C Qo of radii rj with centers at Xj E QQ.

In this article we additionally assume that Yl%\ Thh~\ < °°-
We consider the Green function Gx(x9 y) of the problem

(A - k)Gk = S(x - y), x9yeQc^; Gx = 0 when x e dQ . (87)

Let us mention that the operator A — X in 5ft2 has a unique fundamental solution
E = Ex(x) decaying at infinity. This solution has a form

2n

where K(x) = K0(x) is the modified Hankel function: K(x) = ± ^
Function G^(x, y) (as well as Ex(x — y)) has a logarithmic singularity as x —* y.

Thus we cannot expect that Weyl's formula will be valid for the integral

fGx(x,x)dx.
Q

However in the 2-dimensional case one can avoid the necessity to consider
an iteration of the resolvent. We will consider the difference Gx(x,y) — Ex(x — y).
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Unlike the 3-dimensional case, this difference has a limit as x —> >>, and the limit
is integrable over Q. Since we subtracted the fundamental solution from the Green
function, Weyl's formula in the case of the 2-dimensional domain QQ with the
smooth boundary gives the following result:

/ lim [Gx(x,y) - Ex{x - y)]dx = m e s ^ ° > + ^ - i ) . (88)

Now we formulate the main result of this section.

Theorem 20. Let Q be a planar domain of bubble type and J^ T^TT < °°- Then

J i n n a t e , ) - EAx - yW* = ™ * * + 2 ' S > + o ( * ) , (89)

as k —* 00.

To prove Theorem 20 we need two lemmas. Let us denote by Tx(x,y;R) the
Green function of the problem (87) in the exterior of the circle B(R) of the radius
R with the center at the origin:

y;R) = S(x-y)9 \x\9\y\>R; TX\M=R = 0;

Tx - • 0 as |JC| - • 00 .

Let us represent this function in the form

7i(x, y;R) = Ex(x-y)- Tk{x, y;R). (90)

Lemma 21. The following estimate is valid for function Tx:

Proof. From (90) it follows that

fx(x, y;R) = - ^-K(\Tk\x - y\) when \x\=R, \y\>R. (92)

Since function K(£) > 0 and decays monotonically when £ > 0, we get from
(92) that

\Tx(x,y;R)\ ^ ^-K(y/l(\y\ - R)) when \x\=R9 \y\>R. (93)

Inequality (91) is a direct consequence of (93) and the maximum principle for
operator A — k in B(R). Lemma 21 is proved.

Lemma 22. The following estimates are valid for integrals of Tx(x9x):

J \fx(x,x;R)\dx £ C ifV~M<1-; (94)
\X\>R A| In VA/?| 2

/ \Tx(x,x;R)\dx £c(-j= + 0 \ if VlR^1-. (95)
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Proof. Function K(£) has a logarithmic singularity at point <J = 0 and it decays at
infinity as ^~l/2e~^. Thus,

Qllnil^^OgCallnfl, 0 < £ < ^ , (96)

d±e-* £ Kit) g C2±e-*9 { * ± . (97)

First we consider the case when y/XR < \. From monotonicity of K(£) and
Lemma 21 it follows that

U^/M^m (98)

Together with (96) it leads to the estimate

\]n

because y/~XR < \. Further, from (96)-(98) we get that

/ \fx(x,x;R)\dx

< C f r - = 7=^-dr = C f

Together with (99) it proves (94).
Now we assume that y/XR > 1/2. From (96) and (97) it follows that K(£) g

C(l H-1 In ̂ |) for any t, > 0. Together with Lemma 21 it gives the following estimate:

Thus, if VkR > 1/2 we have
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Hence

\x\>R R

] + \\ny/*r\]dr

+ C

because y/Z + y/AR ^ \fl + y/y/XR. Lemma 22 is proved.

Proof of Theorem 20. Proof of Theorem 20 is similar to the proof of Theorem 7.
The last one is based on Lemmas 12-15. Lemma 22 is substituted for Lemma 12
when the dimension is two.

Lemmas 13,14 have the following 2-dimensional analogues respectively: Let 7J
be the Green function of the problem (87) for the exterior of the circle Bt (i.e.
Ti = Tx(x-xi,y-yi;n)) and 7 1 = ^ - 7 } . Then

0>GA, G^fi^E where E = Ex(x - y) = ~K(yfi\x - y\) ; (100)
2n

0^G A -G? ^ £ £ , x,yeQ. (101)

These relations are based on the maximum principle for operator A — X and can be
proved in the same way as Lemmas 13, 14.

Instead of Lemma 15 we have now the following estimate. Let Px be the Green
function (87) for a planar domain Q with the smooth boundary and Px = Ex{x — y)
— Px(x,y). Then, similar to Lemma 15 we have

|/M*,JC)| ^ 4K(>/Xp), p = p(x, dQ) . (102)

For an arbitrary e > 0 we choose N\ = N\(e) such that

0 0 3 >

where r, are the radii of circles B% and C are the constants determined in (94), (95).
The existence of N\(e) follows from the convergence of the series £ ThTTT* ^ r o m

(101), Lemma 22 and (103) we get

/ \Gx(x9x) - G%(x9x)\dx £ - 1 = if N ^ Nx(e) . (104)
4VA
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After this, we find N2 = N2(s) such that

and A/3 = #3(6) such that

4

(105)

(106)

Let iV = max(7Vi,#2,^3). Formula (88) implies

/
QN Ayfl

if X ^ Ai(e) and X\(e) is big enough. Together with (106) it leads to the estimate

e
, X ^ Xi(s) .

From (102) with Q = Q" and Px = Gk, and from (105) we get that

(107)

U Bi Ay/l*

Together with (107) and (104) it gives the assertion of Theorem 20. The proof
is completed.
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