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Abstract: This paper is concerned with a conjecture of Guillemin and Melrose that
the length spectrum of a strictly convex bounded domain together with the spectra
of the linear Poincaré maps corresponding to the periodic broken geodesics in {2
determine uniquely the billiard ball map up to a symplectic conjugation. We consider
continuous deformations of bounded domains {2, s € [0, 1], with smooth boundaries
and suppose that (2 is strictly convex and that the length spectrum does not change
along the deformation. We prove that (2, is strictly convex for any s along the
deformation and that for different values of the parameter s the corresponding billiard
ball maps are symplectically equivalent to each other on the union of the invariant
KAM circles. We prove as well that the KAM circles and the restriction of the billiard
ball map on them are spectral invariants of the Laplacian with Dirichlet (Neumann)
boundary conditions for suitable deformations of strictly convex domains.

1. Introduction

This paper is concerned with certain length spectrum invariants of a strictly convex and
bounded planar domain (2 with a smooth boundary 9f2. The motivation for studying
such invariants comes from the inverse spectral problem formulated by Kac [12]. It
is known [10, 18], that the length spectrum £ (§2) of {2 is encoded in the spectrum of
the Laplace operator A in §2 with Dirichlet (Neumann) boundary conditions, and that
£ (§2) can be extracted from the spectrum of A by means of the Poisson formula at
least for generic domains. In this connection, Guillemin and Melrose [9] formulated
the conjecture that the length spectrum of {2 and the spectra of the linear Poincaré
maps of the periodic broken geodesics of {2 form together a complete set of symplectic
invariants for the corresponding billiard ball map B. As it was mentioned in [9], this
conjecture seems to be a little optimistic and the local version of it is more hopeful.

The first result in this direction was obtained by Marvizi and Melrose [16] who
described new length spectrum invariants of a strictly convex domain {2, studying the
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asymptotics of the lengths of the closed broken geodesics approaching the boundary
012. Let us take [,,,,, arbitrarily in the set %({2; m, n) of lengths of all closed broken
geodesics of {2 with n vertices and winding number m. When m is fixed and n tends
to infinity, /,,,, has an asymptotic expansion in powers of n~2. The corresponding
coefficients c,,,;,, K = 1,2, ..., do not depend on the choice of [, ,, in £({2; m,n) and
they are length spectrum as well as spectral invariants of {2 [16]. Colin de Verdiére
[4] proved that the labeled length spectrum and the spectra of the linear Poincaré
maps determine uniquely the Birkhoff invariants of a closed and elliptic broken ray
in £2 C R2. Recently this result was generalized in higher dimensions as well as for
contact manifolds by Frangoise and Guillemin [8].

De la Llave, Marco and Moriyén [15] proved that there are no non-trivial
deformations of exact symplectic mappings B, s € [0, 1], leaving the period spectrum
fixed when B, are Anosov’s mappings on a symplectic manifold. One of the reasons
for symplectic rigidity in [15] is that all periodic points of B, are hyperbolic and
form a dense set. Although the billiard ball map of a strictly convex domain is in the
opposite situation, conjugation can still be made on a large part of the domain of B,.

Consider the billiard ball map B corresponding to a strictly convex domain {2 with
a smooth boundary. B is an exact symplectic map which is close to a completely
integrable one near the boundary. Using that fact Lazutkin [14] proved that there
exists a large family of invariant KAM circles A(w) of B with rotation numbers w in
a Cantor subset © of a positive Lebesgue measure in [0, ), € > 0. The corresponding
caustics C'(w) are strictly convex and smooth curves in {2 accumulating at 012.

There are two invariants related to any invariant curve A(w), namely the length
#(w) of the caustic C'(w) and the Lazutkin parameter ¢(w) [1, 14], (see also Sect. 2).

We prove in this paper that the vector function

03w — (U(w), t(w)) (1.1)

is a length spectrum invariant for continuous deformations of the domain. The main
result (see Theorem 2.1) says that the length spectrum determines uniquely (up to a
symplectic conjugation) the invariant circles A(w), w € O, as well as the restriction
of B on them for continuous deformations of {2. We prove as well that the vector
function (1.1), the invariant circles A(w), w € @, and the restriction of B on them are
spectral invariants of the Laplacian with Dirichlet (Neumann) boundary conditions
for suitable continuous deformations of 2. The marked length spectrum of a bounded
strictly convex domain is a map that assigns to any pair of positive integers (m, n),
1 < m < n/2, the length of the longest (shortest) periodic broken geodesic in
Z(£2,m,n). Let £2, and {2, be two strictly convex and bounded domains with smooth
boundaries. Suppose that the corresponding marked length spectra coincide. Then we
show that the corresponding vector functions (1.1) coincide and the billiard ball maps
are conjugated to each other on the union of the KAM invariant circles which improves
Theorem 3 in [13].

The paper is organized as follows: In Sect. 2 we define the length spectrum £({2)
of a bounded domain with a smooth boundary and formulate the main result about the
length spectrum invariants of continuous deformations of a strictly convex domain
(see Theorem 2.1). Section 3 is devoted to a symplectic version of the KAM theorem
for the billiard ball map which is the basic tool in the proof of the main results. First we
introduce action-angle coordinates (8,7) € T x R, T = R/2nZ, for the approximated
interpolating Hamiltonian of B. In these coordinates B is a small perturbation of the
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completely integrable map
Tx I3, — ©@+@YE),r), @) =-3¢r)?,

where I' = (I —¢,1), 2wl = £ is the length of the boundary 02, and {(I) = 0, the first
derivative ¢’(l) < 0, and ¢ > 0 in I". Moreover, T x {I} is a connected component
of the boundary 0% of the phase space X' of B. We fix a Cantor subset © of rotation
numbers determined via a small denominator condition which has a positive Lebesgue
measure in the interval [0, €), € > 0. Applying suitable KAM theorem we construct a
symplectic normal form of B on the union of the invariant circles of B with rotation
numbers in ©. In other words, we find symplectic coordinates (¢, ) € T x R and
smooth functions K(1) and Q(p,I) in R and T x R respectively such that

Blp,D)=(p+7'(), D+ Qp, 1), () =—5KI)*?,

in T x I', where K(I) =0, K'(l) < 0 and K > 0 in I" while the vector function @
has a zero of infinite order on T x FE, and the Cantor set F is defined by

E={IerI:7()/2r € 6}.
Denote by 7(w) the map inverse to the frequency mapping
rsI—7')/)2n.

The restriction of the functions Z and 7o 7 on © is a symplectic invariant of B and
it has a simple geometric meaning. We prove in Sect. 4 that Z(w) is equal to ¢(w) /27
while 7( 7 (w)) = — t(w) for any w € O. In particular, the Legendre transform

TW)=wZ W) —1(7W))/2n
of 7(I)/2r is given on © by
217 (w) = wl(w) + tw), Yw € 6O. (1.2)
In Sect. 5 we complete the proof of Theorem 2.1. The main ideas here are:

1. Let [0,b] > s — §2,, b > 0, be a continuous deformation of strictly convex
bounded domains with smooth boundaries. Following an argument due to Birkhoff,
we prove that for any pair (m,n) € 72,1<m< n/2, the function

[0,b] 55 = T, (s) =max{t : t € £(£2,,m,n)},

is continuous, and that £({2,) is a subset of R of Lebesgue measure zero for any s. If
the length spectrum of {2, is independent of s along the deformation, the continuous
function T, (s) takes values in the set £({2,) = %(f2,) which does not contain
intervals. Hence,

T,..8)=1T,.0), s&l0,b] (1.3)

In other words, if the length spectrum of a strictly convex domain remains constant
along a small continuous deformation of the boundary then so does the marked length
spectrum. In particular, the results in [4] hold for such deformations.
2. Fix w € © and choose a sequence (mj,nj) €7Z%,j=1,2,..., such that

Imj/nj ~w| < nj_l/z.
We prove that

217 (w) = lim (T,, , (s)/n]), Vs € [0, b], (1.4)
j—00 3T
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and taking into account (1.3) we obtain
T(w) = Fw), YweO, Vsel0,b].

Since @ has no isolated points, differentiating the last equality with respect to w we
obtain
L (w) ={y(w), t,(w)=1tw), YweO, Vsecl0,b]. (1.5)

A close idea has been used in [21] to study the invariants of the period spectrum of
an elliptic periodic trajectory of a contact manifold.
Equality (1.4) is a consequence of the following important estimate (see Theo-
rem 5.1)
L, — 207 (m/n)| < C,n™P,  Vp >0, (1.6)

which holds for any pair (m,n) € Z2, 1 < m < n/2, satisfying the inequality
dist(m/n, ©) < n~'/2, (1.7)

and for any [, arbitrary chosen in £(£2, m,n). Here, for each p > 0, Cp is a
positive constant which depends neither on m and n nor on the choice of [, ,,.

The proof of (1.6) is based on the KAM theorem and on a Birkhoff-Lewis type

theorem. An alternative and simpler proof of (1.4) can be obtained following the
proof of Theorem 3 in [13]. One can consider (1.6) as a nontrivial generalization of
Theorem 5.15, [16]. Indeed, since 0 € O, if we fix m, let n go to infinity, and expand
Z(t) in Taylor series at ¢t = 0, we obtain the result in [16] mentioned above as a
consequence of (1.6) (see Corollary 5.1). The invariants c,,,;, of Marvizi and Melrose
are explicitly given by the Taylor coefficients of .7(t) at t = 0. We use essentially
(1.6) and its proof when studying the spectral invariants of the Laplace operator in
£2. Note that instead of 1/2 in the exponent in the right-hand-side of (1.7) one can
take any 0 < e < 1.
3. We assume that {2, is strictly convex only in a small interval [0, b,), b, > 0. To
show that {2, is strictly convex for any s in [0, 1] along the deformation, we use (1.5)
as well as the integral invariants 7*+D(0) of Marvizi and Melrose [16] which are
integrals of polynomials of the curvature of 92 and its derivatives. In particular we
prove that I*¥D(0) = 27.2%(0), k = 1,2, .. ., where .72(t) is the function inverse to
t = K(I) and .72 (0) are the corresponding derivatives at ¢ = 0.

Section 6 is devoted to spectral invariants of the Laplacian A = —9% /022 —6%/0x3
in {2 with Dirichlet (Neumann) boundary conditions. We suppose that {2 is a strictly
convex bounded domain in R? with a smooth boundary. Then, the spectrum of
A consists of non-negative eigenvalues tending to infinity. Guillemin and Melrose
formulated in [9] the conjecture that the spectrum of the Laplace operator in {2 with
Dirichlet (Neumann) boundary conditions determines uniquely the billiard ball map.
Partial affirmative answer to this conjecture is given in Sect. 6 (see Theorem 6.2). We
prove that the vector function (1.1), the invariant circles A(w), w € O, as well as the
restriction of the billiard ball map on them are spectral invariants of the Laplacian
for suitable continuous deformations of a strictly convex domain. In particular, the
corresponding billiard ball maps are conjugated to each other on a large subset of X
of a positive Lebesgue measure. We investigate the singularities of the distribution

Z(t) = tracecos(tA'/?) = (1/2) > _ exp(iMt), (1.8)
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where the sum is taken over all A\ with A\? in the spectrum of A counted with
multiplicity. The singular support of Z(t) satisfies the Poisson relation

sing. supp. Z(t) C {T e R: £T € Z(2)} U {0} (1.9

[2, 18]. The inverse relation may not always be true, because singularities created
by different closed broken geodesics may cancel each other. It is known that (1.9)
turns into equality in the generic case when all periodic broken geodesics are non-
degenerate and of different lengths [18].
Let (m,n) € Zi satisfy (1.7). In Sect. 6 we prove under the natural condition
(6.1) that
T, € sing.supp. Z

if n > ny(£2). Hence, a large part of the marked length spectrum is encoded in the
spectrum of the Laplacian for such domains. For m = 1 and n sufficiently large this
result has been proved in [16]. The main idea in [16] is to write Z(¢) in a neighborhood
of T}, as a Lagrangian distribution with a suitable phase function and then to apply
a result of Soga. We use another representation on Z(t) in a neighborhood of T, ,
which is based on the KAM theorem and the results obtained in Sect. 5.

2. Length Spectrum

Let §2 be a bounded domain in R? with a smooth boundary 942. The length spectrum
Z((2) of 2 is defined as the set of lengths of all periodic generalized geodesics 7y of
2 (¥ is the projection on §2 of a closed generalized bicharacteristic of the Hamiltonian
p(x, &) = €2 —1, (cf. [11], Def. 24.3.7)). By definition, if ¥ is a primitive generalized
geodesic of £2 of length L(3) then nL(7) belongs to the length spectrum of §2 for
any n-positive and integer. Suppose in addition that {2 is strictly convex. Then any
generalized bicharaceristic of 2 is either a broken bicharacteristic reflecting at the
boundary by the usual law of the geometric optics or it is a gliding ray traveling along
the boundary. Hence, £(£2) = %, (£2) U £(042) in this case where %, (2) is the set
of lengths of all closed broken geodesics and £(9(2) = {nf : n € N}, ¢ being the
length of the boundary.

The broken bicharacteristic flow induces a discrete dynamical system on the
boundary

B:Y %, X={&§&eT*n: ¢ <1},

called billiard ball map which is defined as follows: Pick ¢ = (z,£) in 7042 with
|€] < 1 and set o* = 7%(0) = (z,e*(0)). Here e (p) € (R?)* are unit convectors
such that

HeF (@, 9, n@) >0, (e5(z,8),v) = (&), VveT,00,

n(z) being the inward normal to &f2 at z. Via the canonical inner product in R? we
identify e*(p) with a vector ¢*(p) in R%. The bicharacteristic

R>t— (x+tet,eh)

of S*R? = {(y,n) € T*R?: || = 1} passing through 7 (o) intersects (T*R?),,,, at
a second point (y,e"). Define n € T; 0f2 by the equality

(e*,v) = (n,v), YveT,00.
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Then |n| < 1 and B sends (z, £) to (y,n). Moreover, any point in 9.X is a fixed point
of B.
Defined in this way the billiard ball map is exact symplectic in the interior of X,
indeed
B*o — 0 = dT, 2.1

where o is the canonical one-form in T*942 and T(z,y) = |z — y| is the distance
between z and y in R?, y being the first component of B(z, £) = (y,n) (see Proposition
2.3 in [9]).

Near the boundary of X' the billiard ball map B is a small perturbation of a
completely integrable map for which the KAM theorem can be applied [17, 14]. In
particular, there exists a large family of invariant circles A(w) of B enumerated by
their rotation numbers w € @, where O is a Cantor subset of the interval (0, 1/2] with
a positive measure (see Sect. 3). For each w € ©, denote by C(w) the corresponding
caustic in {2, i.e. the envelope of the rays {z + tet(z,&) : t > 0}, (z,€) € A(w),
issuing from A(w). Then C(w) is a smooth and strictly convex curve in {2 and the
boundary 042 is an evolute of C(w) [14]. In other words, if we loop a string with a
suitable length T'(w) around C(w), lean a pen against it and draw, we get 92. The
Lazutkin parameter of C'(w) is defined by

tw) =Tw) — tw),

where /(w) is the length of C(w).
We consider a continuous deformation

[0,11 35— 2, CR? (2.2)

of bounded domains with smooth boundaries 92, = {z*(t) : t € T}, such that the
mapping [0,1] 3 s — z°(-) € C*(T,R?) is continuous. For any strictly convex
domain {2, we denote by B,, A (w) and C,(w) the corresponding billiard ball map,
invariant circle and caustic with a rotation number w. Consider the Cantor set @
defined by (3.9). According to (3.19), the union A, of the invariant circles A (w),
w € O, is a set of positive Lebesgue measure in 77*9(2, . The main result in this
paper is:

Theorem 2.1. Let [0, 1] € s — {2, be a continuous deformation of bounded domains
in R? with smooth boundaries. Suppose that (2, is strictly convex and

L) = %12y, se€l0,1]. (2.3)
Then:

(i) §2, is strictly convex for any s € [0, 1],
(ii) there exists a continuous family of smooth exact symplectic mappings
X, : TF00, — T 00,

such that

X (Apw)) = A, (w), VYw € O, 2.4)
X;0By=B,0ox, on A, 2.5)

for any s € [0, 1],
(iii) for any w € O there exists a continuous family of caustics [0,1] — C (w) in £2,

and
L (w) = ly(w), t,(w)=1tyw), se€l0,1]. (2.6)
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3. KAM Theorem

In this section we formulate a symplectic version of the KAM theorem for a family of
exact symplectic mappings depending continuously on a parameter which will be the
basic technical tool in the proof of the main results. This theorem is close to Theorem
1.1 in [21]. First we consider a continuous deformation of bounded strictly convex
domains {2, s € [0,b], b >0, in R2, with smooth boundaries 012, of length /_, and
introduce action-angle coordinates for the approximated interpolating Hamiltonians
of the corresponding billiard ball maps B,.

Performing a suitable change of the variables in R2, we consider 2,,s5€][0,b], as
a Riemannian manifold with a base {2 = {2, and metric g, depending continuously
on s. The boundary 0f2, is given by 042 equipped with the induced metric g°. The
corresponding billiard ball map B, is defined in the same manner as in Sect. 2. Its
phase space coincides with the coball bundle

2, ={@,8 e T 002 : ¢%(z,& < 1}.

Let us denote by OXF one of the two components of the boundary of X, . Since
042, is strictly geodesically convex, B, can be written as a small perturbation of a
completely integrable map as follows (see [16]): there exists a smooth function (,
called an approximated interpolating Hamiltonian which defines 0XF ({, = 0 and
V(, #0on 0X,), ¢, > 0on X,, and such that in any local coordinates ¢ = (z, &)
in a local chart U in T*842 we have

B,(0) = exp(—2(,(0)'/* H, )(©) + R,(0), 0€ Z,NT, 3.1
R.(0) = O(((0)) at 0XF NU. (3.2)

Here ¢ — exp(tH, )(¢) stands for the integral curve of the Hamiltonian vector field
HCs starting at o € X, R, is a continuous family of smooth functions in U, and
(3.2) means that

020f R (2, 9] < CypCel@, OV, @9 €, (3.3)

for any indices «, 3, N. Moreover, the mapping [0,b] 3 s — (,(-) € C(T*942) is
continuous.

We are going to describe action-angle coordinates for the Hamiltonian (,. To
simplify the notations we drop the index s. Denote by M, the closed curve {{ = r}
in T%042, where r varies in a small neighborhood of the origin. For any ¢ € M,
consider the map R > ¢ — exp(tH)(0) € M, and denote by 2mII(r) its period.
Let S be a section transversal to M, in Y. It is equipped with local coordinates
S 3 p — ((p). Denote by (7' the discrete group in R x S generated by

R x5 3 (t,((0) — (¢ + 2m1I(C(0)), C(0))-

Let (R x S)/@ be the corresponding factor space. It is a symplectic manifold, d¢ A dt
is a symplectic two-form on it, and the mapping

R x S 3 (t, 0) — exp(tH,)(¢) € T*92

lifts to a symplectic diffeomorphism from (R x S)/¢ to a neighborhood of M.
Making suitable symplectic change of the variables in R x .S,

0 =t/I(C), r=g(0,
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we can suppose that @ is generated by (8,7) — (0 + 27, r) while the symplectic
two-form becomes df A dr. It is easy to see that the first derivative ¢'({) = —IT({),
which yields

¢
T'(C)=—/H(t)dt+l, I=10)=¢/2m. 3.4
0

Denote by ((r) the function inverse to 7(¢). We have obtained symplectic coordinates
O,(x,8),7,(x,£) in a neighborhood of XF in T*H2 with values in T x R such
that 0XF = {r, = I}, |, = £,/2n and ¥, C {r, < [,}. Fix ¢ > 0 and set
I =(,—¢l), A, =TxI;.
The exact symplectic map B, is generated in these coordinates by the function
G 0,1) = -3¢,m)** +Q,0,m), (O,r)€A,, 3.5
where
¢, =0, (,)=-1/I1,0) <0, 83‘8?623(0, l)=0, VOeT, (3.6)

for any indices o > 0, 8 > 0, and s € [0, b]. Hereafter we say that G, generates the
exact symplectic map B, in A, if

graph(B,) = {(B(z,&), (z,&)) : (x,&) € A}

is parameterized by

0G, ) 0G, )
graph(B,) = {(0,r — W(O,T), 0 — o (CA r),r) 10,7 e As} ,
where R
0°G,
6—0—87(0’T) < l, V(e,'f') EAS

Multiplying G, by a cut-off function we can suppose that it is equal to zero for
r < 1, — 2¢/3. From now on we denote by B, the corresponding modified exact
symplectic mappings. Note that B, ¢, as well as the exact symplectic mappings wg
defined by

W™z, &) = (O,(z, ), 7,(,)) 3.7)

depend continuously on s in the corresponding C'* semi-norms.

The billiard ball map B, is a small perturbation of the completely integrable
mapping generated in A, by 70(r) = —;lgs(r)3/ 2, In what follows we apply a
symplectic version of the KAM theorem to B, which is close to Theorem 1.1 in
[21]. In contrast to [21], the generating function Tg(r) has singularity at » = [, .

As a consequence of (2.3) and Lemma 5.2 we easily obtain £, = £, in [0, b]. Indeed,
the continuous function [0, ] 2 s — £, takes values in the set £({2,) = £({2,) which
does not contain intervals, according to Lemma 5.2. Hence, £, does not depend on s.
To simplify the notations we set I' = I'; and A = A,,.

We are going to define the Cantor set ©. Fix ¢ > 1, y > 0, and for any a > 0
and N € Z_ define the Cantor set ©(a, 1, V) by the small denominator condition as
follows:

O(a, pt, N) = {w € R : [wk, — ky| > pa™ k| =7 for any k= (k;,ky) € Z*\ {0}}.
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Fix 0 < C <1 and 0 < gy < 0, and denote

©*(a, 1, N) = O(a,u, N)N[Ca,C"'a], 0<a<a,. (3.8)
Consider the Cantor subset of [0, 1/2) defined by

0 =U{0"(a,u,N):0<a<e(,N), NeZ,}u{0}, (3.9)

where
E(M7N):EN/J/M> M:N+27

while the positive constants €, will be specified later.
This set is of a positive Lebesgue measure in R and even

e —meas(@ N {0,¢e)) < C'pep, 0<e<egy, (3.10)

where C), is a positive constant for any p > 1. The following theorem provides a
symplectic normal form for the family of symplectic mappings B, in a neighborhood
of Xt . As above we assume that B, is generated by a function G in A and that
B, coincides with the identity mapping in T x [I, — ¢, [, — 2¢/3].

Theorem 3.1. Let [0,b] 3 s — B, € C*(A, A) be a continuous deformation of exact
symplectic mappings. Suppose that the corresponding generating functions G satisfy
(3.5) and (3.6), and £, = {, for any s. Then there is a Cantor set © defined by (3.9)
with suitable € > 0 and there exist continuous in [0, b] families of exact symplectic
mappings ¥, € C=(T x R, T x R) and functions K, € C®°(R), Q% € C>(T x R)
such that:

(i) K,ly) = 0, Ki(l,) < 0, K,(t) > 0 in I', and the exact symplectic map
B% =4 o Bo1p, is generated in A by

8

Gl D=7, +Qp. D, 7,()=-tKUP? (p,DHeh, (1D

where

Q%p,)=0 on Tx E, (3.12)

and E,={I € I' : 7/(I) /27 € O}.
(i) K,, Q°, and the generating function S.0,1) of 1, satisfy the estimates

IDF(K (D) = ()] + |DFDEQYUp, D] < Cpplly — 1P, (3.13)
|D§ DS, 0, D] < Copylly — IIP (3.14)

inT x [ly —€g, by + €ol, €g > 0, for any s € [0,b] and any indices o > 0, § > 0 and
p>0.
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The proof of Theorem 3.1 is given in the Appendix. First we construct exact
symplectic mappings conjugating the billiard ball maps B, in suitable domains away
from the singularity set {r = l,} of B, and then we patch them together using the
uniqueness of the KAM circle with a given rotation number. Proposition A.1 plays
an important role here.

In view of (3.6), (3.13), and the equality ¢, = £, the frequency map

I'sI—w=7.())2m € 0,wy), wy>ay, (3.15)

is invertible if I" is sufficiently small. Denote by 7, (w) the inverse map to (3.15) in
[0,w). Then E, = Z,(0) and we have

Z(w) =1y — c,w® +OWh, 1y =4/2m, c, =n*1,0)7°>0. (3.16)

Moreover, 7,(w) can be extended to a smooth even function in R. Set x, = 9201,
where wg is defined by (3.7). Since E, has no isolated points, (3.12) means that Qg
has a zero of infinite order at T x F,. In particular,

B, D) = (p+7UD, D), (p,])eTxE,, (3.17)

and
[0,6] 2 s — A (w) = x,(T x { Z,(w)}) (3.18)

is a continuous family of invariant circles of B, with a rotation number w € © which
accumulate at X7 = x (T x {l,}) since Z,(0) = l,. Denote by A, the union of the
invariant circles A (w), w € ©, and consider the function

hy(z, &) = K, (x5 '(x,9),

where K is introduced by Theorem 3.1. Since Q° has a zero of infinite order at E,
and [, € F_, h, is an approximated interpolating Hamiltonian of B, . Thus we obtain

Corollary 3.1. We have
B,(0) = exp (—2h ()" H, )(0) + R,(0), o€ X,NU,

in any local coordinates in a chart U in T*8(2 where R (g) € C*°(U) is continuous
with respect to s € [0,b] and R has a zero of infinite order at A, N U.

We are going to show in Proposition 4.1 that h,(o) coincides with (3t (w)/4)*/>
for any ¢ € A, (w) and w € O, where t_(w) is the Lazutkin parameter of the invariant
circle A (w). Note that, according to (3.10),

meas(U) — meas (U N A,) < Cy(measU)Y, s € [0,b], (3.19)

for any sufficiently small neighborhood U of 0XF.
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4. Caustics and Lazutkin’s Parameter

This section is devoted to the geometry of the caustics of a strictly convex domain.
Our aim is to give a simple geometric interpretation of the function

63w — (Zw), K (Z,Ww)),

where K is introduced by Theorem 3.1 and Z is the function inverse to the frequency
map defined above. To simplify the notations we drop the index s.

Fix w € © and consider the invariant circle A(w) of B and the corresponding
caustic C'(w) with a rotation number w. Take o = (z,&) arbitrarily in A(w). The
projections ¢ — x + té*(p) of the bicharacteristics of S*R? = {(y,n) € T*R? :
|n| = 1} passing through 7+ (o) are tangent to the caustic C(w) which is smooth and
strictly convex (see [14]). Let y= = y*(p) be the corresponding points of tangency.
Denote by |zy™®| the distance between x and y* and by |y~ —~ y*| the length of the
shortest arc in C(w) connecting y~ with y*. The Lazutkin parameter of the caustic
C(w) is given by

tw) =y~ |+ |zy*| = vy~ ~ o7

and it does not depend on the choice of z € 02 (see [14, 1]). As above denote by
{(w) the length of the caustic C'(w). The main result in this section is:

Proposition 4.1. For any w € © we have
Z (W) =lw)/2r, T(ZW)) = —tw). 4.1)
Proof. Consider the flow-out

Mw) = { exp(tH )" (0) : ¢ € Aw), 0 <t < qlo)}

of A(w) with respect to the Hamiltonian g(y,n) = |n| — 1, (y,n) € T*R?, where q(0)
is the time ¢ for which a point starting at « and travelling with unit speed along the ray
t — x +tet(p), t > 0, reaches y* € C(w). Then .# is a Lagrangian submanifold
of T*R? whose boundary consists of two components, namely

{r*(z,9): (2,0 € Aw)}
and the cosphere bundle
S*Cw) = {y,m e T*R* 1y € Cw), In|=1}.

By Stokes theorem,

fw) = / ndy=/§d:c:27rﬁ(w),

S*C(w) A(w)

since the map x = 1° o v conjugating B to its symplectic normal form (3.11) and
(3.12) is exact symplectic. This proves the first part of the claim.

To prove the second equality in (4.1) we use a symplectic trick which is due
to Guillemin and Melrose [9] and Colin de Verdi¢re [4]. Denote by o, = I dy the
symplectic one-form in T*T. Since B® = x~! o B o x is an exact symplectic map
with a generating function GO(p, I) = 7(I) + Q%, I) given by Theorem 3.1, it is
easy to see that

(B%*0y — 0, = df, 4.2)
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where
flo, D =I7") — 1)+ F(p,I), (p,1)eTxI, 4.3)
and the function o
F(p,I)=1 a% (0, ) — Q%p, I

has a zero of infinite order on the Cantor set T x E in view of (3.12). On the other
hand, (2.1) implies
B*c —o=dT° o=¢dz, (4.4)

on X, where T%(z, £) = T(x,y(z, £)) = |z —y(z, £)| and y(z, £) is the first component
of B(z,&). Since x is exact symplectic,

x*o -0 =dd, &e T 4.5)
Now, (4.2), (4.4) and (4.5) yield together the following useful equality:
fo, ) =Tx(p, 1)) + B(p, ) — (B0, D)+ C, (p,I) € A, (4.6)

where C' is a constant. Taking I = = ¢/27 we get C' = 0.
We are ready to prove the second equality in Proposition 4.1. Take g° € A(w) and
consider the orbit g of B defined by ¢’ = B/¢° = (z,,€,), 7 =0,1,.... Denote by

7=, 7w)=x""¢), i=0.1,...,

the corresponding orbit of B. For any k € N denote by m,, the number of rotations
that a point makes moving around 0f2 in a positive direction from z, to z, and
passing successively through each z , j < k. Then

k

=0

k
tw) = lim_ (1 > T - %f(w)). @7

On the other hand, (3.12), (4.3) and (4.6) imply
Tg") = 2nw 7 (W) — T(Z W) + B(p + 27mjw, (W) — B(p +27(j + Dw, F(w)).

Hence, the average action on g = (g,, g;, - - -) is equal to

Jim ( ZTO(g’)> = 21w 7 (W) — T(Z (W), “.8)

=0

the right-hand side being just the Legendre transform of 7(I)/2x times 27. Moreover,

: mE\ _
kl—lan;o< k ) v
while {(w) = 27 Z(w). Now, (4.7) and (4.8) yield together the second equality in

(4.1). This completes the proof of the proposition. [

Consider the approximated interpolating Hamiltonian h(z,¢) = K (x~'(z,€)) of
B introduced by Corollary 3.2. For r > 0 small enough we set as in Sect. 3

M, = {(z,6) € T : h(z,€) = 1}
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and denote
v(r) = / dt, 4.9)
M,
where the Poisson bracket
{h,t} = H,t =1. (4.10)

It is easy to show that the set of Taylor coefficients of v(r) at 7 = 0 is algebraically
equivalent to the set of Taylor coefficients of K(I) at I = [l. Indeed, performing a
symplectic change of the variables (x,&) = x(¢, I), (p,I) € T x I', and using (4.10)
we easily get

K'(Dv(KI)) =2n, I€E. 4.11)

Denote by .7 the function inverse to I — K (I) and set E= {K(): I € E}. Then
0 € E and (4.11) implies

v(r) =218 (r), reE. 4.12)

The Taylor coefficients of v(t) at ¢t = 0, also called integral invariants, have been
investigated by Marvizi and Melrose [16]. They are given by integrals on 9f2 of
certain polynomials of the curvature x(z) of Of2 and its derivatives. In particular,
(4.6) in [16] and (4.12) yield together

£
Z2'(0) = —% / w(x)?/? dz, (4.13)
0
£
A'0) = 3 1;07[‘ / (96(2)*/3 + 8k(2)"**K/ (2)?) da. (4.14)
0

5. Marked Length Spectrum and Asymptotics of the Average Action

Fix b > 0 such that 042, is strictly convex for any 0 < s < b. Consider the set
Z(£2,,m,n) of the periodic broken geodesics v of {2, with n > 2 vertices and
winding number m < n/2 and denote by £(f2,, m,n) the set of lengths of all v
in £(£2,,m,n). The set £({2,,m,n) is compact and we define the marked length
spectrum of {2, as a map that assigns to any two integers (m,n), 1 < m < n/2, the
maximal length

T,,n(s) = max{t: t € £(2,,m,n)}.

Following an idea due to G. Birkhoff we easily prove

Lemma 5.1. The set #(£2,,m,n), 1 <m < n/2, is not empty for any s € [0,b]. The
function

[0,6] 25 —=T,,(s)

s continuous.
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Proof. As above consider {2, as {2 = {2, equipped with a suitable Riemannian metric
|| - I|> which depends continuously on s. Denote by 6 : R — 32 a smooth covering
of 812, 6(x + 1) = O(x), x € R. Consider the function

Sy(@y,- . m,) = 10@) — 0@)I2 + - + [16(x,) — Oz, DI,

Ty =2+ M,

and set
M={x,...,z)eR" 1z, <z, <--- <z, <z, =2 +m, T —z; < 1}.
Obviously S, is a continuous and periodic function in M with a period e = (1,...,1).

Moreover, the factor space M/Ze is compact. The triangle inequality shows that the
set

Mp = {pe M:S,p) = mAZ}XSS}

consists only of points internal for M. Hence, S, is smooth on M[®*. Moreover,
VS,(p) =0atp=(z,...,x,) € M, if and only if 6(x,),...,0(z,) are successive
vertices of a closed broken geodesic of {2, which belongs to Z(12,, m,n). Therefore,
the set &(§2,,m,n) is not empty for any s € [a, b]. Moreover,

Tmn(s) = Sup{ss(p) ‘pE M}
is continuous in s € [0,b]. O
Lemma 5.2. The Lebesgue measure of £(S2,) is zero.

Proof. Let 7y be a periodic broken geodesic in &(§2,, m,n). Then length (7) = S, (p)
for some p € M such that VS (p) = 0. Applying Sard’s theorem we obtain that
Z(£2,,m,n) has Lebesgue measure zero which proves the claim. O

Using (2.3), Lemma 5.1 and Lemma 5.2 we easily obtain

T,..08="1T_1(0), s€[0,b] 5.1
Indeed, according to (2.3) the continuous function 7, (s) takes values in .£(f2,)
which does not contain intervals in view of Lemma 5.2. Hence, T, ,,(s) should be
constant in [0, b]. We have proved that if the length spectrum remains constant along a
continuous deformation of {2, then so does the marked length spectrum. We are going
to show that the marked length spectrum determines uniquely the vector function (1.1).

First we evaluate the average action on the periodic orbits of the billiard ball map.
To simplify the notations we drop the index s. Consider the set I'(m, n) of periodic
orbits g = (g,,...,9,) of B of period n and winding number m. Any such orbit
gives rise to a periodic broken geodesic in & (§2, m,n). Denote by L(g) the length of
the periodic broken geodesic of {2 associated with the periodic orbit g of B.

According to (4.8), the average action of any orbit {gy,g;,...}, 9; = Bi(gp),
go € A(w), of B on the invariant circle A(w), w € O, is given by the Legendre
transform

T(Ww)=wZ(Ww)—1(ZW))/2r (5.2

of 7(I)/2m. Note that .7 (w) can be extended to a smooth odd function in R since
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Z(w)iseven, T(]) = —%K(I)3/2, K(ly) = 0, K'(l)) < 0 and (3.16) holds. Moreover,
217 (w) = wl(w) + tw), Yw € B, (5.3)

in view of Proposition 4.1.
We impose the following condition on the pair (m,n) € N2

dist(m/n,©) <n~%, 1<m <n/2, (5.4)

where dist(z, ©) is the distance between z and ©@. Here is the main result in this
section:

Theorem 5.1. For any (m,n) € N? satisfying (5.4) and any g € I'(m,n) we have
|L(g)/n — 21T (m/n)| < Cyn™N, VN >0, (5.5)

where C is a positive constant which depends only on N, B, and on the symplectic
transformation x = ° o 1.

Proof of Theorem 2.1. Fix w € © and choose a sequence (m;,n,) € N2, j € N,
satisfying (5.4). For any j € N pick a periodic orbit ¢ € I s(m;,n;) of By such that
Ly(9]) =Ty (), 5 €[0,b].

Theorem 5.1 yields
27w = Jim (T, (5)/n), s € 0.0,

and taking into account (5.1) we obtain
T(w) = Fw), YweO, Vsel0,bl

Since © has no isolated points, differentiating the last equality with respect to w we
obtain

Tw) = Zw), K (Zw) =Ky (%Hw)), YweO, Vsel0,b],
which proves (2.6). In particular,
E,=E, K/(I) =Ky, VIeckE, (5.6)

and using Theorem 3.1 we prove (ii), Theorem 2.1 for s € [0, b].
It remains to show that {2, is strictly convex for any s € [0, 1]. Suppose that {2, is
strictly convex for s < b, but only convex for s = b,. Consider the function .7%(r)

inverse to r = K_(I) and set Es ={K,I): 1 € E_}. Then (5.6) yields
E,=E, R,r)=Ryr), Vrek,
and since 0 € Eo we obtain
FL(0) = 724(0), 2L0)=2"0), sE€I0,by). (5.7

Denote by x,(x), v € 02, the curvature of 012, set f (x) = ms(x)”l/ 3fors < bgs
and define f, (x) = /-cbo(oc)‘l/3 if Ky, (2) # 0, f (@) = 400 if Ky () = 0. The
second equality of (5.7) and (4.14) yield together

/ i@ dz < C, s € [0,by). (5.8)
8824
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On the other hand, (4.13) and the first equality of (5.7) imply
kg(zgy) > C; >0, s€0,by),

for some z, € 8§2,. Then 0 < f.(z,) < C,, s € [0, b)), and using Taylor’s formula
and (5.8) we obtain the estimate

/ (IF,@] + |fi@|) dz < Cs, s €10,by),

082

which means that {f, : s € [0,b,)} is a compact subset of L*(82) (we regard 012,
as 042 equipped with a suitable Riemannian metric). In particular, f, € L*(052). On

the other hand, the curvature kbo(x) > 0 and it has a zero of at least second order at
some z, € 012. Hence,

|fyy@)] = Clz = zp) >

in any local coordinates in a neighborhood of z,, in 82 which implies fbo & L*(012).
Hence, 012, is strictly convex for any s € [0,1]. The proof of Theorem 2.1 is
complete. [

Proof of Theorem 5.1. The proof is based on a suitable approximation of (B°)? (¢, I),
j < n, where B is introduced by Theorem 3.1. Fix ¢ > 0 and consider a
neighborhood

V={0eX:0<hp<e}

of X' in X, where h is the approximated interpolating Hamiltonian of B introduced
by Corollary 3.2. There exists ¢, > O such that if m/n < ¢, and (g,,...,9,) €
I'(m,n), then g; € V for each j < n. Indeed, denote by ¢ the maximal length
of the segments with end points T, and Tigl s j =1,...,n, where g, = (xj,fj),
T, = 2. Then t <mfy/n < eyf, which implies g; € V' if ¢, is sufficiently small.
Let w € © C [0,w], wy < gy and m/n < g,. We have g; € V, j < n, for any
periodic orbit g = (g;,...,9,) € I'(m,n). Let

=0, 9=, I)=x""gp, x=v"0¢.

Then § is a periodic orbit of B® of period n and winding number m, and g; €TxI,
I' = (I, — &,1y). According to Theorem 3.1, the map B° has the form

B%p, D) = (¢ +7'(D)+ Q%ep, I, I +Q%p, D), (5.9)

where Qf and Q9 have a zero of infinite order at T x E and E = Z(0) C [l,—¢, ;).
We denote by V,, and J,, suitable neighborhoods of © and E,

v, = {g € (%,WC)) : dist(¢,0) < 2n—1/2}, J, = Z({V,).

Taking into account (3.16) we find a positive constant C;; > 0 such that

dist(I, E) < Cyn™"? and l,—I>Cy'n™2, VIe€J,, VYneZ, . (5.10)
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Proposition 5.1. For any integers N > 1, a > 0, and 0 < 3 < N, there exists a
constant C\;, such that

10207 (B (0, 1) = (¢ + j7'(D), D)] < Cyon™, (0, DETxJ,, (5.11)
for any 1 < 7 < n and any positive integer n.

Proof. Set U(p,&) = (p, 7€), (p,§) € T x R, and consider the map B =
U 'oB%U in T x (0,w,). We have

B(p, &) = (p + 27E,8) + R(p, ),

where R = (R,, R,) can be extended as a smooth mapping in T" x R across £ = 0.
Indeed, we have

R,(¢,6) = Qi(, 7€),
1
Ry(0,8) = 5—7(7(©) + Q3 T () - &,

where QY, j = 1,2, are given by (5.9), they are smooth in T x R, and have a zero of

infinite order at T x E. On the other hand, the singularity of 7" at I = [ is described
by
()= 2KWO'?’K'T), KO)=0, K'(I)<0,

and we prove easily that R, are smooth at { = 0 since [ € E. Moreover,
0202 R;(0,8)| < Cyapn ™, j=1,2, (5.12)
for any (p,€) € T x R such that dist(©, £) < 3n~1/2. Set
BI(0,8) = (®,(0,6),5,(0,8), (©,eTxV,, j<n.
First we prove by induction with respect to j < n the inequalities
|2 - ¢l <gn™t, |@; — o —2mje] < mint,
dist (£,,0) <2072+ jn~* <3072, <, (5.13)

for any (¢,§) € T x V,, and n > n,, where n, is sufficiently large. In the same way,
making use of the third inequality in (5.13) as well as of (5.12) we obtain

0202 (Z;(0,8) — O] +|020L(@,(0,6) — ¢ — 2mjE)| < Cyppn™N, 1< <,

in (¢,£) € T x V,, for any nonnegative integers «, 3, and N. Conjugating B with U
and using the estimate

|07 (D] < Cgn®, TeJ,,
which follows from (5.10) we complete the proof of Proposition 5.1. [J
Consider the set W,, of all (¢, ¢) € R? such that
(@ —p)/2mtn eV,

Set
P, I) = (BY"(p, ) = (p + n7'(I), I) + Qp, I),
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where ) = (Q,, @,) is a smooth function in T x R. Using Proposition 5.1 we solve
the equation

o =p+nt’' D)+ Qy(p, 1)

with respect to I € J,, when (¢', p) € W,, and n is sufficiently large. This equation
is equivalent to

I=7(¢ —o)/2mn)+Q, (0,0, D), Ied,, (¥ ,0)eW, (5.14)
where, in view of (5.11) we have
[83,358an(g0’,cp,I)] < CNaﬂn“N in W, xJ,,
for any N and any indices (o, 3,p) € Z3, p < N. Hence, (5.14) can be solved

by successive iterates for n > n, and n, sufficiently large. Denote by I(¢’, ¢),
(¥, ) € W,, n > ny, the solution of (5.14). Then

', 0) = 7@ —@p)f2mm)| < Cyn ™™, (&) eW,.  (515)
In particular, graph(P?) can be parameterized over T x J,, by (¢’, ) € W,, as follows:

O0H O0H
graph(P?) = { (so’, a(p? (@, 0,0, — &p” (so’,so)> (RTINS Wn}, (5.16)

where H, is a smooth and 27-periodic function on R? satisfying the equality
8‘Hn / /
- =—I(¢, p).
B ¥ 9) (@ 9)

Choose m € N and suppose that (5.4) holds for the pair (m,n) € N2, n > Ng.
Then (¢ + 2mm, ) € W, for any ¢ € R. Set

Mp) = h,. (@) =H (p+2rm,p), ¢€eR. 5.17)

The function h(p) is smooth and 27-periodic in R- According to (5.16) there is one-
one correspondence between the critical points of A" in T and the fixed points of
PY%in T x I'" which is given by

Crit(h,,,,,) 3 ¢ — 6,(p) = (p, I(p + 27m, ¢)) € Fix(P°). (5.18)

Then )
Crit(h,,,,) 2 ¢ — g(©) = (9,(9), . - -, 9, (¥)) € ['(m,n),

9, =B""g/(p), j=1,...,n,

is one-one correspondence between the critical points of k., and the periodic orbits
of B in I'(m,n), and (5.15) implies

[ — Z(m/n)| < Cyn™N, (5.19)

at any periodic point (¢, I) of B° of periodic n and winding number m.
Take g = (g, ---,9,) € I'(m,n) and denote as before (¢, ,1;) = X”l(gj). Using
(4.6) we obtain

1 n
|L(g)/n — 27 (m/m)| < =3 |f(p5, 1) = 277 (m/m)|.

J=1
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On the other hand,
|f(p,, 1) — 2x7 (m/n)| < |7(I,) — (T (m/n))|
+ |17 — Zmfnyr' (Zm/m)| + Cyn .

We evaluate the right-hand side of the inequality above using Taylor’s formula. We
have |7/(I)| < C in I". Moreover,

(L) = 7'(Z(m/n) = (I; — j(m/n))r”(fj),
where N
I, — Zm/n)| < |I; — Z(m/n)| < Cyn™™

according to (5.19). Then
7(L)| < |k ()" K (I)"| + ¢ < O

Hence, | flpj 1) — 2T (m/n)] < Cyn~ which completes the proof of Theo-
rem 5.1. O

The function h introduced by (5.17) is going to play an important role in Sect.
6. Note that it is uniquely determined by (5.16) and (5.17) up to a constant and
we normalize it by taking H, (@, ¢, + 2mm) = L(g(p,)), where ¢, is a point in
Crit(h,,,,). Then we obtain

Lemma 5.3. We have

Prin (@) = L(g(9)), Vo € Crit(h,,,,).
Proof. Taking into account (4.4) we get
n .
(B o)~ o =dT,, T,=Y (BT
7=0
On the other hand,
(P)*(Idp) ~Idp=dH,, P’=(x"'oBox)",

inT x J,, and
x (o) = Idp =dd, & e C(T xR),

since x is exact symplectic. Set Tg(go,f ) = T, (x(p,I)). Taking into account the
equalities above as well as the normalization of H,, we easily obtain

H, (') = To(p, I(¢, ) — (P, I(¢, )
+ (0, I, ), (¢, 0) €W, . (5.20)

Using (5.17) and (5.18) we complete the proof of the lemma. O
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The following result is a generalization of Theorem 5.15 in [16]

Corollary 5.1. Fix m € Z_ and pick arbitrarily g,,, € I'(m,n). Then

N
—2k —2N -2
L(gmn) - Z CmnkT < ONmn ’
k=0

where

m2k+l

mk = 2k + 1)!

and Cly,, are positive constants.

c T, k=0,1,...

Proof. Since 0 € O, the pair (m, n) satisfies (5.4) if m is fixed and n > n;(m). Let
us expand 7(t) in Taylor series at ¢ = 0. The derivatives .7?*)(0) = 0 since the
function 7 (t) is odd. Applying Theorem 5.1 we prove the assertion. [

Remark 5.1. Since 0 € ©, we can write the coefficients c_,;, explicitly in terms of the
Taylor series of ¢ = 0 of the restriction of the function .7 (w) on ©, which is given
by (5.3). Moreover, the relation between c,,, and the integral invariants of Marvizi
and Melrose is explicitly given by (4.11) and (5.2).

Consider two strictly convex domains {2, and {2,. Let B s j = 0,1 be the
corresponding billiard ball maps. Choosing the constant q; in (3.8) sufficiently small
we obtain for any w € © an invariant curve A;(w) of B;, j = 0,1. The following
statement is a discrete version of Theorem 2.1.

Theorem 5.2, Let Q] , 7 =1, 2, be strictly convex domains in R* and
T,..0=1T (1), VY(mmn), 1<m<n/2

Then
fw) =4 (w), tw)=1t W), YweoO,

and there exists an exact symplectic mapping x : Xy — 3| such that
X(Agw)) = Aj(w) and xoBy=DB ox on Ayw), VweO.

Theorem 5.2 follows from Theorem 5.1 and the arguments at the end of the proof of
Theorem 2.1.

6. Spectral Invariants

Let {2 be a bounded domain in R? with a smooth boundary 82. Consider the Laplacian
A in {2 with Dirichlet (Neumann) boundary conditions, and the related distribution
Z(t) defined by (1.8).

Denote by £(§2) the set of all periodic generalized geodesics of {2 and consider the
set £ ({2; m,n) of the periodic broken geodesics in {2 corresponding to the periodic
orbits of B in I'(m,n). Let £, (§2) be the set of lengths of all periodic broken
geodesics in F(2) \ £ (2, m,n). In order to prevent cancellation of the singularity
of Z(t) created by the geodesics of maximal length T, in &(§2;m,n), we impose
the following condition:

Ton & Lo (D). 6.1

This condition is satisfied for generic domains {2 (see [18]).
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Theorem 6.1. Let §2 be a strictly convex bounded domain in R? with a smooth
boundary. Suppose that (m,n) € N? satisfies (5.4) and that (6.1) is fulfilled. Then

T, € sing.supp.(Z) 6.2)
holds if n > ny and ny = ny(§2) is sufficiently large.

This statement generalizes Theorem 6.4 in [16] where it has been proved for m = 1
and n sufficiently large. The main idea in [16] is to find suitable representation of Z(t)
in a neighborhood of T, as a Fourier integral on 042 (see Proposition 6.11 in [16])
and then to apply a result of Soga [22]. When m is fixed and n > n(m) is sufficiently
large Proposition 6.11 in [16] still holds. In the general case when (m,n) satisfies
(5.4) and n > ny({2), we use another representation of Z(t) in a neighborhood of
T, which is close to that obtained in Proposition 5.4, [21]. Consider the function
hp) = h,,.(v), ¢ € T, defined by (5.17). For any z € C denote by Re z its real
part.

Proposition 6.1. Suppose that (m,n) satisfies (5.4), n > n, and that (6.1.) holds. If
ny = ny({2) is sufficiently large, we have

Z(t) = //Re(exp(iT(t — h(p)) +imp,)alp, 7)) dedr + Z(t),
0T

where Z(t) is smooth at t = T s My is @ Maslov index, and a(p,T) is a classical
symbol of order one with respect to T. Moreover, a(p,7) = 0 for 7 < 1 and the
principal part of a is equal to a(p)T for T > 2, where a; > 0 on T.

Applying Lemma 5.5 in [21] to the oscillatory integral given by Proposition 6.1
we prove Theorem 6.1.

Proof of Proposition 6.1. Consider the fundamental solution FE(t,z,y) of the mixed
problem

(D} - D2)E =0,
Ela:e@!? =0,
E(O,.’L’, y) = 6(1‘ - ZJ)7
(DEXO,z,y) =0,
where D, = —id/0t, D = Dil + Diz, DI] = —i0/dz,, j = 1,2. The distribution

E is just the kernel of the operator cos(ty/A). Denote by E* the Schwartz kernel of
the operator exp(Fitv/A) and consider

ZE(t) = /Ei(t,x,x) dz.
Q
Then, Z(t) = Zt(t) + Z(t) and Z~ = Z~ in a distribution sense where  is the
complex conjugated number to z € C. As in (6.14), [16], using (6.1) we obtain

ZT(¢) = /K+(t,aj,x) dz + Z; (@),
on
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where Z{" is smooth at 7,,,,, and K belongs to the Hérmander class
I7V4R x 892 x 892, C")
of Lagrangian distributions associated with the Lagrangian manifold
Ch ={t,z,y;7,&Em) € TR x 002 x 002) : t =T, (y,—n/7),
(z,§/7) = B"(y,—n/7),7 > 0},

where T, (y,n) is introduced in Lemma 5.3. Choose neighborhoods V; C V, C C,
of the set

Cmn = {(ta T, YT, 5; 77) € Cl ;(ya _7]/7—) € F(m’ n)}
Without loss of generality we can suppose that the complete symbol of K vanishes
outside V, while its principal symbol is a positive function in V| modulo a Maslov
factor. Denote by C}) a Lagrangian submanifold of T (942 x 812) associated with the
graph of B",
Co = {(@,y;&,m) € T2 x 092); (z,8) = B"(y, ~m), (y,m) € T},

and let V C V;) C C} be neighborhoods of the set
{@,y:¢,m € Cy; (y,—m) € ['(m, )}
As in Lemma 5.7, [21], we find a Fourier oscillatory integral R(x,y, ) of the class
1°002 x 002, C), 1)
such that
K, (t,zy) = /e”mR(x,y,T) dr.

Since B™ is an exact symplectic mapping, the Liouville class of C} in H'(C{; R) given
by the restriction of the canonical symplectic one form of 7(02 x 92) on C} is
trivial. In this case there is a complete analogy between the theory of the Lagrangian
distributions and the Fourier oscillatory integrals (see [7]). The only difference is
that the principal symbol of a Fourier oscillatory integral associated with C{ has an
additional Liouville factor

exp(itf(0)), 0€Cj,

where f is given by the restrictions on C{ of suitable phase functions generating Cj.
In our case, the principal symbol of R is equal to

exp(ir T, (y, —n) + imp,,)

times a positive function in V°, the complete symbol of R vanishes outside V2O and
R(z,y,7) = On(t7N) as 7 — —co for any N > 0.

Denote by R(7) the Fourier integral operator with a large parameter 7 whose
Schwartz kernel is R(x,y, 7). Using Theorem 3.1 (here s is fixed) we shall conjugate
R(7) to a Fourier integral operator on T with a large parameter 7 and phase function
R (). Denote by C] the Lagrangian manifold

Cl ={(z,0:6,) € T*(@2 x T); (x,8) = x(p, —D},
and observe that the Maslov bundle of Cf is trivial since the projection

Cl 3 (x,0:6, 1) — (x,0) €002 x T
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is a diffeomorphism. Indeed, we have x !(z,&)=(P(z,§), E(x,E)), where
0Z/0¢ # 0 on 0X since the derivative with respect to £ of the approximated
interpolating Hamiltonian h(z,&) = K(Z(z,£)) is different from zero on 0X . We
can replace x by x o k, where k(p,I) = (¢ + CI,I), C > 0. Then

(x 0 k)" Nz, &) = (D(z,8) — CE(,8), Z(x,£)),

and we can solve the equation ¢ = &(z,€) — CZ(z,&) with respect to £ if C is
sufficiently big.
As in [21], Lemma 5.8, (see also [5]), we easily obtain

Lemma 6.1. Let ¥(T) be a pseudodifferential operator with a large parameter T with
symbol equal to one in T x I and equal to zero outside a neighborhood of this set in
T x I'. There exists a Fourier integral operator A(t) of the class I°(02 x T, Cl,7m
such that

AX(A(T) = ¥(),

the principal symbol of A(T) is equal to one on the lifting of T x V, in C| and the
complete symbol of A(T) vanishes outside a small neighborhood of it.

The operator
R,(1) = A*(1)R(T)A(7) : LX(T) — LX(T)

has a distribution kernel R, (¢, @, 7) In ]0('[[‘ x T, C’é,r), where
Cy={(,0: I',1) € T*T% (¢, I") = Pp,—D)}, P’ =(BY".

According to (5.16), C} is generated by H, (¢, ) + C, (¢, ) € W,, where C is
constant. Hence we get

Ri(¢', ¢, 1) = exp(it(H, (¢, ) + C) + imp, )b(¢', 9, ),

where b = 0 for 7 < 1 and b(¢’, p, 7) = b (¢, ©)T + by(¢', ) + - -+ is a classical
symbol of order one as 7 — o0, b = 0 outside a neighborhood of W, , and b, is
a positive function in W, . On the other hand, comparing the Liouville factors of
R(z,y, ) and R,(¢', v, T), we obtain as in Sect. 5.4 in [21] and Sect. 3.2 in [3] that
C=0.

The L?-trace of R(7) is equal to

trace () = trace R,(1) = / exp(iTh(yp) + imp, )b(p + 2mm, ¢, 7) dyp,
T

which completes the proof of Proposition 6.1. O

Using Theorem 6.1 and certain arguments from Sect. 5 we prove that the invariant
circles A (w) and the restriction of the billiard ball map on them are spectral invariants
of the Laplacian for suitable continuous deformations of a strictly convex domain.
Define .7, (s) as T, (s) when I',(m,n) is not empty and set .7, (s) = O otherwise.
We say that the deformation (2.2) satisfies the condition (%), if for any pair of integers
(m,n), 1 <m < n/2, satisfying

dist(m/n, 0) < n~?,

the relation

Trn(®) & Lrn($2)
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is fulfilled for s in a dense subset of [0, 1]. Note that by definition .7, (s) does
not belong to the length spectrum of (2, if the set I,(m,n) is empty. Moreover,
using arguments from [18] it could be proved that (%2) is generic for continuous
deformations of the domain.

Theorem 6.2. Let (2, be a strictly convex bounded domain with a smooth boundary.
Suppose that (2.2) is a continuous deformation of (2 satisfying (J2) and that

Spec(A,) = Spec(4y), 0<s< 1. (6.3)
Then:

(i) £2, is strictly convex for any s € [0, 1],
(ii) there exists a continuous family of smooth exact symplectic mappings

X, 1 T*082) — T*09,
such that
X (Ap(£)) = A (w), and x,0By,=B,0ox, on Ayw)

for any w € ©, and any s € [0, 1],
(i) for any w € O there exists a continuous family of caustics [0, 1] — C (w) in {2,
and

L (w) ={y(w), t,(w)=t(w), sel0,1]

Proof. Take b > 0 such that (2, are strictly convex for any s € [0,b]. Then
Trn(8) = T, (s) is continuous in [0,b]. Fix w € © and suppose that the pair
(m,n) € N satisfies (5.4). We are going to prove that

T ..(s) € sing.supp. Z,, Vs € [0,b]. (6.4)
Take s, € [0,b] and choose a sequence s; tending to s, such that T,,,(s;) &
gmn(ﬂs]). Theorem 6.1 implies
1., (8;) € sing. supp. ZsJ .

On the other hand, Z () = Z,(t) for any s in view of (6.3) and we get (6.4) since
sing. supp. Z, is a closed set and 7, (s) is continuous. Using the Poisson relation
(1.9) we obtain

T,..(s) € Z(§2), Vsel0,b]

Hence,
T,..()="T,.0), Vsel0b],

and as in Theorem 2.1 we complete the proof of Theorem 6.2. [

Appendix

We are going to prove Theorem 3.1. As in Sect. 3 we fix N € Z,_ and p > 0, and
denote
eu, Ny =eyp™, M=N+2,

where the positive constants ¢, will be specified later. Fix 0 < Cy < C < 1,C; > 1
sufficiently large, set I, = [l, — C\a?,1, — C;'a?], and denote

O%a, u, N) = O(a, i, N) N (Cypa, Co_la), 0<a<ag,
where C is fixed in (3.8). The following result is a counterpart of Theorem 1.1, [21]:
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Theorem A.1. Let[0,b] 5 s — B, € C*°(A, A) be a continuous deformation of exact
symplectic mappings satisfying the assumptions of Theorem 3.1 for any s in [0, b]. Then
forany N € Z there is ey > 0, and for any a € (0,e(u, N)) there exist continuous
in s € [0,b] families of exact symplectic mappings x,, € C®(T x R,T x R) and
functions K, € C*(R),Q,, € C*(T x R) such that K,,(I) > 0in I" and:

0

S

G o, ) = T,,(D)+ Q% (p, D),
() = —%Ksam”% (0,1 € A, (A1)

(i) the exact symplectic mapping BY, = x.! o B, o x,, is generated in A by

and
0w, )=0 on TxE,, (A.2)

where E,, = {l[ € I" : 7 ,(I)/27 € O%a, pu,N)} C T,
(ii) x4, = O outside T x I, , and K ‘;a , and the generating function S, (0, I) of
Xsq Satisfy the estimates

sa’

| DK 4o (D) = C(D)| + | DFDEQAu (0, D] < Cyylly = IIN™* (A3)

|D$DFS%0,D] < Canlly — IV (A4)

inT x [ly — €, by + &l, €9 > 0, for s € [0,b] and any indices 0 < o < N, 3 >0,
where Cgy, depend neither on s nor on a and ju.

The proof of Theorem A.1 is close to that of Theorem 1.1 in [21] and we are going
only to sketch it. It is based on Theorem A, [19] and on an idea of R. Douady [6]
(see also Appendix, [21]) to transform the initial problem for symplectic mappings to
a similar problem for Hamiltonian systems.

First we write the generating function G (6, r) of B, in the form

G,(0,1) = =30 + R,0,7), (0,1) €A, (A5)

where ¢%(r) is the Taylor polynomial of {,(r) at 7 = [, up to order M, = N?>+4N +5
while R satisfies

0508 R0, < Clr —1,|" ™7, (0,7 € A, (A.6)

for any indices & > 0, 8 > 0, and s € [0,b], and R, depends continuously on s in
C°°(A). As in Sect. 3, we suppose that R (¢,7) = 0 for r € [, — €, — 2¢/3]. Fix
d = a? and set
D=1 x(—gyz),
Dy = (g — Cyd,ly — C5'd) x ( — Cyd, Cyd),

where C, > C| > 1. Define ]I~J)d the same way as D; with a constant C; > C, and
set

A=T>xD, A,=T>xD,.

Denote y = (yy,y,) € T2 1 = (ny,m,) €D, y; = 0, n, =7 and 72() = — 50>
As in [6, 21], we first construct a Hamiltonian ﬁs(y,n) in A close to ﬁso(n) =
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27n, + To(nl) and such that the Poincaré map corresponding to the Hamiltonian flow
F(p) of H on the level surface {H = 0} coincides with B,. Set

A ={(y,m €A:H, () =0, y, =0}

and denote by 1, : A — A’ the inclusion map

Ly m) = (0,14, =79 (m,)/27).
Taking into account (A.5) and (A.6) we prove as in [13] and [21]

Lemma A.1l. There exists a continuous in [0, b] family of Hamiltonians ﬁs € COO(A)
such that

| D5 D& (H ) — HI)| < Coplm 177,
H_(y,n) = H () in a neighborhood of A’ as well as outside A,
Bszl,;lOFsloLs.
Set HO HO ’ (HO)2 H ﬁs + (ﬁs)z' Next we apply a KAM theorem to the

pair H' 0, H ! Wthh is a varlam of Theorem A, [19], proved by J. Poschel (see also
Theorem 5.4 in [13]). As in [19] denote by U,Y(y, n) the map (y,n) — (y,yn) and by

Il -1l 7 the respective Holder norms of the functions in Ad as well as
p,Ad
I llp 2y = I 00l o102 -

Denote by I the intersection of a neighborhood of (0, /) in C? with the half-plane
{Rez, <y} and set

Dd+g:{z€f:|z—n|§g for some ne]ﬁ)d}.

Next fix ¢ > 1, u > 0, as in Sect. 3, set v, = pd"/? = pa™, and consider the
Cantor set

04 = {w e R?: [{w, k)| > ~,lk|~° forany k= (k,,k,) € Z*\{0}}.
Fix s, € [0, b]. The following KAM theorem is a variant of Theorem A in [19].

Theorem A.2. Let [0,b] > s — H(n) be a continuous family of analytic functions in
I such that

10H] /00, 1OH /00 lp,,, < Cd™'/2, d € (0,dy), (A7)

where o = ¢d, 0 < ¢ < 1, C' > 0, and assume the map OH./0n : I' — C? to be
invertible.

Forany fixed A >c+1>2,anda>1,a ¢ A= {i/\+j:i,j > 0 integer},
there is a positive € independent of d, u and s such that if H, € C*°(A) is continuous
in [0,b], and

| H, — HY| <y2d, p=ar+A+o, (A.8)

PAGYY =
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then:

(i) for any d € (0, d,) there is a neighborhood U(s,) of s, and continuous with respect
to s € U(sy) families of functions S,y € C*(A), H,, € C°°(D?) such that S;q =0
outside A and

ag(H;(y’§ - vygsd(f% 5)) - Hsd(f)) =0, 0<¢<1,
on T% x E,,, where
B,y = {6 €Dy : VoH ,(©))2r € 6%},

(ii) for any B > «,

185all 5.2y < Corva'd OV HL = HY|l5,

whereﬁzﬂ)\+)\+aandﬁzﬁ—(/\—a)/)\isnotin/l.

The proof of Theorem A.2 is similar to that of Theorem A in [19] (see also
Theorem 5.4 and the Appendix in [13]) and we omit it. The continuity of S,; and
H,, with respect to s € U(sy) in the corresponding C*° spaces follows from the
arguments in A.2, Appendix, in [21].

Consider the pair H?, H! defined above. Obviously, H? satisfies (A.7) if c is
sufficiently small. Fix A > o+ 1 and 8 > O such that 3 = 3 — (A —¢)/) is not in A
and N << N+ 1. Setp=8A+ A+ 0. Lemma A.2 implies

|Hy — H|

< COpaMi < ey P26Vt M, = N? +4N 45,

pAgiva
if d = o and
O<a<eypuM, M=N+2, ey=¢/Cy.

Hence, we can apply Theorem A.2. The corresponding function gsd satisfies the
estimate

o N
130all35,.,, < v H'a™*,

which implies

|05085,,0,6)| < Cy ya®, for 0 <a<e(,N), |gl <N, (A.9)

where C} N~d0 not depend on y and a. Moreover, §sd = 0 outside a neighborhood of

T x D, in A, and it generates an exact symplectic transformation taking €, smaller
if necessary. As in the Appendix, [21] we complete the proof of Theorem A.1.

We are going to patch together the exact symplectic mappings X, - Fix N, € Z .,
w; > 0 and a; € O, s(uj ,NJ)), 7 = 1,2, and consider the corresponding functions
Kzs] and Ssj given by Theorem A.1. Let x,; be the exact symplectic mapping with
a generating function S, . Denote by 7, (w) the inverse to the frequency mapping

I's 11— 7g(I)/2m.
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Proposition A.1. We have

T @) = Zpw), K (T @) = Ko( 7)), (A.10)
X1 (0, Zyy@)) = X2 (0 +7( 7, W), Z(W)), (A.11)

for any w € OV = @O(al,,ul,Nl) N (—)O(az,ﬂz,Nz), where r (1) = S;,(0,1) —
S.,(0,1).

Proof. The proof is close to that of Proposition A.5 in [21]. To simplify the notations
we drop the index s. Suppose that @12 is not empty. Set B; = Xj'l o Box; and

consider ¥ = ;' o x,. Then B, = ¢~ 0 B, 0% and (4.2) implies

Biog—o,=df;, oy=Idp, j=1,2, (A.12)
where
file, Ziw) =27 w), we&%aj,p;, Ny, j=1,2 (A.13)
according to (4.3). On the other hand,
Yo, — 0y = do, (A.14)

where ¢ is a smooth function in A. As in the proof of (4.6) we deduce from (A.12)
and (A.14) that

(o, D) = f[ie, D) + ¢lp, ) — d(By(p, D)+ C, (0, 1) € A, (A.15)

where C = 0. As the invariant circles A(w) are uniquely determined by their rotation
numbers w € @, we have

P(Tx W) =T x #(w), weO™ (A.16)
Using (A.13) and (A.16) we obtain
2 (W) = 217 w) + ¢, W) — d(p +w, W), (p,w)€TxO,

which implies
2 (w) = 217 (w), wE O,

Since ©'2 has no isolated points, differentiating the last equality with respect to w
we prove (A.10).
According to (A.10) and (A.16) we have

WT X Hw) =Tx BHw), webO?,
and we obtain
VS0, Zo(w)) = V5,0, Z(w)), (,w) €T x O
This proves (A.11). O
Proof of Theorem 3.1. First we fix N in Z, . Take ay = e(u,N), a; = aocg,
v, = ,uoaf’ , 0 < py < p, and denote by K (I) and Ssj((), I) the corresponding
functions given by Theorem A.l for a = a;, j = 1,2,.... Replacing S,;(0,I) by

Ssj(H,I) - SSJ(O, I) we can suppose that Ssj(O, I) = 0. Using Proposition A.1,
(A.3) and (A.4), and applying a suitable Whitney extension theorem we find smooth
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functions 7, Nw), K S{N (I) and S;N (0,I) in R and T x R respectively which depend

S
continuously on s and such that the equalities

T w) = Jyw), KX (I W) = Ky (7" @)
S50, 7" @) = 856, 7 @),

as well as their derivatives with respect to (f,w) are satisfied in A9 = T x
0%a,, 19, N). Denote by x' the exact symplectic mapping generated by S and
by (¢, I) the corresponding symplectic coordinates in T x R. Then

By = ()" oBoxy
is generated by
VD +QN e, D, TN =-3KNI,

where QY (i, I) is a smooth function and Q% (¢, ZN (w)) has a zero of infinite order
on each A7, j = 1,2,.... Fix y, = pCy’ and take a € [a,,a; ], d = a®. Then
Y, <Yy-1 £V and the Cantor set ©*(a, 1, N) is contained in the union of the sets
A7~ and AJ. Hence, Q%(p, ZN (w)) has a zero of infinite order on

Oy =U{0%(a,u, N): 0 < a < e(u, N)}.

Moreover, KV, QY and SY satisfy (A.3) and (A.4). Take integers N, > N, > 1,
pick a in (0,&(p, Np)1, and set 7y, = pa™i . Then Y, <, and we obtain

On, N (0,e(u, N)] C O, .

Using Proposition A.1 as well as (A.3) and (A.4) we obtain smooth (in the sense of
Whitney) functions 7, (w), K, (Z,(w)) and S,(¢, Z.(w)) in © and T x © respectively
such that
Zyw) = 7N W), K(Z,w)=KN(Zw),
5,0, Z,w)) = S (0, Z,w)),

for any (f,w) € T x 6. Denote by §s(e,w) and z(w) suitable smooth Whitney
extensions of 58(0, Z(w)), O,w) € Tx 6 and Z,(v), w € O, which depend
continuously on s. Let K 2(I) be the function inverse to w — 7, (w). Taking x,
to be the exact symplectic mapping generated by S (6,1) = §s(0, K ’(I)) and using
(A.3) and (A.4) we complete the proof of Theorem 3.1. [
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