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Abstract: We consider a 2-dimensional discrete operator which we call the Dis-
crete Magnetic Laplacian (DML); it is an analogue of the magnetic Schrδdinger
operator. It follows from well known arguments that DML has the same spectrum
(as a subset in R) as the Almost Mathieu operator (AM). They also have the same
Integrated Density of States (IDS) which is known to be continuous. We show that
DML is an element in a II x-factor and its IDS can be expressed through the trace in
the Hi-factor. It follows that DML never has any Z2-eigenfunctions (i.e. has no
point spectrum). Then we formulate a natural algebraic conjecture which implies
that the spectrum of DML (hence the spectrum of AM) is a Cantor set.

1. Introduction

Two main stars of this paper are the Discrete Magnetic Laplacian (DML) acting in
12(Z2) by the formula

2-l); nl9n2eZ; (1.1)

and the Almost Mathieu operator (AM) which acts in /2(Z) by the formula

; neZ . (1.2)

Here α, λ, θ are real parameters.
The second operator (AM) was first introduced by R. Peierls [P] and has been

extensively studied: an incomplete list of authors includes G. Andre, S. Aubry, J.
Avron, Ya. Azbel, J. Bellissard, V. Buslaev, R. Carmona, W. Chambers,- M.-D.
Choi, V. Chulaevsky, F. Delyon, G. Elliott, A. Fedotov, A. Figotin, J. Frδhlich, P.
Harper, B. Helffer, D. Hofstadter, S. Jitomirskaya ( = Zhitomirskaya), P. Kerdel-
hue, Y. Last, R. Lima, V. Mandelshtam, P. van Mouche, L. Pastur, N. Riedel,
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B. Simon, Ya. Sinai, J. Sjostrand, T. Spencer, Y. Tan, D. Testard, D. Thouless,
G. Watson, M. Wilkinson, P. Wittwer, N. Yui (see e.g. [A-A, A-M-S, A-S, A, B1-B3,
B-L-T1, B-L-T2, B-S, B-F, C-E-Y, C-D, D, C-F-K-S, El, E2, F-P, F-S-W, Ha,
H-K-S, H-S1-H-S3, Ho, J, LI, L2, L-W, M-Z, Mo, R1-R7, Si, Tl, T2, T-T1, T-T2,
Wa, W] and references there). It has a physical meaning as a quantum Hamil-
tonian for a conduction electron in a magnetic field in a particular case of so-called
tight-binding model ([A-A, A]). On the other hand more general difference
Schrodinger operators with quasiperiodic potentials naturally appear when the
perturbation technique is applied to a (continuous) magnetic Schrodinger operator
in a homogeneous magnetic field with a small electric field ([N]).

The first operator (DML) is also well known though it appeared usually with
λ = 1 only, under different aliases and in a unitary equivalent form (see e.g. [Ha, Ho,
B2]). It can also be considered as a Hamiltonian for a lattice electron in a magnetic
field (then α corresponds to the magnetic flux through a unit cell). Much more
general operators in /2(Z2) were introduced and studied by V.A. Mandelshtam and
S.Ya. Zhitomirskaya [M-Z]. They established a connection between such oper-
ators and 1-dimensional discrete quasiperiodic operators. Due to some symmetries
of the 2-dimensional operators this connection leads to a connection between
spectra of different 1-dimensional quasiperiodic operators which is a generalization
of the Aubry-Andre duality (see [A-A, A-S, F-P]). T. Sunada [Su] suggested and
studied a generalization of DML tς> general graphs.

Note that in [B2, Su] DML is called Harper operator. I prefer another name
for it since the name Harper operator seems to be reserved for a one-dimensional
difference operator on R (see e.g. [H-S1-H-S3, B-F]).

In 1981 during his talk in a session of American Mathematical Society Mark
Kac offered ten Martinis to anybody who will prove that AM has Cantor spectra
for any ocφQ (i.e. for any irrational α) and any AΦO. Being a witness of this talk B.
Simon formulated this problem in his review paper [S] and labelled it as the Ten
Martini Problem (TMP). In fact M. Kac might mean a stronger statement "all gaps
are there" as quoted by B. Simon, who called it Strong (or Dry) form of TMP. (Let
us abbreviate it STMP.) The exact meaning of this form is clear from the Gap
Labelling Theory (GL) which was initiated by R. Johnson and J. Moser [J-M] and
later developed connections with C*-algebras and X-theory (see e.g. extensive
review papers by J. Bellissard [Bl, B2] and references there). We will give more
details about STMP later.

As far as I know TMP is still unsolved in spite of the announced counter-
example [R5], though many partial results are known. For instance J. Bellissard
and B. Simon [B-S] proved the M. Kac conjecture for a dense Gδ set of the
pairs (α, λ) in R2; Ya. Sinai [Si] used KAM-theory to make it for almost all α
(in fact all α that satisfy the Diophant condition of being badly approximated by
rational numbers) but for large λ only (it follows then from the Aubry-Andre
duality [A-A, S] that the same is true for small λ)\ B. Helffer and J. Sjostrand
[H-S3], inspired by ideas of M. Wilkinson [W], used the microlocal analysis
to describe the tunneling between potential wells and solved TMP for the values
of α which are presented by continuous fractions with big denominators;
M.-D. Choi, G. Elliott and N. Yui [C-E-Y] used a beautiful algebraic technique
to solve STMP in the case when α is a Liouville number (i.e. an irrational number
which is exponentially good approximated by rational numbers). There is also
strong numerical evidence in favor of the positive answer to TMP (see e.g. [Ho,
H-K-S, B3]).
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In this paper we describe some ideas that might give an approach to TMP and
STMP. This approach is based on studying DML instead of AM which is possible
because their spectra coincide:

spec(Hatθ.λ) = *pec(ΔΛιλ) if α^Q . (1.3)

This equality is well known (it follows e.g. from [M-Z] in a much more general
form). The simplest way to prove it is to observe (following e.g. arguments in
[C-E-Y]) that both HΛίθtλ and AΛtλ are images of the same element of the Rotation
Algebra A^, (sometimes also called Irrational Rotation Algebra) under different
representations. The algebra AΆ is a remarkable C*-algebra (a non-commutative
2-torus) which is defined by a particular case of a general crossed product construc-
tion (see Sect. 4 for a precise definition). Then (1.3) becomes an easy Corollary of the
simplicity of AΆ (see e.g. [E-H, Pe, Po, Z]).

An important spectral characteristic of almost periodic and random operators
is their Integrated Density of States (IDS) - see e.g. [A-S, Bl, B2, B-L-T2, C-L, C,
C-F-K-S, J-M, P-F, S2, S3]. It plays a role of a spectrum distribution function and
can be usually expressed in terms of a trace in a von Neumann algebra - see e.g.
[Bl, B2, B-L-T2, S2, S3]. In fact the expression in terms of the trace is often more
convenient than the initial definition of IDS as a limit of normalized eigenvalue
distribution functions over a family of blowing-up domains, and we prefer to start
with the trace definition (as in [SI]).

We prove that Δ^ λ has a continuous IDS N(μ) which coincides with the IDS for
H^θίλ. But AM often has pure point spectrum with exponentially decaying eigen-
functions (this is the case e.g. if α has a Diophant property of being badly
approximated by rationals and λ is sufficiently large - see [Si, F-S-W]). On the
other hand we prove that ΔΛtλ never has any point spectrum (i.e. has no eigenvalues
with eigenfunctions in /2(Z2)). This follows easily from the fact that Δ^λ is an
element in a II!-factor Wa and its IDS is expressed in terms of the normalized trace
τ on this factor

ΛΓ(μ) = τ(JEμ), (1.4)

where Eμ is the spectral projection of Δ U f λ . Actually we first introduce N(μ) using
this formula as a definition. This allows us to make a shortcut to the proof of
absence of point spectrum for ΔΛtλ, so any mentioning of AM and IDS becomes
unnecessary.

Both the Rotation Algebra AΛ and the II1 -factor Wa can be considered as
subalgebras in ^(/2(Z2)) (the algebra of all bounded linear operators in /2(Z2)),
WΛ being the weak closure of Aa. Denote also C*(ΔΛtλ) and W*(Δ^λ] the set of all
continuous and bounded Borel functions of Δ^λ respectively. They are com-
mutative C*- and W* -subalgebras in Aa and Wa respectively. Now our conjecture
is that for any α^Q and /IΦO,

[C/-1(Projμβ))ί/]π» r*(^β f λ)czC*(Jα f λ) for any unitary UeWΛ . (1.5)

Here Proj(v4α) is the set of all orthogonal projections in Aa.
Using GL and simple von Neumann algebra arguments we show that (1.5)

implies the positive answer to STMP. But (1.5) is a stronger statement so I will call
it Superstrong Ten Martini Problem (SSTMP).

I tried to make this paper as self-contained as possible. This is the reason why
some proofs are given that might be avoided if the economy would be properly



262 M.A. Shubin

pursued (e.g. the proof of continuity of the spectrum distribution function for DML
given in Sect. 2 is not necessary since the fact may be easily established if we use the
coincidence of this function with the IDS of AM as proved in Sect. 3 and then refer
to the corresponding well-known fact for AM).

2. Hi -factor WΛ and Absence of Point Spectrum for DML

Let us introduce for any αeR unitary operators Ua9 Fα in /2(Z2) defined as follows:

(tf«Mnι,n2) = *-^ (2-1)

Here nl9 n2eZ. Obviously UaUβ = UβUa, V(XVβ = VβV« for all α, βeR. It is easy to
check that

UaVβ = etκ(β+a»VβUa. (2.2)

In particular

UaVa = e2ιaΛVΛUΛ (2.3)

and

UaV-Λ=V^UΛ. (2.4)

Consider in /2(Z2) the algebra ^α of operators which can be represented as
polynomials in Ua, Va, U~ ί , V~ 1 :

\m\ + \n\£p

(Here p depends on A.) Obviously ^α is a *-algebra, i.e. Be^ implies
We refer the reader to [Dl, D2, Mu] for the necessary simplest definitions and

facts about C*-algebras and von Neumann algebras.
Denote ^4α(resp. WΛ) norm closure (resp. weak closure) of ^α. Hence

W Λ 9 (2.5)

AΛ is a C*-algebra and WΛ is a von Neumann algebra of operators in /2(Z2)(i.e.
a weakly closed * -algebra containing the identity operator).

Now obviously

ΔΛtλ = UΛ+Uί + λ(VΛ+V}) = Ua+U^l+λ(VΛ+V-Λ^)9 (2.6)

hence A^λe^a.
Note that ΔΛtλ commutes with the operators t/_α, V~Λ which play a role similar

to the role of the magnetic translations for a continuous magnetic Schrόdinger
operator.

We shall use the orthonormal basis of ^-functions {δm\meZ2} in /2(Z2); here
δm(ή) = ί Ίim = n and 0 otherwise. If ,4e^(/2(Z2)) then we shall denote the matrix
elements of A in this basis by Amttt, i.e. Am,n = (Aδn, δm).

For subset S c J^(/2(Z2)) denote its commutant in I2(Z2) by S', i.e.

S' = {B\Be&(l2(Z2)9 BA = AB for every AeS} .

Now we can describe the commutant of WΆ and also give a description of Wa in
terms of the matrix elements.
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Proposition 2.1.

(i) Wί=W-Λ',
(ii) WΛ coincides with the set of all Ae^(l2(Z2)) such that

Am,neκp(-iπam/\ή) = Am+l>n + lexp(-ίπa(m + / ) Λ ( H + /)), m, rc, /eZ2 , (2.7)

where m Λ n = m1n2 — m2n1 i f m = (ml9 w2), n = (nl9 n2).

Proof, (a) Note first that (2.4) obviously implies that W'Λ^W-Λ (and also
fF'_ α ID JFa). Denote temporarily by fΓα the set of all Aeβ(l2(Z2)) such that their
matrix elements satisfy (2.7). We shall show now that WΛ=W-Λ. Clearly

Denote the canonical basis vectors in Z2 by e± , e2 : ei = (1, 0), e2 = (0, 1). The matrix
elements of the operator A' = U*aAU-a have the form

2) A _ Jπα(m Λ eί +e± Λ n) Λ
Λw-eι,w-eι — ̂  ^^

Hence

p— ίπα(m — βj) f\(n — e^)

and A = A is equivalent to (2.7) with l = — e^. Replacing m, n by ?

respectively, we obtain (2.7) with / = £!. Similarly V^AV-Λ = A is equivalent to
(2.7) with l = — e2 (or with I = e2). But obviously the validity of (2.7) for all m, n, / is
equivalent to the validity of (2.7) for all m, n and I = el9e2. This proves that
W-a=Wr

a (and Wf

a=W-Ά since we can replace α by — α). It follows in particular
thatWa=>Wa.

(b) Now let us check that W« c ίΓ^α? i.e. that AeW^ BeW-Ά implies AB = BA.
Note first that ,4e Jf α if and only if Ae@(l2(Z2)) and

,j -iπ<xmΛn_A
Λm,ne — ^o,«-m5 m >

Denote ak = A0k, so Am n = an-memccmAn. Similarly for any BeW-Λ we have
Bm,n = bn-me-ίπ«m*n, where bk = B^k.

Now denote C(1) = AB, C(2) = B l̂ and compare matrix elements of C(1) and C(2).
We have

/-(!)_ V /j R — V / 7 /) ί ? i π α ( m Λ p - p Λ π ) _ y L iπα(m + n ) Λ p
^m,w — zL s±m,pΛ->p,n — Z-ι P~m n~P — / . uy-mυn- v^

peZ2 p p

(this makes sense because (αp), (fcp)e/2(Z2)). Similarly

qεZ2

Replacing q by m + n-p here we get C^2)

M = C^i, for all m, rceZ2, hence C(1) =
as required.

(c) Due to the von Neumann Double Commutant Theorem (see e.g. [Dl, Mu])
we have Wa=W'ί = W'-Λ.It follows that

W aW — W ciW' —Wγγ (x '•— Y¥ a — rv - a ^- v Y -a — rr a 9

hence Wa=Wa=W'-a which proves the proposition. D
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Now the next step will be to describe the center Z(Wa)=WΛr\W(X of the von
Neumann algebra WΛ. It can be easily done for any α, but we will do it for the
simplest case of an irrational α only.

Proposition 2.2. If ocφQ then the center Z(Wa) is trivial, i.e. Z(WΛ) = {λI\λeC}9

where I is the identity operator. In other words α^Q implies that WΆ is a factor.

Proof. Obviously Z(Wa) is the set of all operators A in /2(Z2) that commute with
Ua, U-Λ, Va, V-Λ. But then A commutes with MQtl = U*U-Λ and Mlt0=V*ΛVΛ

which are multiplication operators by exp(2πίαw!) and exp(2πiαn2) respectively. It
follows that A commutes with any multiplication operator Mfc = MΪ"0M^ l5 where
fc = (fc l 5 /c2)eZ2. This operator acts as follows:

(Mk^)(n) = β2«fafc "^(n), <Ae/ 2(Z 2),

where k n = kιn1+k2n2. Now if Am^n are the matrix elements of A then the
operator Mk

1AMk has matrix elements ^m>Mexp( — 2πίαfc (w — ή)). Their coin-
cidence with Amtn for all k obviously implies that Amtn = Q if mφn, since for any
m, rceZ2 with mφn we can always find fceZ2 such that exp( — 2πiαfc (w — n))φ 1.
Therefore if AeZ(WΛ), then Am,n = amδm(n\ ameC.

Now consider the translation operators Tk9 /ceZ2, acting as follows:

The operators Γ1>0? TO,I are compositions of UΛ, VΛ with multiplication operators.
Hence AeZ(Wa) implies that A commutes with all Tk. It follows that
Am+ιtn + ι = Amttt for all m, n, /eZ2. Hence Amtn = aδm(ri), αeC, and the Proposition
follows. D

Now we shall introduce the trace on WΛ. Define for any

δ0). (2.8)

So τ is a linear map from ^(P(Z2)) to C. Actually we shall only use the restriction
of τ to WΛ for a fixed α. We shall also denote this restriction by τ. Note that (2.8)
implies that Am,m = A0ίQ for any meZ2 and any AeWΆ.

Proposition 2.3. τ is a weakly continuous trace on WΛ. More exactly τ is a weakly
continuous linear function on Wa satisfying the following conditions:

(i) τ(AB) = τ(BA),A,BeWΛ ,
(ii) ^4^0 implies τ(^4)^0 with the equality for A = Q only;

(iii) τ(/)=l.

Proof. Note first that (iii) and the first part of (ii) are obvious. Now ^4^0 and
τ(A) = 0 imply Am^m = 0 for all meZ2, hence Am,n = Q for all m, neZ2 because of the
Cauchy-Schwarz inequality Mm,n |2^^4m,mv4M > M. So the second part of (ii) follows.

To check (i) note that in terms of the matrix elements Am>n and #m,n of the
operators A and B we have

τ(AB)= £ A^mBm^= X ^_m,050,_m- ^ B^mAm^
meZ2 meZ2 meZ2

since ^0,m-^_m,0, Bm,0 = ̂ o,-m due to (2.7). D
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Propositions 2.2 and 2.3 imply that Wa is a I^-factor for any α^Q. It
follows that the trace τ, satisfying conditions of Proposition 2.3 is unique for
irrational α.

Now we can use the trace to define the spectrum distribution function for
a self-adjoint operator in WΆ.

Let A = A*eWa, A = \ μdEμ be the spectral decomposition of A, so

= Eμ,Eμ = Q if μ< -\\A\\, Eμ = Iiϊμ> \\A\\ .

Note that AeWΛ if and only if EμeWΛ for all μeR.

Definition 2.4. The function

N(μ;A) = τ(Eμ) (2.9)

is called the spectrum distribution function (SDF) of the self-adjoint operator AeWa.
We will also write simply N(μ) for brevity's sake if it is clear which operator A is
taken.

Let spec (^4) denotes the spectrum of A. Then obviously

>0} , (2.10)

i.e. σ(A) is the set of all points of growth of SDF.
Later in this paper we will show that SDF for the DML ΔΛtλ coincides with the

IDS of this operator. But actually we do not need IDS for our purposes.
Denote

i.e. E{μ} is the projection on the eigenspace Keτ(A — μI) of A with the eigenvalue μ.

Lemma 2.5. τ(E{μ}) = N(μ + Q)-N(μ-Q) ,

i.e. τ(E{μ}) is equal to the jump 0/SDF at μ.

Proof, is obvious due to the weak continuity of τ. D

Corollary 2.6. μeR is in the point spectrum of A (i.e. Ker(>ί — μ/)φ{0}) in 12(L2} if
and only if SDF of A is discontinuous (hence has a jump) at μ. In particular, SDF of
A is continuous if and only if A has no point spectrum.

Note that Definition 2.4, Lemma 2.5 and Corollary 2.6 are all valid in a
general abstract context for any von Neumann algebra with a faithful finite
trace (in particular for any II 1 -factor) and any self-adjoint operator in this
algebra.

Theorem 2.7. SDF/or ΔΛtλ is continuous or, equivalently, A^λ has no point spectrum.

Proof. To prove the continuity of the IDS for the DML it is sufficient to repeat
the argument given by F. Deylon and B. Souillard [D-S] (see also the book
[C-F-K-S]) for discrete Schrδdinger operators. Results of Sect. 3 provide another
proof of Theorem 2.7 based on the fact that the SDF for AΛ>λ coincides with
the IDS of a one-dimensional discrete Schrδdinger operator (which is the Almost
Mathieu operator). In particular this will imply the log Holder continuity of the
SDF due to the result of W. Craig and B. Simon [C-S] for discrete Schrδdinger
operators. Π
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3. Integrated Density of States

Let us fix Γ^ 1 and consider a family 2F of finite subsets A a Z2 and a family of
self-adjoint operators HΛ in I2 (A) such that the following two conditions are
satisfied:

(a) HΛ\l/(x) = AΛ,λ\l/(x) if xεΛ and dist(x, AC)>T; ψel2(A);

(Here dist means the standard euclidean distance and AC = Z2 — A is the com-
plement of A in Z2.)

(b) || HΛ || ̂  C, where C does not depend on Ae3? .

An example of such a family: HΛ = χΛHΛχΛ, where χ^ is the characteristic function
of A; this means that we impose the Dirichlet boundary conditions on the "bound-
ary" of A.

Now denote for any Γ^ 1,

For any finite set K let \K\ denote the number of points in K. Our next definition
will describe the situation when A blows up in a reasonable way.

Definition 3.1. We shall write A->co if for any fixed Γ^ 1,

\(3Λ)T\

\Λ\
0 . (3.1)

(It is understood here that A runs through a sequence or an directed set of finite
subsets in Z2; the direction can be given in an abstract way and not necessarily by
inclusion.)

Denote by NA the standard distribution function of eigenvalues for HΛ (so
NΛ(μ) is the number of eigenvalues ^μ, multiplicities counted). The normalized
function | A \ ~ l N Λ may only have values of the form |A | " l j \ j = 0,1, 2,. . . , |A\.

Theorem 3.2. If HΛ satisfies (a), (b), then for all μeR ,

lim \ΛΓlNA(μ) = N(μ;Aa9λ). (3.2)
Λ-K30

The left-hand side of this formula is called the Integrated Density of States (IDS) for
DML. It follows that the limit does not depend on the chosen family [HΛ] and can
be expressed in terms of the trace in a II x-factor.

The existence of the limit similar to the left-hand side of (3.2) was proved for the
first time by I. Slivnyak [SI] (he considered continuous Schrδdinger operators with
random ergodic potentials). Later this result was modified, extended and given
a different proof in papers of L. Pastur (see e.g. [Pa, P-F] and references there). The
case of higher order differential operators with almost periodic and random
coefficients was considered in papers by M. Shubin (see e.g. [S2, S3]) and A. Gusev
[G] (the paper [G] relied on ideas and methods developed in [S2] and was
submitted later, though published earlier, than [S2]). Note however that the
formula (3.2) itself does not follow from the general theory of ergodic operators.
For the first time a formula of this type was established in [S2] (for general elliptic
operators with almost periodic coefficients). About other situations where such
a result is true see [Bl, B2, B-L-T2] and references there.
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The proof of the theorem will use the main idea of the corresponding proof in
[S2] but will follow closely its realization in [B-L-T2] where useful modifications
are made. We will start with some straightforward lemmas (the proofs of them are
left to the reader). As before we denote the matrix elements of a bounded linear
operator A: /2(Z2)->/2(Z2) in the standard (5-function basis by AmtΛ, m, neZ2.

Lemma 3.3.

(Hk

A)mtH = (ΔΪtλ)Mtn ttm,neA, keZ+ and dist(m,Λc)>/cΓ. (3.3)

Lemma 3.4. For every ίeC,

l(^^)k«-(^-knl^/(dist(m?/lc))? m,neA , (3.4)

where

,
k^s/T κ

so thatf=ft:R+-+R+ is bounded andf(s)-+Q as s->oo. Here C is the constant from
the condition (b).

Lemma 3.5. ///: R+->R+ is bounded andf(s)-*Q as s-»oo, then

ton Γ7j Σ/(dist(m,Λc)) = 0 . (3.5)
Λ-+OO I71 1 me/1

Proof of Theorem 3.2. Lemmas 3.4 and 3.5 imply that

/1-κjo I 7-*-! meA

Note that

(^-)m.» = (

since AΛtλ€WΛ. Therefore

lim -ί-
Λ->oo Ml meΛ

But l / l l " 1 ^ Tr etH/i and τ(etAaoλ) are the Laplace transforms of measures

Λ = \ΛΓl J e«>dNΛ(μ)9 τ(βίd-) =
R R

Since all the functions \Λ\~1NΛ(μ) are uniformly bounded (by 1), the well known
weak compactness results imply (3.2) (see e.g. [S3], Lemma 2.1) which proves the
Theorem. D

4. Spectrum and Integrated Density of States for AM

A. Now we turn to the IDS for the AM HΛtθtλ(see (1.2)). Here the existence of IDS
and its expression in terms of the trace in factors of type II is well known (see e.g.
[A-S, B-L-T2, C-L, C, C-F-K-S, P-F, S2, S3]) but for the sake of completeness we
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shall repeat the arguments and slightly modify them to achieve a bigger generality.
Actually almost no changes are necessary comparing with the case of DML. So let
us fix Γ^ 1 and consider a family 2F of finite sets A c Z and a family of self-adjoint
operators HΛ in I2 (A) such that

(a')
(b') \\HA || gC, where C does not depend on

The notation (dΛ)τ and the Definition 3.1 obviously apply to this case. The
usually considered family J^ is the set of intervals [α, b~] nZ and Λ->oo means that
b — fl— >oo.

Now denote the eigenvalue distribution function of HΛ by JV^.

Theorem 4.1. If HΛ satisfies (a'), (b') then for all μeR ί/iβr^ exists a limit

N1(μ H^,λ)=lim \Λ\'lNΛ(μ), (4.1)
/L->00

w/zic/z does rcoί depend on the choice of the family {HΛ\Ae^} and is called IDS for

Hatθ,λ

Moreover, the Laplace transform of the measure corresponding to the IDS is given
by the formula

J e^dN^μ; H^λ) = Mm{(etH^ )m,m} , (4.2)

where Mm means the mean value of a Bohr almost periodic function on Z with respect
to m:

Mm{/(m))}=lim — ί— X /(m).
N->oo ZIV + 1 —j

Proof. Lemmas 3.3, 3.4 and 3.5 are true in this case (with AXtλ replaced by
literally the same proofs apply. Therefore we come to the equality

-- m , m - . m , m .
Λ-xx) I71 1 me/1

It remains to notice that wι— >(eί//α'θ'Λ)m?w is a Bohr almost periodic function since
this is true for all functions mι->(H%tθtλ)mtm9 fc = 0, 1, 2, ..... The existence of the
mean value for a Bohr almost periodic function along a family of A satisfying the
condition (3.1), is easy to check as in the continuous case (see e.g. [S2]) or just by
noticing that it is sufficient to consider the case of the exponents mι->^^'m for all

, where this existence is obvious. D

B. We shall need the Rotation Algebra in the abstract form: this is the C*-algebra
generated by two unitary elements u, v with the commutation relation

uυ = e2ni*υu. (4.3)

First consider the algebra ^α of all Laurent polynomials

^ = {a\a= X cklu
kvl, NeZ+,ckleC},

\k\M£N

where the multiplication is naturally defined with the use of (4.3). It has a unique
antilinear involution such that !* = !, w*^^"1, v* = v~l. A representation of this
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algebra is a *-homomorphism π: ^Λ-^S9(^f ), where 3tf is a Hubert space. Such
representations are in one-one correspondence with couples U9 V of unitary oper-
ators (in Jf7) such that (4.3) is true with u9 υ replaced by U, V. Now the C*-norm on
^α is defined as

| | f l | | = s u p | | π ( f l ) | | , (4.4)
π

where || π(ά) \\ is the operator norm of π(α), supremum is taken over all representa-
tions of &a in Hubert spaces.

Obviously

hence the norm (4.4) is finite on ̂ α. The completion of ̂ α with respect to this norm
is usually called the Rotation Algebra (it is a non-commutative analogue of 2-torus).
Every representation of ̂ α can be extended by continuity to a representation o f A Λ 9

so in fact there is a natural one-one correspondence between representations of
^α and AΛ.

A very important fact about the Rotation Algebra is that AΛ is simple (i.e. does
not contain any non-trivial 2-sided ideals) provided α^Q (see e.g. [E-H, Pe, Po, Z]).
In this case all its representations are faithful, hence isometric and preserve the
spectrum ([D2]). This fact allowed us to define AΛ in Sect. 2 as the norm closure of
the Laurent polynomials in UΛ9 Fα since we can consider a representation
π": AΛ-+a(l2(Z2)) given by π"(u)=UΛ9 π"(v)=Va.

Another representation of Aa is its representation π' in /2(Z) defined by the
following operators U, V\

so that π'(u) = U, π'(υ)=V.
We shall use the Rotation Algebra to prove the following well known

Theorem 4.2. For any α^Q and any Θ9 AeR spectra of Haίθfλ and AΛiλ coincide as
subsets in R.

Proof. HΆίθ^λ and ΔΛtλ are images of the same element

under different representations π' and π" of Aa. Hence the coincidence of spectra
follows immediately from the preservation of spectra under faithful representations
(in fact both these spectra coincide with the spectrum of ha λ in the algebra
AΛ itself). D

Remark. A much more general connection between spectra of 1- and 2-dimen-
sional discrete quasiperiodic operators follows from arguments given in [M-Z].

C. Now we shall prove the coincidence of IDS for AM and DML:

Theorem 4.3. //α£Q, then for all θ, λ, μeR,

Ά,λ). (4.5)
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Proof. It is sufficient to prove the coincidence of the Laplace transforms, i.e. the
equality

Mm{(etH^)m,m}=τ(e^\ teC . (4.6)

Consider the restriction of the trace τ to AΆ (in /2(Z2)). It will give us a trace on the
abstract Rotation Algebra; this trace is norm continuous, hence uniquely defined
by its values on ̂ α. Therefore it is uniquely defined by its values on all monomials
of the form wV, fc, ίeZ. Obviously

τ(uV) = 0 if | fc | + |/ |Φθ, τ ( l ) = l . (4.7)

Now this trace τ can be naturally transferred to all images of Aa under representa-
tions. We shall again denote the transferred traces by τ. Obviously

etH" *επ'(AΛ), etA+*eπ"(Aa) .

Hence to prove (4.6) it is sufficient to check that

Λ ) . (4.8)

Here the right-hand side is norm continuous on π'(AΛ) since the norm convergence
implies the uniform convergence of matrix elements. Due to (4.7) it is sufficient to
check (4.8) for all operators of the form A = Uk V l, where it is obvious. Note that the
existence of the mean value in the right-hand side of (4.8) for all Aeπ'(AΛ) follows
from this argument as well. D

Corollary 4.4. IfaφQ then the spectrum ofHatθt λ coincides with the set of all points of
growth for the corresponding IDS, i.e.

for every ε>0} . (4.9)

Proof. Theorems 4.2 and 4.3 reduce this statement to the same one with
HΛ,θ,λ replaced by ΔΛtλ and N^μ H^Q^) replaced by N(μιΔ^λ). But then the
conclusion is obvious due to the faithfulness of the trace τ (see Sect. 2). D

Remark 4.5. Theorem 4.3 is true for αeQ and the proof works as well except (4.7)
should be properly modified. But Theorem 4.2 and Corollary 4.4 are not true for
αeQ. Instead we have

spec(JβtΛ)= U specίίf..^) , (4.10)
0eR

so the right-hand side here should be put instead of the left-hand side in (4.9). The
corresponding arguments can be found e.g. in[C-E-Y].

The result of Corollary 4.4 is of course well known and can be found in many
sources in much more general situations (see e.g. [A-S, C-L, C-F-K-S, P-F, S2, S3]).

Remark 4.6. Let us consider a gauge transformation Ty: /2(Z2)->ί2(Z2) given for
every γeR by the formula

Tγψ(ri) = eiπynίn2ψ(n\ n = (n l 9n 2)eZ 2;

T~>— 1 T Ύ TΠ _ T J Ύ1— 1 TΛ rπ _ TT

-*- y *J a* y ^α — y ? -*• y " a-*- y ' α

Then

T~>— 1 T Ύ _ _

y ^α — y ? -*• y " a-*- y ' α + y
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Therefore replacing UΛ,VΛ by t/α_ y, Va+y does not change the commutation
relation (2.3) and gives again a representation of A^. In particular we can take y = α
to get the pair C/0, Fiα The corresponding operator AΛ,λ = T~1AQίtλTy = U() + U*
+ Λ(^2α + ^*«) is exactly the operator considered in [B2, Su] and called the Harper
operator there. It has the same spectrum and the same properties of eigenfunctions
as AΛtλ.

5. Gap Labelling and Ten Martini Problem

The Gap Labelling theory is quite a developed field now, closely connected with
K-theory of C*-algebras (see e.g. an extensive review paper [B2]). We shall need
a specific fact from this theory that we will formulate now.

For any *-algebra A over C denote

Pτoj(A) = {P\PeA, P2 = P = P*} ,

i.e. Proj(A) is the set of all self-adjoint projections in A (if A is a subalgebra in 3&(2ff)
for a Hubert pace Jf, then Proj(τ4) is the set of all orthogonal projections in A}.
Now if τ: A-*C is a trace on A then τ(P) for a projection PeProj(A) can be
considered as a dimension (of the image of P in the case when A c J*pf)). So the set
τ(Proj(^4)) of all possible dimensions is important; it gives the first classification of
factors - see e.g. [Dl]. It follows from generalities on von Neumann algebras
([Dl]) that τ(Proj(JFα)) = [0,1]. Consider the rotation algebra AΛ c WΛ. Then the
main result of the Gap Labelling theory in this case is:

τ(Proj(Λ)) = (Z + Zα)n[0,l] (5.1)

(M. Rieffel [R], M. Pimsner and D. Voiculescu [P-V]).
For any self-adjoint operator He$(3?) denote by C*(H) the C*-algebra

generated by H; this is the commutative algebra of all operators in 3? having the
form/(//), where /eC(spec(ίί)). In particular let H = \ μdEμ be the spectral de-
composition of H. Note that we always have EμeW*(H\ where W*(H)is the von
Neumann algebra generated by H, i.e. the set of all operators of the form f(H\
where/is a bounded Borel function on spec(H).

Proposition 5.1. Suppose that H has no point spectrum. Then μ is in the closure of
a gap of the spectrum of H (i.e. μ is in a gap or is an end of a gap) if and only if
EμeC*(H).

Proof. By definition EμeC*(H) means that Eμ=f(H) for a continuous function
/: spec(H)-»R. But this is the case exactly when μ is in a gap or is an end of
a gap. D

For the sake of brevity denote N(μ) = N(μ; Δa^ later in this section.

Corollary 5.2. If μ is in a gap o/spec(^α>A) then ΛΓ(μ)e(Z-fZα)n[0,1].

Proof. Obviously C*(Δ^λ) c AΛ, so the statement follows from (5.1) and Proposi-
tion 5.1 D

Now the numbers in the countable set (Z + Zα)n [0, 1] can be used as labels of
gaps. Obviously labels of different gaps are different because of the faithfulness of
the trace τ. The important question is: which numbers in the set (Z + Zα)n[0, 1]
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are really labels of the gaps, i.e. which ones are really values of N(μ) on gaps?
Denote the set of all labels of (true) gaps by £?Λtλ. Obviously 3PΛtλc:
(Z -f Zα)n [0, 1]. Now the words of M. Kac "All gaps are there" (see Sect. 1) can be
interpreted as the equality

JS?βfλ = (Z + Zα)n[0,l], (5.2)

and STMP or Strong Ten Martini Problem is to establish that (5.2) is true for all
QLφQ,

Proposition 5.3. // (5.2) is true then spec(Jα>λ) = spec(fίαjβίλ) is a Cantor set (i.e.
a compact nowhere dense set in R without isolated points).

Proof. The absence of isolated points in the spectrum is well known and also
follows from Theorem 2.7. Hence if spec(Jα>λ) is not Cantor, then there exists
a non-empty interval (α, b) c spec(Zlα?A); a<b. Then the (non-empty) interval (N(a)9

N(b)) contains a point £e(Z + Zα)n[0, 1]. Since N( ) is continuous, there exists
μe(α, b) such that N(μ) = ξ. Hence ξφ&Λtλ which contradicts (5.2). D

Note now that for any II ̂ factor W (with the trace τ: W-+C) and any two
projections P, geProj(JF) the equality τ(P) = τ(β) is equivalent to the existence of
a unitary UeW such that U~ίPU=Q (i.e. to the fact that P and Q are unitary
equivalent in W\ This motivates the introduction of the following inclusion:

λ) . (5.3)

Now let us formulate the Superstrong Ten Martini Problem (SSTMP): prove or
disprove the following conjecture:

The inclusion (5.3) is true for all α^Q, A Φ O and every unitary UeWΛ . (5.4)

Proposition 5.4. The positive solution of SSTMP implies the positive solution of
STMP. More exactly, if for some α, λ the inclusion of (5.3) is true for all unitary

Λ, then (5.2) is true for the same α, λ.

Proof. Suppose that (5.3) is true for any unitary UeWΆ. Consider then any μeR
with N(μ)eZ + Zα. (Recall that ΛΓ(μ)e[0, 1] automatically.) Then for the corres-
ponding spectral projection Eμ (of AΛtλ) there exists a unitary operator Ue WΛ such
that U~1EμUeAa. Indeed (5.1) implies that the algebra AΛ contains a projection
P with the same trace τ(P) = τ(Eμ), so we can apply the argument given before (5.3).
Therefore Eμ belongs to the set in the left-hand side of (5.3). Hence EμeC*(Aaiλ) and
μ is in a closure of a gap due to Proposition 5.1. This proves (5.2). D

The motivation of (5.3) is obvious for the case U=L In this case all elements in
Aa are norm limits of polynomials in C/α, Va. If at the same time such an element is
in W*(Δ^λ], i.e. if it is a weak limit of polynomials in AΛtλ, then it is natural to
expect that it is really a norm limit of such polynomials.

On the other hand note that (5.3) is not true if Λ, = 0; so non-commutativity
should play an important role here.
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