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Abstract. We study the vortex equations on a line bundle over a compact Kahler
manifold. These are a generalization of the classical vortex equations over R2. We
first prove an invariant version of the theorem of Donaldson, Uhlenbeck and Yau
relating the existence of a Hermitian-Yang-Mills metric on a holomorphic bundle
to the stability of such a bundle. We then show that the vortex equations are
a dimensional reduction of the Hermitian-Yang-Mills equation. Using this fact
and the theorem above we give a new existence proof for the vortex equations and
describe the moduli space of solutions.

Introduction

In this paper we shall study a direct generalization of the vortex equations on R2 in
which the euclidean plane is replaced by a compact Kahler manifold.

The vortex equations on R2 were first introduced in 1950 by Ginsburg and
Landau [9] in the study of superconductivity. Geometrically they correspond to
the equations satisfied by the absolute minima of the Yang-Mills-Higgs functional,
defined for a unitary connection A and a smooth section φ of a Hermitian line
bundle over R2 as

YMH(A φ) = ί \FA\
2 + \dAφ\2 + l-(l- \φ\2)2 .

JR2 4

Here FA is the curvature of A and dAφ is the covariant derivative of φ.
If we regard R2 as the complex plane we may decompose with respect to the

complex structure to get dA = d'A + d"A. Then by integration by parts we can show
that the functional above is bounded below by 2nd, where d is an integer called the
vortex number, and this minimum is attained if and only if
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These equations are invariant under gauge transformations and the moduli space
of solutions is described by the basic existence theorem of Jaίfe and Taubes [13].
They proved that given d points xt e R2 (possibly with multiplicities) there exists
a solution to the vortex equations, unique up to gauge equivalence, with φ(Xi) = 0.
This means that the moduli space of vortices is the space of unordered d-tuples,
which coincides with the vector space Cd.

The feature of the vortex equations we shall exploit is that they are a dimen-
sional reduction of the (anti)-self-dual Yang-Mills equation. More precisely, con-
sider an SU(2) bundle E on a Riemannian 4-manifold M. Suppose that SO (3) (or
SU(2)) acts by isometries on M and that this action can be lifted to E. Then SO (3)
also acts on the space of connections on E, and there is a one-to-one correspond-
ence between SΌ(3)-invariant connections A and pairs (A9 φ\ where A is a unitary
connection on a Hermitian line bundle L over the orbit space M/SO(3) and φ is
a section of L. The pure Yang-Mills functional of an invariant connection reduces
to the Yang-Mills-Higgs functional of (A, φ). Moreover, (A, φ) satisfies the vortex
equations if and only if the corresponding invariant connection A satisfies the
(anti)-self-dual Yang-Mills equation. In this way, taking M = R2 x S2 Taubes [20]
gets the vortex equations over R2, and taking M = R + x S2 Witten [22] gets the
vortex equations over the hyperbolic plane Ri .

Taking this invariant point of view we will be able to prove an existence
theorem for the more general vortex equations studied in this paper.

In the first section of the paper we introduce these equations. Let L be
a Hermitian line bundle over a compact Kahler manifold X. If A is a unitary
connection on L which is ίntegrable (that is, whose curvature has vanishing
(0, 2)-part), and φ is a smooth section of L, one can define for the pair (A9 φ)
a generalized Yang-Mills-Higgs functional depending on a real parameter τ. As in
the R2 case this functional is bounded below by 2πτd, where d is the degree of L,
and this bound is attained if and only if

d"Aφ = 0

where A is contraction by the Kahler form. These equations are called the τ-vortex
equations (though the second equation alone is also sometimes called the τ-vortex
equation).

It will be convenient to take the equivalent point of view of fixing a holomor-
phic structure dL on L and fixing a holomorphic section φ of 3? = (L, dL). The
τ-vortex equation becomes then the equation

for a metric h on J5f, where Fh is the curvature of the metric connection determined
by & and ft.

By integrating this equation, we see that a necessary condition for existence of
solutions with φ φ 0 is that
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What is interesting is that this condition is also sufficient. Our strategy for proving
this involves showing that the vortex equations appear as a dimensional reduction
of the Hermitian-Yang-Mills equation, generalising the abovementioned results of
Witten [22] and Taubes [20].

Recall that a hermitian metric on a holomorphic bundle is said to be
Hermitίan-Einstein or Hermitian-Yang-Mills if the curvature F of the metric
connection (the unique connection compatible with both the metric and the
holomorphic structure) satisfies

ΛF = const. I .

In Sect. 2 we prove a G-invariant version of the theorem of Donaldson,
Uhlenbeck and Yau [3, 4, 21] relating the existence of a Hermitian-Yang-Mills
metric on a holomorphic bundle over a compact Kahler manifold to the stability of
such a bundle. This theorem will be used in the proof of the existence theorem for
the τ-vortex equation. Let $ be a holomorphic bundle over a compact Kahler
manifold, and suppose that a compact group G acts holomorphically on the
manifold preserving the Kahler form. Suppose also that the action can be lifted
holomorphically to $. The sufficient condition for the existence of a G-invariant
Hermitian-Yang-Mills metric is now that of G-invariant stability. This is like
ordinary stability, but the numerical condition on the slopes applies only to
G-invariant subsheaves of <ί.

In Sect. 3 we show how the τ-vortex equation appears as a dimensional
reduction under the action of Sl/(2) of the Hermitian-Yang-Mills equation on
a holomorphic rank two vector bundle <? over X x P1 associated to ($£, φ). Here P1

is the complex project!ve line, and X x P1 is endowed with the product of the
metric on X and the Fubini-Study metric on P1, with a coefficient which is
essentially the inverse of τ.

Using the results of Sects. 2 and 3, in Sect. 4 we reduce the criterion for the
existence of solutions to the vortex equation to the stability of <?; but this coincides
with deg L < τVolX/4π.

The τ-vortex equation has also been studied by Bradlow [1], who gives two
different proofs of the existence of solutions and a description of the moduli space
of solutions, as well as a number of interpretations of the parameter τ. Exploiting
the fact that the vortex equations are moment map equations in the sense of
symplectic geometry, we have given [7] another proof of the existence theorem in
the case of a Riemann surface.

Our approach to the vortex equations also enables us to describe the moduli
space of solutions. This moduli space can be described in terms of effective divisors
on X like the description above of the moduli of vortices over R2. However the
vortex moduli space coincides also with the fixed point set under the action of
SU(2) of the moduli space of stable holomorphic structures on the smooth bundle
underlying $. It is then embedded in the more familiar Donaldson moduli space. In
particular it inherits the structure of a complex analytic space, with a Kahler metric
outside of the set of singular points.

1. The Vortex Equations

In this section we introduce the vortex equations on line bundles. They appear as
the equations satisfied by the absolute minima of the Yang-Mills-Higgs functional.
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Bradlow [1,2] has studied these equations in more generality, considering them on
a vector bundle of arbitrary rank and we refer to him for details.

Let X be a compact Kahler manifold of complex dimension n, with fixed Kahler
metric and Kahler form ω. Let L be a complex line bundle over X, and fix
a hermitian metric h on L. Let 3$ be the space of unitary connections on (L, h\ and
let Ω°(L) be the space of sections of L.

Definition. We define the Yang-Mίlls-Higgs functional YMHτ: ̂  x Ω°(L) -> 1R by

YMHτ(Λ φ) = \\FA\\2 + \\dAφ\\2 + \ || \φ\l - τ| |2 . (1)

Here || || denotes the L2 norm, FA e Ωj is the curvature of the connection A,
dAφ 6 Ql(L) is the covariant derivative of φ, \φ\his the norm of φ with respect to h,
and τ is a real parameter.

The functional YMHτ is invariant under the standard action of the gauge group
^ of unitary transformations of (L, h\ so it defines a functional on the space

Let j/1' * be the space of integrable unitary connections on (L, h), i.e. the space
of A e si such that F°'2 = 0.

Proposition 1. I f ( A , φ ) e s / ί ' 1 x Ω ° ( L ) then

τ- 2 + 2πτdegL. (2)

Here d"A is the (0,1) part of the connection, AFA e ΩX is the contraction ofFA with the
Kahler form, and degL is the degree of L with respect to ω.

Proof. We expand

2

2
= \\ΛFA\\2 + - || \φ\2

h - τ| |2 + <MF^, |φ |g> - <MF^,τ> .
4

(3)

The result follows now from the identities

\φ\2

hy= - \\d'Aφ\\2 + \\d'Aφ\\2 ,
Γ ωn

^||2 and MFA— = 2πdegL.

See [1] for details. D

We conclude then that the functional YMHτ is bounded below by 2πτ deg L.
This lower bound is attained at (A, φ) e cδ/1' * x ΩQ(L) if and only if

A - - -

These are the τ-vortex equations. The first equation says simply that φ is holomor-
phic with respect to the holomorphic structure on L induced by A E j/1' *, and we
will refer to the second equation alone as the τ-vortex equation.
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2. Invariant Stability and the Hermitian- Yang-Mills Equation

We shall prove now an invariant version of the theorem of Donaldson, Uhlenbeck
and Yau [3, 4, 21] relating the existence of a Hermitian- Yang-Mills metric on
a holomorphic vector bundle to the stability of the bundle. This theorem will be
one of the main ingredients in our proof of an existence theorem for the τ- vortex
equations. It is convenient to review first the notion of stability and the by now
standard results.

Let M be a compact Kahler manifold of dimension m with a fixed Kahler metric
having Kahler form ω, and let <ί be a holomorphic vector bundle over M. The
degree of a coherent sheaf is defined as

1

(m - 1)! JM

where Cι(^) = c^det 2F\ and det 2F is a line bundle associated to any coherent
sheaf, which coincides with the determinant line bundle when ̂  is locally free (see
[15, 17], for instance). The slope μ(^) is the number

μ(&) = deg J^/rank & ,

where rank 2F is the rank of the vector bundle that 3F, like any other coherent
sheaf, determines outside of a subset of M. The smallest such subset is called the
singularity set of & and has codimension at least one.

We say that $ is stable with respect to ω if for every coherent subsheaf 3F c S
with 0 < rank ̂  < rank <?,

Likewise, $ is semistable if for every coherent subsheaf 3F c $ with 0 < rank

Remarks. 1. We identify $ with its sheaf of germs of holomorphic sections.
2. One can prove that it suffices to check the (semi) stability condition for saturated
subsheaves of <ί, i.e. coherent subsheaves 3F whose quotient sheaf SI3F is torsion
free.
3. The notion of (semi)stability can be extended to any torsion free coherent sheaf.

We say that a hermitian metric h on $ is Hermitian- Yang-Mills or Hermitian-
Einsteίn with respect to ω if

ΛFh = λl< . (5)

where Fh e Ω1' x(End <f ) is the curvature of the metric connection, A is contraction
with the Kahler form, lf e Ω°(End<ί) is the identity and λ is the constant

Equivalently, we could start with a smooth hermitian vector bundle E over M and
say that an integrable unitary connection is Hermitian-Yang-Mills if

ΛFA = λlE . (6)

For details see for example [15].
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It is important to understand the precise correspondence between these two
points of view - fixing the holomorphic structure and varying the metric, or fixing
the metric and varying the holomorphic structure (or corresponding connection).
The key point in this correspondence is that given two hermitian metrics h and /Ton
E there is an element g in ̂ €, the gauge group of general linear automorphisms of
E, unique up to a unitary gauge transformation, such that h = hg*g, i.e.

K(s9 1) = h(gs, gt) for s, t e Ω°(E) .

Let dE be a holomorphic structure on E and supposejhat E has a hermitian metric
hsuch that the metric connection A determined by dE and h satisfies [6]. Then we
want to find an integrable connection, unitary with respect to h (up to unitary
gauge equivalence), satisfying Eq. (6). Let A be the metric connection determined
by dE and ft, and let g e ̂ c be such that h = hg*g. The relation between A and A is
given by

where

is the action of ̂ c on j/1' * induced by the identification o ϊ j t f 1 ' 1 with the space of
holomorphic structures on E (cf. [3]). This action extends that of the unitary gauge
group

It is easy to see that

g(A) is then the desired solution to Eq. (6). For details see for example [3, 15].
The main results relating the notions of stability and Hermitian-Yang-Mills

metric are given by the following.

Theorem 2. Let δ be a holomorphic vector bundle over M as above. If $ has
a Hermitian- Yang-Mills metric h, then $ is semistable, and (<ff, h) decomposes as
a direct sum

of stable vector bundles $ι with Hermitian-Yang-Mills metrics hh all with slope
i) = μ(δ\

The proof is due independently to Kobayashi [14, 15] and Lϋbke [16].

Theorem 3. Let $ be a holomorphic vector bundle over M as above. If $ is stable,
then it admits a Hermitian-Yang-Mills metric which is unique up to scale.

Donaldson proved it in the algebraic case [3, 4] and Uhlenbeck and Yau gave
a proof for a general compact Kahler manifold [21].

Let M be a compact Kahler manifold as above. Suppose that a compact Lie
group G acts holomorphically on M preserving the Kahler metric. Let $ be
a G-invariant holomorphic vector bundle: this means that the action of G can be
lifted holomorphically to $.
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Definition. The bundle & is G-invarίantly stable with respect to ω if for every
G-ίnvarίant coherent subsheaf^ with 0 < rank 2F < rank $ we have

The main goal of this section is to prove G-invariant versions of Theorems
2 and 3:

Theorem 4. Let $bea G-ίnvariant holomorphic vector bundle over a Kάhler manifold
M as above. If $ has a G-invarίant Hermitίan- Yang-Mills metric h, then
($, h) = ®i($i, hi), where <ft is G-invariantly stable having a G-invariant Hermitian-
Yang-Mills metric htί and

Theorem 5. Let $ be a G-invariant holomorphic vector bundle as above. If $ is
G-invariantly stable, then it supports a G-ίnvariant Hermitian- Yang -Mills metric.

Remark. Theorem 5 can be obtained as a corollary of a more general theorem of
Simpson [18] about the existence of Hermitian- Yang-Mills metrics on
Higgs bundles with a group action. He combines the methods of Donaldson and
Uhlenbeck and Yau to construct the Hermitian- Yang-Mills metric as the limit of
a solution to a non-linear heat equation. The invariance of the metric under the
action of the group follows from the invariance of the heat equation.

However, the situation we are considering is much simpler since there is no
Higgs field, and a much easier proof can be given by reducing the G-invariant case
to the ordinary one. We will do that by analysing the relation between G-invariant
stability and ordinary stability. Using the uniqueness of the maximal destabilizing
subsheaf for a non-semistable bundle we will show that if the bundle is G-
invariantly stable then it must be semistable. Then, if it is not stable it has to
contain a proper stable subsheaf. It turns out that this is a subbundle and the total
bundle decomposes as a direct sum of this subbundle and other subbundles
transformed of it by different elements of the group.

Theorem 6. Let $ be a G-invariant holomorphic vector bundle as above. Then $ is
G-invariantly stable if and only if it is G-indecomposable and is of the form
$ = φ?=o<^i> where δ{ is a stable bundle which is the transformed of $Q by an
element of G.

We first prove the following.

Proposition 7. If $ is G-invariantly stable, then it is semistable.

Proof. Suppose that <f is G-invariantly stable but not semistable. Then there exists
a unique maximal destabilizing saturated semistable subsheaf 3? (see [15]) such that

for any subsheaf Sf of $. In particular

μ(δ) ^ μ(&) . (7)

By uniqueness J^ is G-invariant, and (7) contradicts the G-invariant stability
D
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Lemma 8. Let $ be a holomorphίc vector bundle over a compact Kάhler manifold.
Let ̂  be a proper saturated subsheaf such that μ(^) = μ($); then

(a) μ(g/y) = μ(&) = μ(g\
(b) // & is semistable, then 3F ana $I$F are semistable.

Proof, (a) follows from the formula

rank &μ(&) +

'f + rank

(b) is a direct consequence of (a) and the definition of semistability. D

Lemma 9. Let $ be a holomorphic vector bundle over a compact Kάhler manifold.
Suppose that $ is semistable but not stable; then there exists a saturated subsheaf
^ with 0 < rank ̂  < rank $ such that

(a)
(b) J* is stable.

Proof. If δ is not stable there exists a saturated subsheaf ^ with 0 < rank ̂
< rank δ and μ(^) = μ(g). By Lemma 8, ̂  is semistable. If it is not stable we

can iterate, reducing finally to a rank one torsion free sheaf, which is always
stable. D

Lemma 10. Let ^^ and ̂ 2 be torsion-free coherent sheaves over a compact Kάhler
manifold. Letf: &Ί -» ̂ 2 be a non-zero homomorphism. Suppose that &Ί is stable, ̂ 2

is semistable and μ(&Ί) = μ(<^2)> then rank 5̂  = rankί/^i)) and f is injective.

Proof. See [15].

Proof of Theorem 6. Suppose that δ is G-invariantly stable. Clearly δ is G-
indecomposable. On the other hand, by Proposition 7, δ is semistable. Suppose
that it is not stable. By Lemma 9 there exists a saturated subsheaf 3F such that
0 < rank ̂  < rank g9 μ(&) = μ(δ\ and ̂  is stable.

Obviously 3* cannot be G-invariant, since this would contradict the G-invari-
ant stability of S. So choose g1 e G such that J^1 Φ J ,̂ where ^9ί is the trans-
formed of ̂  by #!.

Consider the diagram

where Ά is the quotient sheaf tf/^ and/t is the projection of J*^1 to Ά. Since 3F is
stable, so is &g\ and μ(^βί) = μ(&\ By Lemma 8 μ(Ά) = μ(&\ and Ά is
semistable. By Lemma 10 /i is injective. Hence & n J^^1 = 0, so
jr + yqi ^ ̂  0 jr^i In particular, μ(^ + ^9l)

We will consider separately the following two cases:

for aιι g2 E Q and ^2 φ ^f l . (8)

for some ^2 e Q and 02 Φ 0ι (9)
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Suppose first that (8) holds. Then & + J^1 is a G-invariant subsheaf. Since δ is
G-invariantly stable and μ(^ + J^1) = μ(δ\ rank(^ + ̂ βi) = rank δ. Hence
rank J^1 = rank J, so deg J^1 = deg J. Consequently, the torsion sheaf 3Γ in

/I

has degree zero and hence the support of y must be of codimension ^ 2. Since/! is
an injection, we conclude that outside of a set S of codimension ^ 2, /x is an
isomorphism.

Let M' = M — S and consider the exact sequence

O-»^|M'-»^|M'-^|M'-^O. (10)

/I

Because J|M' ^ J^1 |M,, the injection J^1 q; <f gives a holomorphic splitting of the
sequence (10)

Hence, the sequence

0-»<r-+<ί-»j2->0 (11)

splits over M, as is shown by the following lemma.

Lemma 11. Let S and M' be as before. If '(10) splits holomorphically over M', then so
does (11), and moreover ^ ana £ are locally free, i.e. vector bundles.

Proof. First recall that a coherent sheaf £f is reflexive if £f ^ ̂ **, or equivalently,
if it is normal and torsion free. Here normal means that for every open set U c M,
and every analytic set A a U of codimension at least 2, the restriction map
Γ(L/, ̂ ) -> Γ(L7 - 4, ̂ ) is an isomorphism.

Since $ is reflexive and J is torsion free, J^ is reflexive. Consequently
Hom(<f, J^) and Hom^, J^) are also reflexive, and in particular, normal. Hence
the splitting homomorphism p' 6 H°(M', Hom(<f, <F)) with

extends uniquely to a splitting homomorphism pe//°(M, Hom(<f, J^)) with

p o j = idjr e ff °(

This proves that <? = J^ 0 J. Since ̂  is locally free both 2F and J are projective
0M-modules, and hence locally free. D

Now suppose that the second case (9) holds, i.e.

jr02 </- ̂  + JΓ01 for some g2 6 G and ^2 φ ̂  .

Consider the diagram

0 -» J^ + J^51 -* <f -> Jx -* 0 .
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We first notice that 2! is torsion free. To see this consider the saturation of
& + &«*, i.e. the smallest subsheaf if of δ containing SF + J^1 such that δ/£e is
torsion free.

Consider the diagram

0 - » ^ - » ϊf -» M -+ 0 .

ΐ '

Applying similar arguments to the ones above and Lemma 11 one can see that
se = ̂  + &β*.

As in the previous case, 3! is semistable. Since J^2 is stable and μ(^92) = \ι(SK\
we can again apply Lemma 10 to conclude that/2 is injective and hence that

(3? + J^1) n 3?92 = 0 .

Iterating the previous argument, after a finite number of steps we prove that

where δi = ̂ 9i for g{ e G all different and δQ = ̂ "
We now prove the other direction of the Theorem. If δ is actually indecompos-

able we are finished. Suppose then that δ is G-indecomposable and δ = ©?=0^ή
with δi the transformed of δ0 by an element of G. Since δ is semistable it is
G-invariantly semistable. Suppose that δ is not G-invariantly stable; then there
exists a G-invariant saturated subsheaf &* with 0 < rank 2F < rank δ and

μ(&) = μ ( f ) . (12)

Since rank 2F < rank δ we can suppose without loss of generality that
j^0 = & n (δ0 θ 0) satisfies 0 < rank #Ό < rank δ0. We have the diagram

0 -> <f0 -* * -> 0,-φo^ -̂  0

ΐ ί ΐ

O - ^ J ^ o - * ^ - ^ '̂ -» 0 ,

where J^' is the image of 3F under the projection of δ to @ίφ 0^i
Consider first the case &' = 0. Then ̂  c ̂ 0; we claim that in fact J^ = ̂ 0.

First, rank J^ = rank «f0> for otherwise the stability of ^0 would imply that
μ(^) < μ(δo) = μ, contradicting (12). But since 3F is saturated, it follows that
2? = SQ. Since J* is G-invariant, so is δθ9 contradicting the hypothesis that δ is
G-indecomposable.

Next suppose that J^' φ 0. The semistability of ̂  implies that

deg ^Ό^μ rank J% and deg J^ r <* μ rank ̂  r .

On the other hand, since rank ̂ 0 < rank <f0> by the stability of SO,
deg ^Q < μ rank J^0, so

^v 7 rank J^o ' p v ;
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again contradicting (12). This completes the proof of Theorem 6. D

We are ready now for our main theorems.

Proof of Theorem 4. By Theorem 2, S = 0,^/ with fl stable and μ(&Ί) =
Suppose that J^Ί is not G-invariant; then there exists gλ eG such that J^f1 φ
so there is a non-trivial diagram

0 -> j^ -» $ -> ί l ^ -> 0.

By Lemma 10, /i is an injection, and J^ n J^f = 0. We repeat this argument,
considering as many gk e G as necessary, to get δ^ = <F± φ J^f φ . . . φ JΓfk, G-
indecomposable. We repeat it again for another ^ not G-invariant and not
contained in δ±> till we get $ = 0<?f. Now Theorem 6 applies to each <f f. D

Proof of Theorem 5. By Theorem 6, <? is of the form δ = 0?=o<^i> where S{ is
a stable bundle which is the transformed of ^0 by an element of G. By Theorem
3 there exists a Hermitian-Yang-Mills metric ht on &{. Since μ(<^ ) = μ(δ) for all i,
the direct sum h = @iht is a Hermitian-Yang-Mills metric on $. The transformed
of h by an element of G is also a Hermitian-Yang-Mills metric and doing
the average over G we get the desired G-invariant Hermitian-Yang-Mills metric
on δ. D

3. The Vortex Equation as a Dimensional Reduction
of the Hermitian-Yang-Mills Equation

In order to study the existence of solutions to the system of Eqs. (4) it is convenient
to look at it as an equation for a hermitian metric on L. For this equivalent point of
view we fix a holomorphic structure dL on L. We will denote L together with this
holomorphic structure by j£f. We also fix φ, a holomorphic section of <£. Then we
are looking for a hermitian metric h on <£ satisfying

ΛFh-±\φ\i + ±τ = 0, (14)

where Fh is the curvature of the metric connection.
In Sect. 2 we explained the equivalence between the two different ways of

dealing with the Hermitian-Yang-Mills equation. The situation here is very
similar. Suppose that /Γis a metric on £P satisfying the τ-vortex equation (14). Let
A be the metric connection determined by SL and h. Then

But we want ofjsourse a pair (A,φ)e<s/1'1x Ω°(L) satisfying (4). As in Sect 2 let
g e y€, so that h = hg*g, and let A be the metric connection determined by SL and
h. We saw that

ι-l
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On the other hand,

where the action of ^c on Ω°(L) is given by multiplication. This is because
g : (L, h) -> (L, h) is an isometry; indeed

We conclude that (g(A)9 gφ) is the desired solution to Eqs. (4).
We will now show that the vortex equation (14) for a metric on a holomorphic

line bundle <£ over X with a prescribed holomorphic section φ can be obtained as
a dimensional reduction of the Hermitian-Yang-Mills equation on a rank two
vector bundle over X x P1, where P1 is the complex projective line. This generalises
the results of Witten [22] and Taubes [20] for the classical vortex equation over
the hyperbolic and euclidean planes respectively.

Let J*f be a holomorphic line bundle over X and let φ be a holomorphic section
of y. There is canonically associated to (Sf, φ) a rank two holomorphic vector
bundle S over X x P1 given as an extension

0 -> p*^ -><f -» q*&(2) -» 0 . (15)

Here p and q are the projections from X x P1 to X and P1 respectively. We denote
by G the structure sheaf of P1 and by Φx the structure sheaf of X. By 0(2) we denote
as usual the holomorphic line bundle with Chern class 2 on P1, isomorphic to the
holomorphic tangent bundle of P1.

Extensions as above are parametrized by

Hl(X x P1, p*& ® q*(9( - 2)) ̂  H°(X9 &) ®Hl(V\ G( - 2))

£ H°(X9 J2?) (16)

since tf^P1, 0( - 2)) = 0 and H^P1, 0( - 2)) ̂  ff°(P1, 0)* ̂  C; we choose ^ to
be the extension determined by φ.

Let SU(2) act on X x P1, trivially on X, and in the standard way on P1 =
SU(2)/U(ΐ). This action can be lifted to an action on &9 trivial on p*j£? and
standard on q*0(2). Since the induced actions on H°(X, &) and H°(P1, β) are
trivial, δ is an S 17 (2)-in variant holomorphic vector bundle.

For σelR+, consider the S U (2)-in variant Kahler metric on Jf xP 1 whose
Kahler form is Ωσ = p*ω + g*ωσ, where ω is the Kahler form on X and ωσ is the
Fubίnί-Study metric with coefficient σ: in co-ordinates

iσ dz Λ dz

^-2π(l + |z|2)2

so that

\ωa = σ.
P1

We can now state the main result of this section.

Proposition 12. Let 3? be a holomorphic line bundle over X and φ be a holomorphic
section. Let $ be the holomorphic vector bundle over X x P1 defined by (J^, φ\ and
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let σ = 8π/τ > 0. Then j£? admits a hermitian metric satisfying the τ-vortex equation
if and only ifd> admits an SU (2)-ίnυariant Hermitian-Yang-Mills metric with respect
to Ωσ.

Proof. Suppose that $ admits an S(7(2)-invariant Hermitian-Yang-Mills metric
h with respect to Ωσ. This means that

ΛσFh = λ\, , (17)

where Aσ = p*Λ + q*Λσ is contraction by the Kahler form Ωσ and λ is the constant

λ= — πί-
VO1(A X 1FAJ

rτHp.σ <? + ?VolX
—, (18)

since

= - f a ( f ) Λ Ω»
n XxV1

= -_ j (Cl(JS?) + Cl((P(2))) Λ (αy + nω"-1 Λ ωσ)n\ i

(19)

Since h is S U (2)-in variant and the actions of SU(2) on p*^f and q*Θ(2)
correspond to different weights, h is of the form

h - hi 0 h2 ,

for Sϊ/(2)-in variant metrics hi and h2 on /?*j£f and q*&(2) respectively. Moreover

hi = p*hι and h2 = p*/ι2 ® ^*/i2 ,

where /?! and h2 are metrics on & and ̂  and /z2 is an S U (2)-in variant metric on
2).

The metric connection of (<?, h) can be written as

ϋ
where A l 9 A 2 are the metric connections of (p*JSf, h^ and (g*(P(2), h2) and
jδ 6 Ω° 1(Jί x F1, p*JSf ® <?*^( - 2)) is a representative of the extension class in
H1(XxW\p*£'®q*(9(-2)). Then β* e Ω1-0^ xIP1, p*^f* ® q*Θ(2)) is the
second fundamental form of p* .Sf in (<?, h).

The corresponding curvature matrix is

where D : ΩHp*^ ® β*^( - 2)) ->• Ω2(p*y ® g*d?( - 2)) is built from A j and A2

(see [15], for example).
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By S U (2)-in variance the connections A! and A2 are of the form

A1=p*A1 and A2 = p*A2*q*A'2 ,

where Aί9 A2 and A'2 are the metric connections of (&, h±\ (Φx, h2) and (0(2), h'2)
respectively. Then

FA, = P*Fhl and FA2 = p*F^2 + q*Fh 2 .

Notice that because of the isomorphism (16) φ determines an extension class
[β~\ over X x F1. We are taking an S U (2)-in variant representative in this extension
class; as one can easily see, it is given by

where a e Ω0> 1(P1, 0( — 2)) is 5rC/(2)-invariant. In other words, up to a constant to
be fixed later, α is given in co-ordinates by

dz _

Denote by β* the adjoint ofβeΩ0* 1(Hom(ςf*^(2), p*&)) with respect, of course, to
the metrics hi and h2. If we write h = h^ (x) h% , where /if is the metric dual to h2,
then

where φ*Λ denotes the adjoint of φeΩ°(X, ΐίom(0x, <&)) with respect to the
metrics h1 and /ι2, and α* is the adjoint of αe£2°' 1(P1, Hom(ίP(2), (^)) with respect
to a constant metric on (ΰ and the metric /ι2 on 0(2). Let

We can assume that the metric h'2 is given by

Then

α* = ft'2*α = —-
σ c

where fo'2* is the metric on Θ( — 2) dual to h'2. Thus if y =

α Λ α* = - ωσ , (22)

and so

jβ Λ jβ* = — ρ*|φ|ft (x) q*a)σ , (23)

]8* Λ ;β=-^p* |ψ | Λ

2 ®q*ω σ . (24)
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In terms of (21), Eq. (17) implies that

541

(25)
., - β Λ /?*) = λ

2-β* Λ β) = A

Substituting (22), (23) and (24) in (25), we get

p*ΛFhι-p*\φ\l®Λa(a Λ y*) = p*ΛFhί-
l-p*\φ\2

h=λ

\2 + q*Λ,Fhί - p*\φ\2

h ®Λσ(a,* Λ α) = p*ΛFhϊ + q*ΛaFhί + l-p*\φ\2

h = λ

since Λσ(ωσ) = 1. However, ΛaFh 2 = — 4πi/σ, so (26) becomes

ΛFhί-
l-\φ\2

h=λ

(26)

(27)

Subtracting these two equations, and noticing that Fh = Fhί + Fh* = Fhί — Fh2, we
obtain

Since σ = 8π/τ, we conclude that h is a solution to the τ-vortex equation.
To prove the other direction of the proposition, suppose that h is a solution to

the τ-vortex equation and consider the metric

where h1 = h2 ® h, for /ι2 a metric on ̂  to be determined later on and h'2 an
St/(2)-invariant metric on 6? (2).

We then need to solve Eq. (17) or, equivalently, the system of equations

ΛFhl--\φ\ϊ =

(28)

Λσ(D'β) = 0

Λσ(D"B*) = 0

To solve the first two equations of (28) is equivalent to solving the system of

i , . .1 4πiequations

2ΛFh

σ
= 0

(29)

But since σ = 8π/τ, the first equation of (29) is the τ-vortex equation. To solve the
second, note that since h2 is a metric on G)x, h2 = ef, for/a function on X. Then

ΛFh2 = iΔsf
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and the second equation of (29) becomes

iAd-f=\(2λ-ΛFh + —}. (30)
2 V σ /

By Hodge theory, the necessary and sufficient condition for the existence of
a solution of (30) is

but this is satisfied since it is precisely equivalent to the expression (18) that
determines λ.

Finally we shall solve the last two equations of (28),

D'β = p*D'φ ® q*a + p*φ ® q*D'a ,

D"β* = p*D"φ* ® g*α* + p*</>* ® g*D"α* .

One can easily see that

D'α = 0 and Z)"α* = 0 .

On the other hand,

\σ(p*D'φ ® g*α) = 0 and \σ(p*D"φ* ® g*α*) = 0 ,

since the (1, l)-forms inside have mixed contributions from X and P1. D

4. An Existence Theorem for the Vortex Equation

In this section we prove an existence theorem for solutions to the vortex equation
based on the results of Sects. 2 and 3. This proof complements the two others given
by Bradlow [1,2] and the one given by the author in the case of a Riemann surface
[7].

Theorem 13. Let ̂  be a holomorphic line bundle over a compact Kάhler manifold
X and φ φ 0 be a holomorphic section, and let τ > 0. Then ^ admits a smooth
hermitian metric h satisfying the τ-vortex equation

if and only if

- Π9Ϊ
" Λ * V '

Proof. By integrating Eq. (31) and using the Chern-Weil formula for deg^ one
can easily see that (32) is a necessary condition for existence of solutions. To see
that it is also sufficient we first prove the following

Proposition 14. Let $ be the SU(2)-invariant holomorphic vector bundle over X x P1

determined by (£P9 φ) as the extension

0 -* p*& ->£^ q*Θ(2) -> 0 . (33)
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Let σ = 8π/τ > 0; then $ is stable with respect to the Kάhler form Ωσ on X x P1

defined in Sect. 3 if and only if

τVolX
de^<-4ί-

Proof. If δ is stable, then

μa(p*S?) < μβ(*), (34)

where μσ is the slope with respect to Ωσ; but

μσ(p*Jϊ?) = σdegJSf and μ,(8) = deg^f + VolX ,

which are easily seen to imply that (34) is equivalent to

A f. 2VolX τVolX
deg <e < = — .

σ 4π

To prove the other direction of the proposition we will show first that S is
SL/(2)-invariantly stable. We will then apply Theorem 6 to show that it is in fact
stable. Suppose that S is not St/(2)-invariantly stable and let 3F a destablizing
subsheaf, i.e. a rank one S U (2)-invariant subsheaf of <f with torsion free quotient
such that

^ μ,(f) . (35)

Consider for such an 3F the diagram

0 -> p*J*f -* g -> q*(9(2) -> 0,

ΐ ^

where the map / is the composition of the inclusion 3F -> δ and the projection

We first notice that ker/= {0}, since otherwise & is injected in /?*<=£? and, since
is torsion free, p*<£/^ is torsion free, implying that 3F ^ p*JSf. If

deg^<τVolZ/4π, then

contradicting (35).
We conclude that im/is a rank one, S (7 (2)-in variant subsheaf of q*β(2), which

is of course torsion free. Hence outside of a set S of codimension ^ 2, im/is a line
bundle. Nevertheless,

is not necessarily an injection of line bundles (i.e. an isomorphism); we also need to
remove a set S' of codimension at least 1, the support of the torsion sheaf
q*&(2)/imf. By SC/(2)-invariance the singularity set is of the form

where S <= X is a set of codimension > 1.
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Then, outside of the set SxF1, im/is isomorphic to q*Θ(2), and we have
a splitting of the sequence (33) when restricted to X \S x F1. This implies that for
a generic x e X(x e X\S) the restriction of the sequence (33) to {x} x IP1 splits and
hence is the trivial extension

0 -> 0 -> 0 Θ 0(2) -> (9(2) -> 0 . (36)

But this is impossible since, by construction, (33) only splits when restricted to
D x F1, where D = (φ) is the divisor determined by the holomorphic section φ.
Indeed, since D has condimension 1 in X, for a generic xeX (xeX\D) the
restriction of (33) to {x} x F1 is the non-trivial extension

0 -> Φ -» 0(1) Θ (9(1) -> 0(2) -> 0 . (37)

We then get a contradiction, so there cannot exist 3F satisfying (35), proving the
Sl/(2)-invariant stability of g.

Suppose now that $ is not stable. By Theorem 6, $ £ ££γ 0 «S?2j for ίfi and
<Sf2 li

ne bundles over X x F1 and £?2 is the transformed of J^ by an element of
Sl/(2). Then &γ®Se2^ det * ̂  p*^ ® $*0(2). Hence

for every x e X ,

and then

^ I f x j x P 1 £ 0(1) Θ 0(1) for every xeX ,

which fails to be true for those x such that φ(x) = 0. D

To finish the proof of Theorem 13, suppose that (32) holds. By the previous
Proposition $ is stable and in particular Sl/X2)-invariantly stable with respect to
Ωσ. Then by Theorem 5 there exists an S U(2) in variant Hermitian- Yang-Mills
metric with respect to Ωσ on <?, and finally by Proposition 12 we get the desired
solution to the τ-vortex equation. D

Consider the set-up of Sect. 1. We define the moduli space of τ-vortices 95τ as
the quotient space of solutions to Eqs. (4) modulo the unitary gauge group .̂
A description of this moduli space for an arbitrary Kahler manifold has been first
given by Bradlow [1]. Exploiting our point of view we can equip the moduli space
of vortices with the structure of a complex analytic space, with a Kahler metric
outside of the singular points.

Consider the set

Jf = {(A, φ) e^i^x Ω°(L)\φ φ 0 and d"Aφ = 0} .

The complex gauge group acts on Jf and the quotient space D = Jfj^ can be
identified with the space of effective divisors D such that the underlying smooth
bundle to [D], the holomorphic line bundle determined by D, is L. This amounts to
the very standard fact that a holomorphic line bundle is the line bundle of an
effective divisor if and only if it has a non-trivial holomorphic section and that
moreover the divisor is given by the zeros of this section (see [10], for example).

Assume that (32) is satisfied. It is clear that a vortex \_(A, φ)~] e 3Sτ determines an
element of X), namely the zero set of the holomorphic section φ. The converse is
a reformulation of Theorem 13. let DeT) ̂  Jί '/^c, and choose a representative
(A, φ)ejV of D. The connection A determines a holomorghic structure d"A on L,
and φ is a holomorphic section. We can solve for a metric h satisfying the τ-vortex



Invariant Connections and Vortices 545

equation. As shown at the end of Sect. 1, if h is related to h by h = hg*g for g e ̂ c,
unique up to a unitary gauge transformation, then \_(g(A\ #</>)] e23τ.

Consider the C°° rank two vector bundle E = p*L®q*H®2 over JΓxP 1,
where H is the line bundle of Chern class 1 over IP1 and let Jί be the moduli space
of stable holomorphic structures with respect to Ωσ on E. Let D e 35 and φ be
a holomorphic section of [D], whose associated divisor is D. Let δD be the bundle
over X x P1 determined by ([D], φ) as the extension

0 -> p*[D] -> if j> -> 4*0(2) -» 0 .

From Proposition 14, the correspondence D \—> SD defines an injective map 1b<+Jί
whose image can be essentially identified with the fixed-point set of M under the
action of SU(2). From here one can prove the following (see [8] for details).

Theorem 15. The space X) is a complex analytic space, non-singular at all points for
^hich H * (X, [D] (x) ΘD) = 0 and with a Kάhler structure outside of the singular
points.

Remark. Notice that if X is a Riemann surface this condition is satisfied, recovering
the fact that the symmetric products of X are smooth complex manifolds.
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