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Abstract: A general model of a branching random walk in IR1 is considered, with
several types of particles, where the branching occurs with probabilities determined
by the type of a parent particle. Each new particle starts moving from the place
where it was born, independently of other particles. The distribution of the
displacement of a particle, before it splits, depends on its type. A necessary and
sufficient condition is given for the random variable

X° = sup max XnΛ

to be finite. Here, XΆtk is the position of the kth particle in the nth generation, Nn is
the number of particles in the nth generation (regardless of their type). It turns out
that the distribution of X° gives a minimal solution to a natural system of
stochastic equations which has a linearly ordered continuum of other solutions.
The last fact is used for proving the existence of a monotone travelling-wave
solution to systems of coupled non-linear parabolic PDE's.

1. Introduction and the Results

The purpose of this paper is twofold. First, we extend (and make more precise)
results concerning the asymptotics of the single-type branching random walk
obtained in [KKS 1-3] to the multi-type case. Secondly, and perhaps more
importantly, we derive, from our results, a new theorem about the existence of
monotone travelling waves, for a general system of coupled reaction-diffusion
equations (otherwise known as Fisher or Kolmogorov-Petrovskii-Piskunov equa-
tion (see [F] and [KoPP]) 1 . The connection between the reaction-diffusion

* This research was supported in part by the Institute for Mathematics and its Applications,
University of Minnesota, Minneapolis, MN 5545, USA, and the EC Grant "Human Capital and
Mobility", No 16296 (Contract No CHRX-CT 93-0411).
1 In their papers, Fisher and Kolmogorov, Petrovskii and Piskunov considered the case of a single
equation only; by the present time the theory of a single reaction-diffusion equation is much more
elaborated than the theory of reaction-diffusion systems, where many basic questions remain open
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equations and branching random walk has been widely used since the papers by
McKean [McK 1,2]. Namely, it is the so-called branching diffusion process that
figures in a formula for the solution of the Cauchy problem for reaction-diffusion
equations. However, in this paper we use a different branching random walk model,
called exponential, which is directly related to travelling waves. The literature
devoted to the problem of existence (and uniqueness) of travelling wave solutions
and of convergence to these solutions is vast; a detailed reference list may be found,
e.g., in a recent paper [VV] and a forthcoming book [VVV].2 Still, our method
seems new: we believe that the opportunities provided by this method are not at all
exhausted by the present result.

An alternative approach, also based on probabilistic ideas, was recently de-
veloped in [CHTWW]. [It is the case of two equations that was considered there.]
The classes of reaction-diffusion systems considered in [CHTWW] and in the
present paper are slightly different. Nevertheless, some comparison seems appro-
priate. In both papers, the conditions proposed are only sufficient, for the existence
of a monotone travelling wave with a given velocity. [A necessary condition was
established in [VV, VVV], but this condition is hard to check.] However, in
[CHTWW] the authors are able to prove the uniqueness of such a solution. We
believe that the uniqueness should also hold for our class of systems, but this
question remains open. Another important question left open in this paper is that
of the convergence of a solution of the Cauchy problem to a travelling wave, as
time increases indefinitely. This question was partially answered by the authors in
[CHTWW] for their class of systems.

1.1. A multi-type branching random walk: General results. Consider the following
model of a discrete-time branching random walk in R 1 , with particles of several
types labelled 1,. . . , M. A particle of typej created at time t moves randomly, from
the point where it was created, to another point and splits, at time t -f 1 (the time of
its death), into a random collection of offspring particles described by a vector
1 = (lu . . . , lM), where lk is the number of type k offspring created. The probability
of creating a sample 1 = (lu . . . , lM), is determined by the type j of the ancestor and
denoted by q(j; 1). Each newly born particle moves independently of other particles,
and the distribution Pjtk of its random displacement, ξjik, from the birthplace is
determined by its type k and the type j of its ancestor.

Given that the initial particle is, at time zero, at the origin and has a prescribed
type j , we can speak of the (absolute) positions of particles of the nth generation at
the time of their deaths. These particles are naturally labelled by the paths of
distance f i o n a (random) oriented marked Cayley tree Γ, with a distinct initial
vertex O, which represents the structure of the descendants of the initial particle. By
orientation we mean that each edge of the tree is directed out of vertex O, and the
"marks" assigned to the vertices are simply their types. The branching at each
vertex occurs independently and is described by distribution q(j\ \ where j is the
type of the vertex. To each edge e of tree Γ we assign a random variable ξ(e) that
equals the displacement of the corresponding particle from its birthplace. Given
a realization of the tree, the random variables ξ(e) are (conditionally) independent
and have distributions PjΛ. If L is a (finite) path on Γ initiated at O then the

2 It is worth noting that these publications contain many results previously published in Russian
and no widely available in the West
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Fig. 1. A random process on a Cay ley tree

positions Xh of particle L is given by the sum Σ e e L £ ( e ) We are interested in the
behaviour of the supremum

X° = supXL (1.1)

taken over all finite paths on the random tree which start at O. See Fig. 1.
The first question we address is: under what condition is the distribution of X°

proper (that is, X° < oo with probability one)? Denote by 77° the distribution of
X° in the case where the initial particles has type j , j = 1,..., M. Vector 77° is
defined as ( i 7 ? , . . . , Π°M).

Denote by K(j,k) the expected occupation numbers:

K(j,k)= ΣiUΛVk, l^jΛSM . (1.2)

Throughout the paper we assume that K(j,k) < oo for any j , k = 1,. . . , M, and
moreover that there exist finite exponential moments

(
1^0 \ k=\

where Ro > 0. This means that the moment generating functions

φ J ( z 1 , . . . , z M ) = E β ( Λ . ) z z ί . . . z J Ϊ , l ^ ^ M , (1.3)

are analytic in a poly-circle \zx\,. . . , \zM\ < exp Ro.
Another standard assumption is that all distributions P 7 ? f c possess exponential

moments

Έeaξ*k = \PUk{dx)eax < oo, a e (0,a°) , (1.4)

for some a0, 0 < a0 g oo. [We always refer to α e (0,a0) while using these
moments.]

Sometimes we impose various additional conditions, For example,

)>0, 1 ^ 7 , / c ^ M , (1.5)

and

minΣK(j,k)> 1 (1.6)
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Another condition: for any j,k = 1,. . . , M and any x < 0,

ί ίPj,kWy)>o (1.7)
— 00

is also assumed at a certain point. Finally, when dealing with travelling wave
solutions, we introduce further conditions on q(j;>) (see (1.28), (1.29)).

An important role is played by the family of matrices A(a), with non-negative
entries

ξ»<, l£j,k^M. (1.8)

According to the Perron-Frobenius Theorem (see [S]), A(a) has an eigenvector,
C = (CΊ ,..., CM), with non-negative components C7, such that the corresponding
eigenvalue p > 0 is no less than any other eigenvalue of A(α). If condition (1.5)
holds, all entries of A(α) are strictly positive, and so are the components C7 of
eigenvector C. Furthermore, eigenvalue p in this case is simple. [Matrix A(a)
in general may have other (non-negative) eigenvalues with non-negative eigen-vectors.]

We sometimes write p(a\ C(ά) and Cj(a\ 1 rgj ^ M, in order to stress the
dependence on a.

Theorem 1. The condition

there exists a with ρ(a) ^ 1 (1.9)

is sufficient for all distributions Π®, 1 ^ j ^ M, ίo b£ proper (that is Π® (IR1) = 1).
Under assumption (1.5)—(1.7) it is also necessary.

The sufficiency assertion in Theorem 1 was proved in an earlier paper by
Biggins [B].

It appears that the random variable X° satisfies a natural system of (stochastic)
equations. More precisely, the equations involve vector Π°. If we denote by Xj the
version of the random variable X° under the condition that the initial particle has
type j , then the equations may be written in the form:

Xj ~ max 0, max (X? 0 + ξfj),. . . ,

£(/CM)\max (X%M) + ξf$) 1, 1 S j ύ M . (1.10)
1 ίS kM <; IM(J)

Here, symbol ~ means the equality in law. The random numbers l\(j\ . . . , /M(J )
indicate how many offspring of given type were produced by the initial j-vertex O.
The distribution of vector \(j) = (/i(j),. . . , IM(J)) is described by the transition
probabilities q(jl-). Given a sample vector l(j) = (lι(j\. . . , IMU)\ t n e random
variables Xίίw), 1 ^ /cm ^ lm(j\ 1 ^ m ^ M, in the j t h equation (1.10) are indepen-
dent; for a fixed m they have the same distribution as the random variable Xm in the
l.h.s of the mth equation. [These distributions are the unknowns in (1.10)]. Sim-
ilarly, random variables ξf%\ 1 ^ km ^ lm(j), 1 ^ m ^ M, in the/ h equation (1.10)
are (conditionally) independent and do not depend on the X(^m)'s; ξf^ has
distribution P 0 ,m). If some numbers among the Zm(j)'s are zeroes, the corresponding
maximum is omitted.

Pictorially speaking, X%m) in the r.h.s of the j t h equation (1.10) represents
a random variable of type (1.1) "viewed" from a type m vertex of the first generation
on the tree: altogether there are lm(j) such vertices labeled by km = 1,. . . , lm(j).
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A solution to (1.10) is therefore a vector of (possibly improper) distributions,
Π = (771,. . . , ΠM). Speaking of an order between solutions, and in particular of
a minimal solution, we mean the standard distribution ordering between the
components of the corresponding vectors.

Theorem 2. Vector Π° = (17?,. . . , Π°M) always gives a {unique) minimal solution to
(1.10). Therefore, condition (1.9) is sufficient for (1.10) to have a solution where all
distributions Π u . . . , ΠM are proper. Under assumptions (1.5)—(1.7) it is also neces-
sary.

A surprising fact is that the solution to system (1.10), provided that it exists, is
non-unique. We denote b+ = max[0,fc], b e R 1 .

Theorem 3. Assume that conditions (1.5) and (1.6) are fulfilled and suppose that the
eigenvalue p(a) < I for some a e (0, a0). Denote by a the smallest root of the equation
p(α) = 1:

α = inf[α>0:p(α) = 1] ; (1.11)

then α > 0. Denote by β the second smallest root of equation p(a) — 1, so that
p(a) < 1 for ae(oc,β). Then, for any y > 0, there exists a unique solution
{Πψ,. . . , Π($) to (1.10) such that, as x -• αo, the distribution function
Fjy)(x) = i7jy)(( — oo,x]) have the representations3

Ff (x) = (1 - yCj(a)e'ax)+ + O{e~px) , l ^ j ^ M , (1.12)

where p may be chosen arbitrarily close, from the left, to min[2α, /?]. Therefore, there
exists a linearly ordered continuum of distinct solutions to (1.10). Furthermore, Π° is
precisely the minimal solution.

The proofs of Theorem 1-3 are carried out in Sect. 2.
The question whether the set of solutions is exhausted by those listed in

Theorem 3 is one of the important open questions in the theory of branching
random walk. In some cases the set of solutions is much larger. For example, the
structure of set of the solutions is known for the case where ξjΛ takes a finite
number of values (see [KKS 1], Propositions 4.5 and 4.6). Here we focus on two
models, where ξjtk has continuous distributions. These models will later be used for
analysis of travelling wave solutions for systems of reaction-diffusion equations,

1.2. Exponential branching random walk and branching diffusion. For the sake of
simplicity, we assume, up to the end of this section, that the distribution PjΛ of the
random displacement ξjtk does not depend on ancestor type j . The notation ξk and
Pk is therefore used, instead of ξjtk and Pjk, and index) indicating the ancestor type
is systematically omitted.

The first model under consideration is where the distribution Pk of the random
variable ξk is the difference of two independent exponentially distributed variables,
with means μk

 ί and λk

 x, respectively. We call the corresponding model exponen-
tial. It has important applications in queueing network theory (see [KKS 1, DKS]).

3 Symbol O(e px) is used below for a function that does not exceed, in absolute value, be px,
x > 0, where b > 0 and p > 0 are constants
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The second model is where ξk is given by the displacement of a Brownian
particle at the end of its exponentially distributed lifetime. Here we denote by mk

ι

the mean value of the lifetime distribution and by βk and Σk/2 the drift and
diffusion coefficient for type k particles. In this model, ξk is again distributed as the
difference of two independent exponentially distributed random variables. The
model may be easily set in continuous time (see below); we call it the branching
diffusion model.

In the case of the exponential model, a key instrument of investigation is
a non-linear dynamical system of ordinary differential equations. Distribution
Pk in this model has the density

pk(x) = Akfik (eλkX{l - Θ(x)) + e-μkXΘ(x)) , (1.13a)
λk + μk\ )

and the Laplace transform Eeaξh reads as

In Sect. 3 we prove the following result.

Theorem 4. Let Π = (Π u . . . , ΠM) be an arbitrary solution to system (1.10), in the
exponential model. Denote by Gk the distribution function of the convolution Pfc*Πfc,
1 ^ k S M. Then the pairs (Uk, Vk), where

Uk{x) = Gk(x), Vk{x) = ^Gk(x)9dx

satisfy the following system of ordinary differential equations'.

U'k(x) = Vk(x) ,

V'k(x) = ~ (μk - λk)Vk(x) + λkμk(Uk(x) - φ^U^xl. . . , UM(x))) ,

x>0, l ^ f c ^ M , (1.14)

with the conditions
Vk{0) x a is)

λk' ( L 1 5 )

{ U k { x ) , V k ( x ) ) e { 0 , l ) x { 0 , o o ) , x > 0 , (1.16)

lim Uk(x) = 1 . (1.17)
Λ: -»• oo

Here ψj is the moment-generating function (1.4).
Furthermore, for x < 0,

Gk(x) = Gk(0)exp(λkx) . (1.18)

The correspondence between the solutions to (1.10) and the trajectories of problem
(1.14)—(1.18) is one-to-one.

Theorem 4 allows us to state the results concerning solutions to system (1.10) in
terms of the phase portrait of system (1.14) in R M x 1RM. This is carried out in Sect.
3 (see Lemma 3.1).
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Passing to the branching diffusion model, we first note that the Laplace
transform Eeaξk equals here

(1.19)
wk + βka - (Σ2

k/2)a

We can say no more about the solutions to system (1.10) for this model than was
said in Theorems 1-3, in a general situation. [It is partly caused by the fact that
system (1.10) leads, for the branching diffusion model, to a (non-linear) system of
ordinary differential equations with delay, rather than to a system of type (1.14).]
However, the information we gain from our analysis allows us to answer the
question whether the particles in branching diffusion ultimately "reach" -f or
— oo, or both infinities, or neither. Another point is that the branching diffusion

model has a remarkable relation to reaction-diffusion equations.
The continuous-time setting of the branching diffusion model is as follows. At

time zero we have a type j particle, j = 1,. . . , M, that splits into a sample of
offspring, according to distribution g(j; ) An offspring particle of type k moves
along IR1, according to the Wiener law, with drift βk and the diffusion coefficient
Σk, and independently of other particles. After an exponential lifetime, with mean
mk \ it splits, according to q(k\ ), and each new offspring then proceeds according
to the same rule. Under condition (1.9) it is easy to check that the continuous-time
supremum

X* - sup sup XL(ί) (1.20)
ί ^ 0 L G <f{t)

(cf. (1.1)) is finite. Furthermore, X* gives the (unique) minimal solution to a natural
stochastic equation that again admits a continuum of other solutions. Here =£f (t)
denotes the set of paths on the random Cayley tree Γ(ή built by time t ^ 0 (i?(ί) is
a random set). Furthermore, Xh(t) stands for the position, at time ί, of the particle
labelled by a finite path L e j£? (ί) (as before, we assume that after splitting the
parent particle is frozen at its final position).

The relations with the reaction-diffusion equations are given by Theorem
5 below which is a straightforward generalization of a result of McKean [McK
1,2]. In this theorem, we follow a particular branch corresponding to a single
particle produced at time zero. Correspondingly, Ek denotes the expectation value
in the branching diffusion, following an initial offspring of type /c, and J?k(t) stands
for the subtree, up to time ί, along this branch. Furthermore, for a given L e £?k{t\
n(h) denotes the type of a particle at the end of path L.

Theorem 5. In the branching diffusion model, let fk(t,x) denote the expectation value

fdt,t,x) = Ek\
LL

where fk: R 1 -* IR1 is a C1-function, 1 ^ /c ̂  M. Then functions fk(t, x) satisfy the
following system of partial differential equations:

t,x), ,fM(t,x)) -fk(t,x)) , (1.21)
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with the Cauchy data

Λ(0, * ) = / ? ( * ) , x e R 1 , l g f c ^ M . (1.22)

1.3. Travelling waves for reaction-diffusion equations. System (1.21) is called
a system of reaction-diffusion (or Fisher-Kolmogorov-Petrovskii-Piskunov)
equations. See, e.g., [Bri, R, Sm]. One of the main problems in the theory of
reaction-diffusion equations is that of the convergence, of the solution fk(t, x\ as
t ->oo. One would expect that, if the initial date fk(x) is reasonably chosen, the
solution converges to a (generalized) travelling wave. This means that, for some
choice of (real) constants ck, 1 ̂  k ̂  M,

lim fk(t,x-ckt)=Wk(x), xeIR1, l ^ f c ^ M . (1.23)
t -KX)

Here functions W&: IR1 -+1R1, 1 ̂ / c ^ M , determine the "profile" of the travelling
wave; they should have the property that

(t,x) ^ Wk(x + ckt), 1 g k S M ,

is a solution to (1.21).
The last property means that Wu. . . , WM give a solution to a system of

ordinary differential equations which differs from (1.14) only notationally:

W'k{x) = Vk(x) ,

V'k(x) = (-2(βk + ck)/Σ2

k)Vk(x)

+ (2mk/Σ2

k)(Wk(x)-φk(W1(x\ ,WM(x))), x e R 1 , l^k^M.

(1.24)

We call system (1.24) (and equivalent system (1.14)) the travelling-wave system.
In the sequel, speaking of a travelling wave profile, for system (1.21), we refer to

a vector-function W = {Wu . . . , WM). Vector c = (cl9. . . , cM) is called the (gener-
alized) travelling wave velocity vector. The case Cγ — = cM = c corresponds to
a "regular" travelling wave; the regular travelling waves are important in the
situation where the drift coefficients vanish: βx = - = βM = 0.

Remark. A natural conjecture (motivated by results from [VV, VVV]) is that,
under a certain non-decomposability condition on functions φk in (1.21) (and for
βi = ' ' ' = βM = β\ the convergence in (1.23) is always to a proper travelling
wave. An opposite example is where φk depends on the kth argument only: in this
case system (1.21) is decomposed into isolated reaction-diffusion equations, and the
convergence in (1.23) is valid, in general, for different constants ck. Our interest in
this paper is focused on properties of system (1.24) (with general βk\ not on the
convergence in (1.23), and we consider all possible vectors c.

The simplest case where the convergence (1.23) is expected to hold is where the
travelling wave profile W consists of probability distribution functions. That is, one
must have

Vk(x) > 0 , lim Wk(x) , lim Wk(x) = 1, 1 ̂  k S M (1.25)
• — oo

bound Vk > 0, or equivalently, the monotonicity of the travelling wave profiles Wk,
is the most important property here. This is suggested by results obtained in the
case of a single equation in (1.21).
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In the case of several equations, under the condition that φk is the moment
generating function of a probability distribution, and for cx = = ck = c, it was
established in [VV, VVV] that the set of values of c for which there exists a proper
travelling wave is an interval [c°, oo). In our Theorem 6 (see below), we give a simple
characterization of the value c°.

We adopt the point of view that properties (1.25) are included in the definition
of a travelling wave solution. Thus the question we address in this paper is:

Given c e IRM, does there exist a travelling wave profile W (obeying (1.25)), with
velocity vector c?

In terms of system (1.24), the question is: does there exist a trajectory in the
phase space 1RM x R M which goes, over infinite time, from point

S ~ Wx = = wM = v1 = = vM = 0 (the origin) (1.26a)

to point

T ~ W l = = wM = 1 , Vi = = υM = 0 , (1.26b)

and is confined to the strip

0 ^ wk S 1, vk ^ 0, 1 S k ^ M ? (1.27)

We use here the notation wk for the co-ordinate in IRM x IRM corresponding to
Wk for the co-ordinate in 1RM x 1RM corresponding to Wk, and vk for that corres-
ponding to Vk.

To state our Theorem 6, we need a few basic definitions and facts from the
theory of dynamical systems. The reader is referred for the detail to [H, Ar or AAr].
We also need two more conditions on probability distributions q(j ): for each
j = 1, , M,

4(./;0,...,0) = 0 , i.e. ^-(0,. . . , 0) = 0 (1.28)

and
l . (1.29)

Under condition (1.28), (1.29), the origin S is a saddle equilibrium point for
system (1.24), with stable and unstable manifolds of dimension M. Point T is
another equilibrium point for (1.24), but its status is related to the behaviour of
functions φk near point z1 = = zM = 1, and it depends on the choice of vector c.
System (1.24) has no other equilibrium points in strip (1.27) (see Proposition 4.3).
Geometrically, conditions (1.25) means that the corresponding trajectory must lie
down on the intersection of three sets: 1) Φ(S), the unstable manifold of point S, 2)
^ ( T ) , the stable manifold of point T, and 3) strip (1.27).

Given a vector c = (cu. . . , c M ) e l R M and a value αefO^ 1 ), consider an
MxM matrix B(α)( = Bc(α)) with the elements

®k + (βk + ck)a —

Here, a1 is the smallest positive root of the equation

M

Y[ (υτk + (βk + ck)a — (Σk/2)a2) = 0 .
k=ί
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[Matrix B(α) resembles A(α) from (1.8), in the case of an exponential model; in fact,
both matrices coincide, modulo the change of variables that transforms system
(1.24) into (1.14).] Under condition (1.5), B(α), a e (0,^), as a matrix with positive
elements, possesses an eigenvector L = (L 1 ? . . . , LM) with positive components
such that the corresponding eigenvalue K is positive; the second eigenvalue is
strictly less, in the absolute value, then K. AS before, we use the notation κ(a\ L(α)
and Lj(a), j = 1,. . . , M, to stress the dependence on a.

Theorem 6. Assume conditions (1.5), (1.6), (1.28) and (1.29) to hold. Also suppose that

Ck > - ft, 1 ύ k SM . (1.31)

Then the condition

there exists a > 0 with κ(a) < 1 (1-32)

is sufficient for the existence of a generalised travelling wave profile W satisfying
(1.25), with the velocity vector c.

Remarks. 1. It is interesting to compare the situation described in Theorem 6 with
the case where function φk(zί9..., zM) depends only on zfc, k = 1,. . . , M (that is,
system (1.21) is decomposed into independent single equations). This case is not
covered by Theorem 6, since condition (1.5) is violated. In the case of a decoupled
system, matrix B(a) is diagonal and has M eigenvectors with non-negative compo-
nents. The corresponding eigenvalues Kj( = Kj{a)\ j = 1,. . . , M, are positive.
The necessary and sufficient condition for the existence of a travelling wave profile
W in this case is

inf max Kj(a) ^ 1

in an explicit form,

inf max K(k,k)ΈPk Qxp(aξk) rg 1 .

See [U, Br, VVV] and the references therein, and also [KKS 1]. Under this
condition the travelling wave profile with velocity vector c is unique, and one can
write down conditions on initial functions fk, k = 1,. . . , M, which are necessary
and sufficient for convergence (1.23) (see again [U, Br and VVV]).

2. Theorem 6 gives only a sufficient condition for the existence of a travelling
wave solution with property (1.25). A natural conjecture is that, in the situation of
Theorem 6, possibly under additional mild "non-degeneracy" assumptions, condition
(1.32), with the bound κ(μ) ^ 1 instead of κ(a) < 1, is necessary and sufficient for the
existence of a travelling wave profile W satisfying (1.25). It is also expected that, under
the condition (1.32), there exists a unique travelling wave profile W with velocity c.

3. In the case of a proper travelling wave, with c = (c,. . . , c), the values of c for
which condition (1.32) holds form an interval (c°,oo). We believe that our c°
coincides with the value indicated in [VV, VVV].

The proof of Theorem 6 is carried out in Sect. 4, together with some other
results concerned with system (1.21).
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2. An Analysis of Branching Random Walk: The Proof of Theorems 1-3

Proof of Theorems 1 and 2. By using the distribution functions Fj(x) =
Πj(( — oo, x]) and setting

lFk*Pj,k-](x) = ί lPj,k](dy)Fk(χ - y), (2.1)

we can re-write Eq. (1.10) as

Fj(x) = Θ(x)φj{lF1*Pjt{]{x)9...,lFM*PjtM](x))9 x e R 1 , l ^ ^ M . (2.2)

Here, and below, Θ is the indicator function of the non-negative half-axis
]R+ = [0,oo). Denote by Λj the non-linear operator representing the r.h.s of (2.2):

Λj:u = (uu . . . , uM) H+ ®<P>i*Pj,i» . . . , uM*PjM\ l^j^M . (2.3)
Operator /t7 acts on vector-functions (wl9 . . . , wM), where each w*. is a non-decreas-
ing, left-continuous function 1R1 -• [0,1] vanishing on ( — oo,0). The image ΛjU is
again a function of this type. Equations (2.2) take the form

¥ = ΛF (2.4)

where F = {Fl9. . . , FM) and A = (Λl9. . . , AM).

First, note that operators Λj are monotonic, in the sense that if uk > u'k,
1 ^ k ^ M, then ^-u ^ /t̂  u', 1 ^ j ^ M. Therefore, the sequence Λ"6>,
n = 1,2,. . . , where (9 = (<9,. . . , (9), converges pointwise to a limit
u° = (wϊ,. . . , MM) which is a fixed element for A. Any other fixed point
u = ( « ! , . . . , M M ) is majorized by u° in the sense that wj(x) ^ w/x), xeIR 1 ,
1 ^j ^ M (which is equivalent to the inverse relation between the corresponding
probability distributions).

Another obvious remark is that u® (x) is nothing but the distribution function of
random variable X° from (1.1), under the condition that at time zero we have
a particle of type k. That is, Wfc(x) = 77£(( — oo,x)), xeIR 1 . This distribution
function may still be improper (lim^^^w^x) may be < 1).

To check if u° is proper, we assume that condition (1.9) holds. We take a special
initial vector

v = ( υ l 9 . . . 9 v M ) 9 Vj(x) = Θ ( x ) ( l - C j e ~ a x ) + , ί ^ j ^ M , (2.5)

where value a > 0 is chosen so that p(a) ^ 1 and the eigenvector C(a) is normalized
so that Ck < 1, 1 ^ k ^ M. Denote bk = a'1 logCk and write

ίvk*Pjtk](x) = SlP

00

= 1 - ί ίPj,k]{dy) - Qexp( - ax)

ί 00

\ίPj,Λ{dy)eay - ί [ ^ J W ^ . (2.6)

Since

Qexp(-αx) ] ίPj,k](dy)eay^ ] IPj.k
x-bk x~bk

we have

](x) ^ 1 - C fcexp( - ax)Eea^ . (2.7)
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Furthermore,

(Λsv)(x) = β(x)[l + (φ&vsPjΛix),. . . , ίυM*PjtM](x)) - 1)]

f ^ ( [ P ](),. . , zk,. . . ,

(2.8)

where # k is an intermediate point between [vk*Pjίk](x) and 1. The r.h.s. of (2.8) is

- exp( - ax)Σ

^ <9(x)[l - C ; exp( - ax)~\

in the last inequality we used the fact that C is an eigenvector of A(α) with the
eigenvalue p(a) that is ^ 1.

We conclude that for anyj = 1,. . . , M, (Λj\)(x) ^ Vj(x). Therefore, there exists
a pointwise limit v° = limM^00 Λ

n\ giving a fixed point for A. Furthermore, for the
components υ°u . . . ,VM of vector v° we have bounds

υj(x) ^ Θ(x)(l - C j e ~ a x ) + , l ^ j ^ M . (2.9)

This proves Theorem 1 and the sufficiency of condition (1.9) in Theorem 2.
Let us prove the necessity. We now assume that conditions (1.5)—(1.7) are valid.

Suppose that the minimal solution Π° to (1.10) is composed of proper probability
distributions, (or, equivalently, vector u° is composed of proper distribution func-
tions), but condition (1.9) fails, i.e. p(ά) > 1 for all a > 0. The first remarks is that,
without loss of generality, we can assume that distributions Pjίk are supported on
finite sets with some specific properties. More precisely, we shall assume that there
exist a positive δ, a positive integer JV, and a one-to-one map η:j*-*η{j\ 1 ^j9

η(j) ^ M, such that (a) for anyj, k = 1,. . . , M, with) Φ /c, the distribution Pη{j),k is
supported on a set

S = { - o o , ( - N + l ) δ 9 . . . 9 N δ } (2.10)

[PηUhk](ξ = sδ) > 0 for any
, M, the distribution Pη(j)j is

S = {-oo, -Nδ9. . . ,Nδ] (2.11)

in the same sense as before. In fact, choosing δ > 0 small enough and N large
enough, we can always diminish the distribution PjΛ, in the sense of stochastic
ordering, so that the new distributions possess the property indicated, and condi-
tion (1.9) still fails (assumption (1.7) is important here). Obviously, for the new ij,fe's,
the distributions Πu . . . , ΠM are also proper.

Note that, under our assumptions about Pjtk, distributions U} are concentrated
on subsets of the set {nδ, n e Z + }.

Denoting

lPjM.k = sδ) = phk(s), s e Z 1 or 5 = - oo, (2.12)

in the sense
s= -N+\,..
supported on

that
• ,N,

[P,(J).J(ίe
and (b) for

S) =
any

: 1
j =

and
1,.
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and
l-uj(nδ) = yj(n)9 neZ\ (2.13)

we can write

inδ) = PjA - oo) + Σ Pj-kiW ~ y*(n ~ s))
s= - J V + 1

N

= ! ~ Σ Pj,k(s)yk(n -s), w e Z \ j , fc = 1,. . . , M, fc Φ ̂ (7),

(2.14a)
and

M Pj.Jtnί) = PΛ*( - 00) + Σ Pi.*(s)(l - Λ(" - s))
s = - J V

JV

= 1 - Σ PjAs)yΛn - s) , w6Z1,fe =

(2.14b)

Note that, by the assumption, lim,,-^ j/^n) = 0, 1 ^ j g M.
Equation u° = Λu° now takes the form

n e Z \ 1 ^ 7 ^ M ; (2.15)

the sum in the r.h.s. of (2.15) is over set S for sηU) and over set S for all other sfc's.
Pictorially speaking, variables yηU) (n + N) form a "future propagation front" in
Eqs. (2.15).

Denoting φj = φηU)9 we now observe that functions φj, 1 <^j ^ M, admit the
following representations, near points Zj= 1:

φj(zu . . . , zM) = 1 + X (zk - l)K(iy(j),fc) + ^(Zi, . . . , zM), (2.16)

where \φj(zl9. . . , zM)| = 0(maxk|zfc — 1|2). More precisely, there exist c, y > 0 such
that, for any j = 1,. . . , M, the following holds. For any values zl9...,zM with
maXfc|zfe — 1| < ζ, function φj(zl9. . . , zM) admits a bound

| l / 0 ( z 1 , . . . , z M ) | ^ c £ 2 . (2.17)

Since K(η(j\k) > 0 for any j9k9 it means that functions φj are invertible, in any of
the variables zk9 in a circle about zΛ = 1. Moreover, the inverse functions, as
functions of the whole collection of the complex variables, are analytic in a poly-
circle in <CM about point z1 = = zM = 1.

We want to re-write (2.15), by expressing the "front" variables in terms of other
variables taking part in the equation, for which we need to invert the corresponding
function φ y By the above remark, we can do so while all values yk( ) taking part in
(2.15) are confined to a small interval (0,0 (( ^ {), which may be achieved, for
n large enough: n ^ nθ9 since yk(n) monotonically decrease to zero when n -> 00.
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Hence, for n ̂  n0, Eqs. (2.15) may be written in the equivalent form

yM)=fj(yi(n-2N),...,yi(n-l),

y2{n-2N),...,y2{n-ί),

... ,

yM{n-2N\...,yM{n-\)), ί^j^M. ( 2 . 1 8 )

Note that functions fj are analytic in an open poly-circle about the origin and have
their non-zero first derivatives.

We are interested in linearizing (2.18), by taking the linear parts of functions
fj near the origin. In fact, we can do so by linearizing (2.15), i.e., by taking the linear
parts of functions ψj(zι, , zM), near point z1 = = zM = 1. The linearized
equations (2.15) read as

y*(n)= Σ Σ Jj.k(s)yi(n-s)> I ^ J ' ^ M , (2.19)

where
Jjtk(s) = K(j,k)pjtk(s). (2.20)

As to the linearization of (2.18), it takes, in the matrix notation, the following
form:

Y*(n) = Q Y * ( w - l ) , neZ\ , (2.21)

where Y*(n) denotes a real (column) vector, of dimension M(2N — 1), namely:

(Y*(n))τ = M(n-2N + I),. . . ,y1[(n),

and Q is a real (M(2N - 1)) x (M(2N - l))-matrix.
Matrix Q has a specific "block" structure: it contains M blocks B 1 ? . . . , BM of

size (2JV - 2) x (2JV - 1), intermitted with M "full-length" rows b 1 ? . . . , bM. All
entries of b 1 ? . . . , bM are strictly positive; the total number of these entries is
M2(2N - 1). See Fig. 2a.

Each block Bt contains 2(N — 1) unit elements, just above the main diagonal;
all other entries of matrix Q are zeros. See Fig. 2b.

It is worth noting that the M2(2N — 1) entries of rows b l 5 . . . , b M are the only
elements of matrix Q which vary when distributions Pjtk vary (with N remained
fixed). Pictorially speaking, matrix Q may be considered as a point in IRM ( 2 i V " 1 ) .

At this point we use a version of SiegeΓs Fundamental Lemma, for real-analytic
transformations of a Euclidean space (see [Ar]). In our situation it guarantees that,
unless the entries of matrix Q belong to a set M of the Lebesgue measure zero (in

RMa(2Jv-1)^ t h e f o u o w i n g holds true. The fact that the system of equations (2.18) (or
equivalently, (2.15)) possesses a bounded non-negative solution y; (n), n ̂  n0,
1 ^j ^ M, implies that the linearized system (2.19) (or equivalently, Eq. (2.21)) also
possesses a bounded non-negative solution yf(n), n^n0, 1 Sj ύ M. Another re-
mark is that, unless the entries of Q belong to another set, 2ι, again of the Lebesgue
measure zero, matrix Q has M(2N — 1) linearly independent eigenvectors, and its
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Fig. 2a. The block structure of matrix Q

Bi

B2

BM

Fig. 2b. A single block B;

eigenvalues satisfy the following conditions: (i) none of the eigenvalues has the
absolute value one, (ii) for any r > 0, there are at most two (complex-conjugate)
eigenvalues with the absolute value r, (iii) any pair of the complex-conjugate
eigenvalues has an irrational arugment (modulo 2π).

It is clear that we can avoid sets $ and @, again by diminishing the
distributions Pjk, without violating our original assumptions (and actually without
changing sets S and S).

But once we are out of these sets, the fact that there exists a bounded
non-negative solution to (2.18) means that there exists an eigenvalue λ0 e (0,1), and
the corresponding eigenvector e = (eί9. . . , eM{2N-i)) has non-negative compo-
nents.

In terms of Eq. (2.19) it means that there exists a non-negative solution yj(0)(ή)9

n e Z, 1 ^j ^ M, of the form

where y<0) = (yf\ . . .
(2.19) yields

,,#/™\ :n (0) o ΛΛ\

yj \n) — Λojj •> {Z.ZZ)

i is a fixed non-negative vector. Substituting (2.22) into

or equivalently,

= Σ Σ

yf= Σ Σ (2.23)

Now set a0 = - <5 x log λ0 and recall (2.20). We obtain that y*(0) is an eigenvector
of matrix A(α0) with eigenvalue one. This completes the proof of the necessity.
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The above analysis shows that a condition weaker than (1.9) guarantees the
existence of a solution Π to (1.10) with at least one proper component Π y

Theorem 2.1. System (1.10) has a solution, with at least one component Πj being
a proper distribution, if matrix A(α) has, for some a, an eigenvector C, with non-
negative components and with an eigenvalue p ^ 1.

The meaning of Theorem 2.1 is that p(a) may be > 1; eigenvectors C and C do
not need to coincide. We omit the proof of Theorem 2.1: it simply repeats the above
argument.

Proof of Theorem 3. It is convenient to introduce, for any γ > 0, a class
consisting of vectors F = (Fί9. . . , FM), where each Fj is a distribution function
admitting the asymptotics

Fj(χ) = 1 - yCj(φ-ax + O(e~px) (2.24)

with some p = p(F) > α. Recall that α was introduced in (1.11) so that the eigen-
value p(α) equals one. The assertion of Theorem 3 is that class J^(y) contains
exactly one solution, F ( y ) = (F</>,. . . , F$), to (1.10).

We shall prove more: class J^(y) is actually attracted to F ( y ), in the course of
iterating operator Λ. This fact is proved in two steps. Step one is to check that if two
vectors, F = (F l 9 . . . , FM) and F' = (F\,. . . , F'M), satisfy

\Fj(x) - F'j(x)\exp(p°x) ^ hCj(p°), (2.25)

where p° > a, and p(p°) < 1, then

\(Λj¥)(x) - (^F')(x)|exp(p°x) S p(p°)hCj(p0) . (2.26)

Step two is to prove that for F = (Fu . . . , FM) e !F(y\

(Λj¥)(x) = Fj(x) + O(e-*lχ), (2.27)

where p1 coincides with value p(F), if p(F) < min[2α,α°], and p1 may be chosen
arbitrarily close to min[2α,α°] from the left, if p(F) ^ min[2α,α0].

To check the first step, we use (2.8) and write

\{ΛjF)(x) - (ΛjF')(x)\

Σ

lϊk+ι*rjΛ.

x \lFk*Pj,k-](x) - ίF'k*Plk](x)\ , (2.28)
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where 3k is an intermediate point between [Fk*l* ίfc](x) and {.F'k*Pjtk~](x). By using
an immediate bound

)> ' lFk-i*Pj,k-i](x),Zk ,

we can estimate the r.h.s. of (2.28) by

hθ(x) Σ K(j,k)\ίPj,k](dy)e-p°ix~y)Ck(p0)

M

= ftβ(x)exp( - p°x) X K(j,k)EepOξϊkCk(p°)

- /z<9(x)exp( - pox)Cj(po)p{p°) .

To check step two, take F = (F l 9 . . . , FM) e #"(y) and assume for definiteness
that p(F) < min[2α, α°] (the opposite case is treated similarly). Having in mind that

<Pj(U. . . , 1) = 1 and (d/dzk)φj(l9. . . , l ,z f c , l , . . . , l ) | Z k = i = K(j9k),

1 ^j,k^M,

write, using Taylor's expansion,

(ΛjF)(x) = Θ(x)φj

= Θ(x)\ 1 +

- yCk(α) J [ P Λ

— oo

M

+ Σ_

- i + ί
— oc

;C f c l(α) J
— oo

xl — 1 + J

P A J M

1 + ί ίPj.k]{dy)

<lί>j(l,. • , l . z * , , 1 , . • , z * 2 , 1 , . . . , 1)
zι<ι = 9k i

(2.29)

Here p = p(¥) and 3ki, i = 1,2, are intermediate points between 1 and

ί Wi,JW-yCfci(α) f lPa
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To analyse the structure of the r.h.s of (2.29), write

00

S j [Pj,Δ(dy)ep(y~x) ^ exp( - px)Eepξjk = 0(e~px) (2.30)
X

these relations hold for any p < a0. Furthermore,

ί lPj.A(dy)e-«'-» = exp( - α x ) E e ^ * - j ίPj,k](dy)ec'{y'x) • (2.31)

Observe that, owing to the bound p > α, the second term in the r.h.s of (2.31) does
not exceed, in the absolute value,

00

ί ίPj,k\{dy)ep{y~x) S e~pxEepξjk ,
X

i.e. is of the order of magnitude 0(e~px).
It is plain that, because of the bound α < p < 2α, the second-derivative terms in

the r.h.s. of (2.29) also give the contribution of the order of magnitude 0(e~px).
Hence, the r.h.s. in (2.29) may be written as

M

Θ{x)[\ -y X K{j,k)EeaξjkCk(oί) + 0{e~px)~]
k=l

the last equality holds due to the choice of α. This means that ΛF e #"(y), which
completes the proof of Theorem 3.

We conclude this section with two auxiliary results that are used below, in the
analysis of the travelling wave solutions. We assume here that the conditions of
Theorem 3 are valid.

Theorem 2.2. Suppose that Π = (ΠU. . . , ΠM) is a solution to (1.10) with the
distribution functions Fj(x) — U}{{ — oo,x]) of the form

Fj(χ) = 1 - Dje-'J* + 0{e~pJχ), ί^j^M , (2.32)

where constants Dj > 0, αy ̂  α, and Pj > ocj, 1 ^ j ^ M. Then the following proper-
ties are valid: (i) oij = a, 1 rgy ^ M, (ii) matrix A(#) possesses a non-negative eigen-
vector C(a) = (Cχ(α),. . . , CM(α)) w/ί/z eigenvalue one, and (ii) D7 = yCj(a),
1 -^j^M, for some constant y > 0.

Theorem 2.3. Solutions Π(γ\from Theorem 3, depend continuously on y, in the sense
that for any x > 0,

7 e KΛ H ^ F^(X) , 1 ^ fc ^ M ,

continuous functions.
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Proof of Theorem 2.2. We use (2.4). Representation (2.29) yields

r M /

Fj(x) = θ(x)\ 1 + Σ SUM 1 - ί ίPj,k](dy)
L fc=l \ - o o

-Dk(ock) J [P,

+ terms 0[ exp — minpfcx , 1 ^ j ^ M .

V V * //
Picking max otk gives (i), and subsequently (ii) and (iii).

Proof of Theorem 2.3. We use the fact that

F ( y ) - lim Λn\(y) ,
n -*• o o

where (cf. (2.5)) v(y) - (v[γ\ . . . , ι$) , and

vψ(x) = (l-yCj(a)e-«x)+ .

More precisely, write

F(y) = v ω + ^ ( y i n v ω _ ^"- lyω) β (2.33)

As previously shown, for any ε > 0, the series may be truncated, uniformly in
y within an a priori fixed compact set, so that the remainder does not exceed ε.
Finite sums from (2.33) depend on y continuously. Hence the result.

3. Proof of Theorems 4 and 5. Geometric Properties of the Travelling-Wave System

Proof of Theorem 4. The proof is simple and essentially repeats that of Theorem
4 from the paper [KKS 1]. First, we derive (1.14)—(1.18). Let X} be a random
variable with distribution Π7. Then the random variable Y} = ξj + Xj, with prob-
ability distribution Pj*Πβ satisfy the following stochastic equation:

Yj ~ ξj + max 0, max Yfx\. . . , max Y%M) , 1 < Ξ ; ^ M (3.1)

(^ stands for the displacement of a particle of type j). Here, as in (1.10), the random
numbers h{j\ . . . , /M(7) are distributed according to q(j'r), and, given a sample
vector 1(;) - (/x(j),. . . , /M(j)), the random variables Y{^r\ l^km^lm( ), in thefh

equation (3.1) are independent; for a fixed m, 7^ w ) has the same distribution as the
random variable Ym in the l.h.s. of the mth equation. This specifies the joint
distribution of all random variables in the r.h.s of (3.1), and hence the distribution
of the whole sum. Symbol ^ , as in (1.10), means equality in distribution. In terms
of distribution functions G} and moment generating functions φ p (3.1) takes the
form

] W , ^ R 1 , lύjύM. (3.2)

Here and below, (Gk) + (x) = Θ(x)Gk(x).
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According to the definition of the exponential model, the probability density
function of the random variable ξ is of the form

Pk(x) = T ^ - ί ί 1 ~ βW)exp(Akx) + 6>(x)exp( - μkx))9 x e R 1 . (3.3)
λk + μk

For xΦOwe have

p'k'{x) + (μk - λk)p'k(x) = λkμkpk(x) , (3.4)

and for x = 0

-)= -λkμh. (3.5)

Taking the second derivative of (3.2) for x > 0 and using (3.3) and (3.4), we get
(1.14). Taking the first derivative at x = 0 yields (1.15). Relations (1.16) (1.17) reflect
the fact that Gk are distribution functions. Finally, (1.18) is valid by direct inspec-
tion.

Conversely, suppose that (1.14)—(1.18) hold. Equations (1.14) and (1.18) may be
written in the form

—~Gk{x) + (μk - λk)—Gk(x)

- λkμk\Gk{x) - <M(Gi) + (x), - . , (GM)+(x)j , x * 0 . (3.6)

Taking the convolution of both sides of (3.6) with the probability density function
pk from (3.3), integrating twice by parts and using (1.16) and (1.17), leads to (3.2) and
(3.1). The latter is obviously equivalent to (1.10).

We provide some auxiliary assertions about the exponential model which are
used in our analysis of travelling waves. A dynamical system (1.14) is said to have
an even saddle point at S e R M x IRM if S is an equilibrium point, and the linearized
system, around S, has M real eigenvectors with positive eigenvalues and M with
negative ones.

Lemma 3.1. Under the condition μk > λk, 1 5* k ^ M, system (1.14) always has an
even saddle equilibrium point at the origin S.

Proof of Lemma 3.1. Linearising (1.14) at S yields

U'k{x) = Vk(x),

Vk(x)= -(μk-λk)Vk(x) + l X > ^ '=K = M ' VΌ

Here,

ql = l - q(k; {lh = 1, lr = 0 for r Φ k}) , 1 ^ /c ̂  M

in view of (1.29), q\ > 0. Observe that system (3.7) is decoupled into M two-
dimensional systems, each involving a single pair of variables Uk, Vk. Therefore, the
eigenvalues of the matrix of system (3.7) are precisely the roots of the following
equation:

M / _ i

Π d e t

 3 1 , 3 ,
fcVi \λkμkqk -(μk-λk)-σ
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σ is the unknown here. The roots are given by

1 , 1 I -2 1

This completes the proof of Lemma 3.1.
Observe that σk g λk.
The eigenvectors ek corresponding to the positive eigenvalues σk are given, in

the co-ordinates uj9 υj9 corresponding to Uj and Vj9 respectively, 1 g fg M, by

M f c = l , v k = σ k

+ , Uj = Vj = 0 , j φ k . (3.10)

We define the unstable ( — )-manifold °U - (S), of system (1.14) at point S, as the set
of points in 1RM x IRM obtained by integrating (1.14) from S9 along the cone %>-(S)
generated by linear combinations of vectors ek, 1 S k ^ M, with non-negative
coefficients. Cone ^-(5), in a natural sense, is tangent to % _(S) at S.

The mutual "position" of the trajectories of system (1.14) and cone ^~(S) is
characterized in the following Lemma 3.2:

Lemma 3.2. Let (Uj(x)9 Vj(x), l ^ j ^ M ) be a trajectory of (1.14), with
lim^oo Uj(x) = 1,1 Sj ^ M. If for some x0 e 1R1 and k = 1,. . . , M, point (Uk(x0),
Vk(χo)) in the uk,υk-plane, has Uk(x0)9 Vk(x0) ^ 0 and lies below line vk = λkuk (i.e.,
Vk(xo) < λkUk(x0))9 then point (Uk(x% Vk(x)) lies below this line for any x ^ x0.

Proof of Lemma 3.2. The proof of Lemma 3.2 follows the construction used in the
proof of Proposition 5.1 from [KKS 1]. For the sake of brevity, we consider in
detail a particular case (which may be described as the "worst" one), where q{ = 1,
and thus σk = λk9 σk = — μk.

We start with some definitions. In the argument that follows, speaking of
a codimension one manifold given by an equation vk = Φ(uu . . . , uM; υi9. . . , vM\
we refer to the domains vk > Φ(uu . . . , uM\ vl9. . . , vM\ and vk < Φ(uu . . . , uM;
vl9. . . , vM\ as "above" and "below" the manifold, respectively.

For any trajectory (Uj(x)9 Vj(x)9 1 ^ j ^ M)9 of system (1.14), the zeros of the
derivative Vk(x) lie down on a (2M — l)-dimensional manifold M\ given by

λkμkvk = -(uk - ψk(uu . . . , uM)) . (3.11)

Below this manifold the derivative is positive and above negative. If we form the
function

Zk:x e IR1 h-* Vk(x) - λkUk(x) , (3.12)

then the zeros of the derivative Zk(x) lie down on another (2M — l)-dimensional
manifold, Jί\9 given by

vk = Ak(Mfc - φfc(Mi5. . , %)) . (3.13)

[This follows from the formula

Z'k(x) = ~ μkVk{x) + λkμk(Uk(x) - φdU^x),. . . , UM(x))) ,

which in turn is obtained from (1.14). Observe that manifolds Jί\ and Jt\ are
homothetic]

Define the (plain) cone Ή-ίk(S) as the intersection of the hyperplane vk = λkμk

with the non-negative orthant in ]RMxlRM . Cone ^-^(S) intersects Jίk at the
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Fig. 3a. Manifold jH\ in I R ^ R 1 , i = 1,2. b. Manifolds Jί\, <&_Λ(S) and Jfx in R 2 x R x ;
manifold Jίλ in IR+.

origin S. Observe that # - ,
intersection with Ji\.

Apart from the origin, cone #_ >

sional manifold Jίk given by

is tangent to ^ ^ at the origin and has no other

intersects Jί\ along the 2(M — ^-dimen-

υk = λkuk , uk = — φ f c(u l 5. . . , MM)

μ>k
the orthogonal projection of Jfk to the (u 1 ?. . . , wM)-space IRM forms a compact
(M — l)-dimensional manifold Jίk in IRM. [It is worth noting that this projection is
one-to-one.] More precisely, we consider the connected component of Jίk situated
in the non-negative orthant IR^ of IRM and use for it the same notation Jίk.
Observe that Jίk partitions ]R^ into two connected regions, one of which is
compact and contains the origin. We denote this region by Int JΓk. See Figs. 3a, 3b
where the case M = 2 and k = 1 is considered, and the (non-essential) ^-direction
is omitted.

Now suppose that, in a trajectory (l/y(x), Vj(x\ x e IR1, 1 Sj S M), of (1.14), we
have Uk(x0), Vk(x0) ^ 0 and Vk(x0) < λkUk(x0\ for some x0 e IR1. We can assume
that (Uί(x0),. . . , UM(x0)) belongs to lntJ^k. Assume that this trajectory reaches
cone ^-tk at some point xx > x0 and assume that x1 is the first such point. It means
that

Vk(x) < λkUk(x) for x0 ^ x <

and

We conclude that the tangent vector to the curve (Uk(x), Vk(x), x e IR1), at
x = x l 5 obeys

dvk _ V'k(xi) 3

dUk υk = Vk(xl) Uk(Xl>

[In fact, equality k = λk is impossible, because then the point ([/^(Xi), ^-(xx),

1 ^j ^ M) must lie down on Jik, i.e., must coincide with the origin S.~] So

V'k(xx)>λkU'k{x1)>Q.
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Thus, point (E//(xi), F/xi), l^j^M) is below Jί{, that is, point
{U1(x1\ . . . , (7M(xi)) e lntJίk. But in our solution, the curve (C/fc(x), Vk(x), x e R 1 )
eventually reaches point uk = 1, ufc = 0; it means that this curve intersects the line
vk = λkuk at least once after x^ If x2 > *i is the next point of intersection, then

vk(x) > λkUk(x) for xx < x < x2 . (3.14)

Our function Zk (see above) vanishes at both x 0 and x1# Therefore, Zk(x) — 0 for
some x e (xi,x2). That is point (Uj(x), F, (x), 1 rgj ̂  M) lies down on ^ ^ . But this
contradicts (3.14), which completes the proof of Lemma 3.2.

One of the consequences of Lemma 3.2 is that the integral curves of problem
(1.14)—(1.17) are "correctly" parametrized by their initial points on the M-dimen-
sional plain manifold J in 1RM x IRM, given by the linear equations vk — λkuk and
the inequalities 0 g Mt g 1, 1 ̂  i ^ M. [By an integral curve we mean, here and
below, a trajectory as a locus in IRM x IRM, without taking into account the "time"
variable xe lR 1 . ] We essentially use this fact in our analysis of travelling wave
solutions (see Sect. 4). In particular, the intersection f _ ( S ) π y ( Γ ) lies below any
cone ^-tk(S), 1 ̂  k ̂  M, and hence does not reach «/.

We now pass to the branching diffusion model.

Proof of Theorem 5. The proof of Theorem 5 essentially repeats the argument from
Sect. 2 of paper [McK 1]. We give it here for the sake of completeness. See also
[CHTWW]. Following [McK 1], denote by τ the first time, after time zero, when
a particle splits in the course of the branching diffusion. Then, according to whether
τ < t or τ ̂  t, we decompose

fk(t,x) = P,(τ > ί)ί Prfc(wk(ί) + x e dy)f°k{y)

M

q(k;\)X\{fj{t-t',y)f

ί', ) ) ' W (3.15)
0 1 j

Here Pk denotes the probability distribution of the branching diffusion process
started with a type k particle (our use of this distribution is reduced to the
exponential law with mean mk *), Prfe is the distribution of the Wiener process wk( )
with drift βk and diffusion coefficient Σk, and Dk is the generators of process wk( ).
As in [McK 1], system (1.21) emerges after the change t — t' -> t1 in the integral in
the r.h.s. of (3.15) and differentiation.

4. Proof of Theorem 6

It is convenient to preface the proof of Theorem 6 with a lemma summarizing the
information gained from our analysis of the exponential model.
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Lemma 4.1. Under condition (1.5), (1.6), (1.28), (1.29) and (1.32), there exists a map

Γ: θ e [0,oo) κ> (7i(0),. . . , 7^(0)) e [0,1] x . . . x [0,1] (4.1)

such that

(I) For any β ^ 0, there exists a (unique) solution, (Wk(x;θ), Vk(x;θ);
k = 1,. . . , M), to the problem

W'k(x) = Vk(x),

V'k(x) = (-2(βk + ck)/Σi)Vk(x)

+ (2mk/ΣΪ)lWk(x) - φdWdx), •••, WM(x))-\ ,

x>0,k=ί,...,M, (4.2)

with the initial-boundary value

wk(θ)=rk(θ), vk(θ) = λkrk(θ), (4.3)

0 ^ Wk ^ 1 and 7k(x) ^ 0 , x > 0 , (4.4)

Wk(x) = 1 - Lfcθexp( - ax) + ηk(x) , (4.5)

where ηk(x), η'k(x) = O(e~px), as x -> cojor some p > oc. Here (i) λk is the positive root
of the quadratic equation

2(βk + ck) _ 2mk η

(ii) α is the smallest positive root of the equation

κ(a) = 1 , (4.6)

and (iii) L(α) = (L1(cή,. . . , LM(α)) > 0 is the eigenvector of matrix Bc(α) with eigen-
value κ(oή = 1.

(II) Solutions {Wι(x\θ\. . .WM(x;θ)) are monotone decreasing in θ: for any
x ^ 0, the inequality 0 ^ θ' < θ" implies

Wk(x;θ')^Wk(x;θ"), k = 1,. . . , M .

(III) For any x ^ 0, the functions θ \—> Wk(x;θ\ 1 ^ /c ̂  M, are continuous in
0e(O,oo).

Proof of Lemma 4.1. For definiteness, assume that qk = ί (cf. proof of Lemma 3.2).
Under condition (1.32), we have the family of trajectories of problem (1.14)—(1.17)
(in the notation that matches the one in (1.24)), {(Wk(x;θ), Vk{x;θ), x ^ 0,
k = 1,. . . , M), θ ^ 0}, figuring in Lemma 3.1. These solutions have all but one of
the properties we need: they do not reach the origin S. Our aim is to check that as
θ -» oo, the corresponding integral curves approach manifold ^(S). A limiting
curve will then give a travelling wave profile. [By a limiting curve we mean a limit
point, not necessarily the limit.] The main step here is to check that the initial
points (Uk(0), Vk(0), k = 1,. . . , M) converge, as θ —> oo, to S along manifold
^ = {{Uk, vk,k = I,. . . ,M):0 ^uk^l,Vk = λkuk}. See Fig . 4, w h e r e t h e p r o j e c t i o n
of the integral curves under consideration is drawn, to a two-dimensional u, z -plane.
[Warning: Figure 4 does not give a ground for a conjecture that point T is an
attracting node for system (1.24): it only suggests that T "acts" as an attracting node
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(Wk(x,6t), Vk(x,θ,))

(Wk(x,O), Vk(x,O))

F i g . 4 . P r o j e c t i o n o f t h e i n t e g r a l c u r v e s (Wk(x;Θ), Vk(x;Θ), x ^ 0 , k = 1,2,) o n t o p l a n e Hi

along any direction that "points" to the orthant uk S 1, vk ^ 0, k = 1,. . . , M.]

The formal statement is provided in Lemma 4.2 below.

Lemma 4.2. Trajectories (Wk(x\θ), Vk(x;θ), x ^ 0, k = 1,. . . , M) converge, as
θ runs along an indefinitely increasing sequence, to a curve 3C that (a) joins S and T,
(b) lies down in the intersection of Ψ*(S)cλ5f(T) with the strip 0 ^ Wk ^ 1, Vk ^ 0,
1 ^ k S M, and (c) is an integral curve for system (4.1). The convergence is in the

following sense: or any fixed ye (0,1) and any x e IR1, there exists an indefinitely
increasing sequence {θt, t = 1,2,. . . ,} such that there exists the limits

and

(4.7)

(4.8)

the locus (Wk(y;x), Vk(y;x)9 x e IR1, k = 1,. . . , M) forms curve jf. Here x(y9θ) is
defined as a unique solution to the equation

Wι(x(y,θ) θ) = y. (4.9)

Proof of Lemma 4.2. We first note that, according to assertions (I) and (II) of
Lemma 2.1, we have, for each x ^ 0,

Wk(x) = inf Wk(x;θ) = lim Wk(x;θ) ^ 0 . (4.10)

We want to show that the limits Wk(0), 1 :§ k ^ M, are equal to zero.
Clearly, all functions Wγ(x\ . . . , WM(x\ x > 0, are smooth in x, and setting

yields

Vk(x) = lim

Fk(x) =

1 ^ fe ^ M ,

1 ^ fc ^ M, x > 0 .

(4.11)

Moreover, (Wk(x\ Vk(x\ x ^ 0, k = 1,. . . , M) gives a solution to (1.24), with the
initial-value condition

Vk(0) = λkWk(0), (4.12)
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and with the bounds Vk ^ 0, k = 1,. . . , M.
At this point we use the following simple assertion4

Proposition 4.3. Under assumption (1.5), system (1.24) does not have equilibrium
points in strip (1.27) other than S and T.

Proof. Recall, any equilibrium point (w1?. . . , W M ; D 1 V . . , vM) must have
vx = = vM = 0 and

wfc = Φk(wi? » W M ) J 1 = k = M . (4.13)

We have two equilibrium points, S and T. Assume that there exists an equilibrium
point, (w'5 0), with w' = (w'1?. . . , w^) and 0 rg w4 ^ 1, different from S. We want to
show that there is no other equilibrium point (w,0), w = (w l 5. . . , wM), with
W/t ^ w'k; it will imply that this equilibrium point coincides with T.

The idea is to use the (strict) monotonicity and convexity of functions
ψk(zu > ZM\ 1 ύ k S M. More precisely, we use two properties: (i) the restric-
tion, of any of these functions, to an interval (finite or infinite) contained in the
orthant {zk ^ 0,1 ^ k S M} is a strictly convex function (of one variable), and (ii)
apart from the origin, there is no equilibrium point (w,0), w = (w l 5. . . , wM), with
0 = W/t ^ 1 and min wk = 0. [The last property follows easily if we take
wίo = maxwfc: equality φio(wι,. . . , wM) = wl0 is impossible under the condition
min wk = 0.]

Hence, our equilibrium point w' = (w'1?. . . , WM) must lie in the interior of the
unit cube 0 ^ Wk ^ 1, 1 ^ k ^ M.

For definiteness, assume that w' is one of the "closest" equilibrium points to S,
in the sense that, apart from S there is no other equilibrium point (w,0),
w = ( w ! , . . . , wM), with 0 S wfc ^ Wfc. Now take an equilibrium point (w",0),
YI" = (w'ί,. . . , wy, with w^ ^ Wk (point T is an example of such an equilibrium
point). Then functions φk restricted to an interval that joins w" and w' are convex
and, at the end points of this interval, they coincide with their "associated" linear
functions obtained by joining the corresponding values wk and Wk. Hence, on the
prolongation of this interval, they strictly exceed their linear "associates". But this
leads to a contradiction because the same functions are convex on the interval
joining the origin and w\ This completes the proof of Proposition 4.3.

We now can complete the proof of Lemma 4.2. Since system (1.24) has no
equilibrium points in 0 ^ uk ^ 1, υk ^ 0, k = 1,. . . , M, other than S and T, we
have

lim Wί(χ) = - •= lim WM{x) = 1 . (4.14)
x -*• oo x ->• oo

Furthermore, relations

l i m - ^ ^ - ^ α , fc=l,...,M, (4.15)

must hold. By Theorem 2.2, the limit in (4.15) equals α. Furthermore, matrix B(α)
has no eigenvectors with positive components other than L(α). This means that
solution (Wki Vk, k = 1,. . . , M) belongs to J^ ( y ) for some γ > 0. But this contradicts
the fact that #" ( θ ) contains, for every θ ^ 0, a unique solution, (Wk( θ), Vk( ;θ);
k = 1,. . . , M). Hence, all limits in (4.10) must be zero.

Our attention to this fact was pointed by Vitaly Volpert.
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Therefore, the initial points of the integral curves under consideration approach

S as 0-^oc. Now fix ye(0,1). The points (Wk(x(y,θ);θ), Vk{x(y,θ);θ),

k = 1,. . . , M) vary in a compact set, separated from S and T. Hence, there exists

an indefinitely increasing sequence of values of θ along which limits (4.7)-(4.10)

exists for x — 0. The limit point (Wk(y\ 0), Vk(y; 0), k = 1,. . . , M) must lie down on

^(S), otherwise it will contradict the foregoing conclusion. Since the vector field

determining system (1.24) is analytic and has no equilibrium points in the strip

0 ^ uk ^ 1, fe = 1,. . . , M, it is easy to see that limits (4.7)-(4.9) exist for any x e R 1

and the limit point (Wk(y;x), Vk(y;x), fc = 1,. . . ,M)e<%(S). Furthermore, xe

R1i—• (Wk(y x), Vk(y; x\ k = 1,. . . , M) is a solution to (1.24). It also lies down in

the intersection of y ( T ) with above strip. This completes the proof of Lemma 4.2,

and hence of Theorem 6.
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