The Integrated Density of States for the Difference Laplacian on the Modified Koch Graph

Leonid Malozemov

Department of Applied Mathematics, Moscow Civil Engineering Institute, Yaroslavskoe Shosse, 26, Moscow 129337, Russia. Present address: Division of Physics, Mathematics and Astronomy, California Institute of Technology 253-37, Pasadena, CA 91125, USA

Received November 23, 1992; in revised form January 13, 1993

Abstract

We consider the integrated density of states $N(\lambda)$ of the difference Laplacian $-\Delta$ on the modified Koch graph. We show that $N(\lambda)$ increases only with jumps and a set of jump points of $N(\lambda)$ is the set of eigenvalues of $-\Delta$ with the infinite multiplicity. We establish also that

$$
0<C_{1} \leq \lim _{\lambda \rightarrow 0} \frac{N(\lambda)}{\lambda^{d_{s} / 2}}<\varlimsup_{\lambda \rightarrow 0} \frac{N(\lambda)}{\lambda^{d_{s} / 2}} \leq C_{2}<\infty
$$

where $d_{s}=2 \log 5 / \log (40 / 3)$ is the spectral dimension of MKG.

1. Introduction

In this paper, we consider the integrated density of states (IDS) $N(\lambda), \lambda \in \mathbb{R}$ of the difference Laplacian $-\Delta$ on the modified Koch graph (MKG). The function N is defined as the normalized limit of the number of eigenvalues less than λ as the size of the finite graph being expanded to infinity. It turns out that N increases only with jumps and the set of jumps points of N is the set of eigenvalues with the infinite multiplicity $D_{1} \cup D_{2} \cup D_{3}$, where the set $\mathscr{F}=\bar{D}_{2}$ is the Julia set of the iteration of the rational function

$$
R(z)=9 z(z-1)(z-4 / 3)(z-5 / 3) /(z-3 / 2)
$$

Moreover, the set \mathscr{F} is the set of accumulation points for points from the set $D_{1} \cup D_{3}$.
We shall see that the behavior of the function $N(\lambda)$ near zero is $\lambda^{d_{s} / 2}, d_{s}=$ $2 \log 5 / \log (40 / 3)$, or more exactly, there exist two positive constants, C_{1}, C_{2} such that

$$
\begin{equation*}
0<C_{1} \leq \lim _{\lambda \rightarrow 0} \frac{N(\lambda)}{\lambda^{d_{s} / 2}}<\varlimsup \frac{N(\lambda)}{\lambda^{d_{s} / 2}} \leq C_{2}<\infty \tag{1.0}
\end{equation*}
$$

i.e., the ratio $N(\lambda) / \lambda^{d_{s} / 2}$ is oscillating and non-convergent as $\lambda \rightarrow 0$.

The number d_{s} denotes the so-called spectral dimension of the MKG. The power that is singled out is, unlike in the \mathbb{R}^{n} case, not the Hausdorff dimension of the MKG $d_{f}=\log 5 / \log 3$, but its spectral dimension d_{s}.

We will note that for the first time Rammal [R] discovered the high singularity of the IDS of the difference Laplacian on the Sierpinski gasket. Recently, Fukushima and Shima [FS] proved this fact for the differential Laplacian on the infinite Sierpinski gasket. Finally Fukushima [F] considered the asymptotic behavior of the IDS for the infinite nested fractals.

2. Preliminaries

Here we collect those preliminary notions and relations from [M] which we shall use in this paper.

Beginning with the line segment of length 1 in Fig. 1, we first replace it by five line segments of length $1 / 3$ (Fig. 2), and then we replace each one of these by five segments of length $1 / 9$ (Fig. 3). The limit set is the modified Koch curve.

Fig. 1

Fig. 2

Fig. 3

We define the modified Koch graph somewhat more formally.
Let $G=(\Lambda(G), E(G))$ be a connected infinite locally finite graph without loops with the vertex set $\Lambda(G)$ and the edge set $E(G)$. We use the following graph distance:

$$
\begin{aligned}
& d(x, y)=\min \left\{k: \exists\left\{x_{\imath}\right\}_{i=0}^{i=k}: x_{0}=x, x_{k}=y, 0<i \leq k,\left(x_{i-1}, x_{i}\right) \in E(G)\right\}, \\
& d(x, x)=0
\end{aligned}
$$

Let d_{x} denote the degree of the vertex $x \in \Lambda(G)$, i.e., be the largest number of the edges that meet at the point x. If D is a finite subgraph of G, then the degree of
a vertex x in D will be denoted by $d_{x}(D)$. By ∂D we denote the boundary of the subgraph D, i.e.,

$$
\partial D=\left\{x \in \Lambda(D), d_{x}(D)<d_{x}\right\}
$$

and int D is the set of internal points of D, i.e.,

$$
\text { int } D=\left\{x \in \Lambda(D), d_{x}(D)=d_{x}\right\}
$$

We define the MKG by induction.
Definition 1. Let $G_{1}=\left(\Lambda\left(G_{1}\right), E\left(G_{1}\right)\right)$ be a graph having the set of vertices $\Lambda\left(G_{1}\right)=\left\{x_{i}\right\}_{i=1}^{i=5}$ and the set of edges

$$
E\left(G_{1}\right)=\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{2}, x_{4}\right),\left(x_{3}, x_{4}\right),\left(x_{4}, x_{5}\right)\right\}
$$

We introduce $\partial G_{1}=\left\{x \in \Lambda\left(G_{1}\right), d_{x}\left(G_{1}\right)=1\right\}$ and int $G_{1}=\left\{x \in \Lambda\left(G_{1}\right)>1\right\}$. Now we define the graph G_{2} as $G_{2}=\bigcup_{i=1}^{5} G_{1}^{i}$, where G_{1}^{i} and G_{1} are isomorphic graphs for any $i=1,2,3,4,5, G_{1}^{4}=G_{1}$, which satisfy the following conditions (conditions A): 1. int $G_{1}^{i} \cap$ int $G_{1}^{j}=\emptyset$ for $i \neq j$,
2. $E\left(G_{1}^{2}\right) \cap E\left(G_{1}^{j}\right)=\emptyset$ for $i \neq j$,
3. if $\partial G_{1}^{i}=\left\langle x_{1}^{i}, y_{1}^{2}\right\rangle$, then $y_{1}^{1}=x_{1}^{2}=x_{1}^{4}, y_{1}^{2}=x_{1}^{3}, y_{1}^{3}=x_{1}^{5}=y_{1}^{4}$ and $d_{x_{1}^{1}}\left(G_{2}\right)=d_{y_{1}^{5}}\left(G_{2}\right)=1$.

Let $\partial G_{2}=\left\langle x \in \Lambda\left(G_{2}\right), d_{x}\left(G_{2}\right)=1\right\rangle$.
Now we define the subgraph $G_{n+1}=\bigcup_{i=1}^{5} G_{n}^{i}$, where the G_{n}^{2} satisfy conditions A (with G_{1}^{\imath} replaced by $\left.G_{n}^{i}\right)$; see Fig. 4. Let $\partial G_{n+1}=\left(x \in \Lambda\left(G_{n+1}\right), d_{x}\left(G_{n+1}\right)=1\right)$. Then the MKG is defined by the formula $G=\bigcup_{n=1}^{\infty} G_{n}$.

Fig. 4

Let us denote by $B_{x, N}$ or B_{N} the ball in G centered at x with radius N, i.e.

$$
B_{x, N}=\{y \in \Lambda(G), d(x, y) \leq N\}
$$

and by $b_{x, N}=\left|B_{x, N}\right|$ its cardinality.
The fractal (Hausdorff) dimension of a graph can be defined as the following:

Definition 2.

$$
d(x)=\lim _{N \rightarrow \infty} \sup \frac{\log \left|b_{x, N}\right|}{\log N}
$$

It is easy to see that $d(x)$ is independent of x for MKG and we can use the common value d_{f} of $d(x)$'s as the fractal dimension. Moreover, $d_{f}=\log 5 / \log 3$. We will note here that the Hausdorff dimension of the modified Koch curve is also $\log 5 / \log 3[H]$.

We define the function m on G as $m(x)=d_{x}$ for every $x \in \Lambda$. Let

$$
\left.l_{2}(G, m)=\left.\left\langle f=f(x), x \in \Lambda(G), \sum_{x \in \Lambda(G)} m(x)\right| f(x)\right|^{2}<\infty\right\rangle
$$

Then the finite difference Laplacian Δ on the graph G is defined by the formula

$$
(\Delta u)(x)=d_{x}^{-1} \sum_{t, d(x, t)=1} u(t)-u(x)
$$

It is easy to see that the operator Δ is a symmetric operator with respect to the product

$$
(f, g)=\sum_{x \in \Lambda(G)} m(x) f(x) g(x)
$$

For a set $A \subset \Lambda,|A|$ will denote the number of points in A. We denote by $\left.f\right|_{A}$ the restriction of a function f to the set A. It is easy to see that $\left|\Lambda\left(G_{n}\right)\right|=\left(3 \cdot 5^{n}+5\right) / 4$. Let $l_{2}\left(G_{n}\right)=\left\{g=g(x), x \in \Lambda\left(G_{n}\right),\left.g\right|_{\partial G_{n}}=0\right\}$ with the product

$$
\begin{equation*}
(u, v)=\sum_{x \in \Lambda\left(G_{n}\right)} d_{x}\left(G_{n}\right) u(x) v(x), \quad u, v \in l_{2}\left(G_{n}\right) \tag{1.1}
\end{equation*}
$$

Then we obtain that $\operatorname{dim} l_{2}\left(G_{n}\right)=3\left(5^{n}-1\right) / 4$. We denote by Δ_{n} the operator Δ restricted to $l_{2}\left(G_{n}\right)$ with zero boundary conditions (the Dirichlet boundary conditions). In the sequel we denote $\Lambda\left(G_{n}\right)$ by Λ_{n} for $n \geq 1$.

Let $-\Delta_{1}$ be an operator on $l_{2}\left(G_{1}\right)$. We denote the function $f=f(x)$ on G_{1} by $f=\left(f_{x_{2}}, f_{x_{3}}, f_{x_{4}}\right)$, where $f_{x_{i}}=f\left(x_{i}\right), i=2,3,4$. By a straightforward calculation we have
Lemma 2.1. The eigenvalue $\lambda_{i}, i=1,2,3$, of $-\Delta_{1}$ and the corresponding eigenfunction $\varphi_{i}, i=1,2,3$, are as follows:

$$
\left.\left.\lambda_{1}=(5-\sqrt{13}) / 6\right), \quad \lambda_{2}=4 / 3, \quad \lambda_{3}=(5+\sqrt{13}) / 6\right)
$$

and

$$
\varphi_{1}=(2,-(1-\sqrt{13}), 2), \quad \varphi_{2}=(1,0,-1), \quad \varphi_{3}=(2,-(1+\sqrt{13}), 2)
$$

By $\tau(-\Delta)$ we denote the spectrum of the operator $-\Delta$.
There is the following statement [M]:
Proposition 2.2. The number $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are eigenvalues of the operator $-\Delta_{n}$ with multiplicity $r_{n}\left(\lambda_{i}\right)$ and

$$
r_{n}\left(\lambda_{i}\right)=\left(5^{n-1}+3\right) / 4 \quad \text { for } \quad n \geq 2, i=1,2,3
$$

We introduce the rational function

$$
R(x)=9 x(x-1)(x-4 / 3)(x-5 / 3) /(x-3 / 2)
$$

and R_{-1} is inverse to R. The main result which makes it possible to calculate all eigenvalues of the operator $-\Delta_{n+1}$ is the following:
Theorem 2.3 [M]. (i) If $\lambda_{0}, \lambda_{0} \neq \lambda_{2}, i=1,2,3$, is an eigenvalue of the operator $-\Delta_{n+1}$ corresponding to the eigenfunction $f=f(x), x \in \Lambda_{n+1}$, then the function $u=\left.f(x)\right|_{\Lambda_{n}}$ is a solution of the problem

$$
-\left(\Delta_{n} u\right)(x)=R\left(\lambda_{0}\right) u(x),\left.\quad u\right|_{\partial G_{n}}=0, \quad x \in \Lambda_{n}
$$

(ii) Let $R(\lambda), \lambda \neq \lambda_{1}, \lambda_{2}, \lambda_{3}$ be an eigenvalue of the operator $-\Delta_{n}$ corresponding to the eigenfunction $u(x), x \in \Lambda_{n}$. Then there exists a unique extension $f=f(x)$, $x \in \Lambda_{n+1}$ of u such that f is an eigenfunction of the operator $-\Delta_{n+1}$ with the eigenvalue λ.
(iii) Let $\lambda \in \tau\left(-\Delta_{n}\right)$ and $\beta \in\left\{R_{-1}(\lambda)\right\}$. Then the multiplicity of λ equals that of β.

From Proposition 2.2 and Theorem 2.3 we get the following diagram of the eigenvalues of $-\Delta_{n}$.

Let us denote

$$
R_{0}(z)=z, \quad R_{1}(z)=R(z), \quad R_{n+1}=R_{1}\left(R_{n}(z)\right), \quad n=0,1,2,3 \ldots
$$

Definition 3 [B]. If $w=R_{n}(z)$, then we say that w is a successor of z and z is a predecessor of w of order n.

We denote by $D_{\imath}=\left\{R_{-n}\left(\lambda_{i}\right)\right\}, n \geq 0$ the set of all predecessors of $\lambda_{i}, i=1,2,3$. It is easy to see that $D_{i} \subset \mathbb{R}$ for all i.

Let ζ be the maximal fixpoint of the function R, i.e. $\zeta=\max \{\theta: R(\theta)=\theta\}$. Then $1.75 \leq \zeta \leq 1.76$.

Theorem 2.4 [M]. The following statements are true:
(i) Each point of $D_{1} \cup D_{2} \cup D_{3}$ is an eigenvalue of the operator $-\Delta$ with infinite multiplicity.
(ii) The spectrum $\tau(-\Delta)$ of the operator $-\Delta$ on $l_{2}(G, m)$ is

$$
\tau(-\Delta)=\mathscr{F} \cup D_{1} \cup D_{3} \subset[0, \zeta], \quad \mathscr{F}=\bar{D}_{2}
$$

(iii) The spectrum $\tau(-\Delta)$ is a set of Lebesgue measure zero.
(iv) The Julia set \mathscr{F} of the rational function R is a set of accumulation points of the set $D_{1} \cup D_{3}$.

We shall divide D_{\imath} into $D_{i}=\bigcup_{k=1}^{\infty} S_{k}\left(\lambda_{i}\right)$ such that $S_{l}\left(\lambda_{\imath}\right) \cap S_{\jmath}\left(\lambda_{\imath}\right)=\emptyset$ if only
$\neq j$ and we define

$$
\begin{gathered}
S_{k}\left(\lambda_{i}\right)=\left\{\lambda \mid \lambda \in \tau\left(-\Delta_{k}\right) \backslash \tau\left(-\Delta_{k-1}\right), k \geq 2\right\} \\
S_{1}\left(\lambda_{i}\right)=\left\{\lambda_{\imath}\right\}, \quad i=1,2,3
\end{gathered}
$$

3. The Integrated Density of States

We introduce the following function:

$$
N_{l}(\lambda)=\#\left\{\lambda_{k}<\lambda \mid \lambda_{k} \text { are eigenvalues of the }-\Delta_{l}\right\} \cdot 5^{-l}=n_{l}(\lambda) 5^{-l}
$$

Lemma 3.1. There exists

$$
\begin{equation*}
\frac{4}{3} \lim _{l \rightarrow \infty} N_{l}(\lambda)=N(\lambda) \tag{3.1}
\end{equation*}
$$

at each continuity point λ of $N(\lambda) . N(\lambda)$ is called the integrated density of states.
Proof. We shall prove that the sequence $\left\{N_{l}(\lambda)\right\}$ are not decreasing for $l \geq 1$, i.e., $N_{l}(\lambda) \leq N_{l+1}(\lambda)$ for any $\lambda \in \mathbb{R}$. Let

$$
\mathscr{F}_{l+1}=\left\{f\left|f \in l_{2}\left(G_{l+1}\right), f\right|_{\partial G_{l}^{i}}=0, i=1,2 \ldots 5\right\}
$$

and $-\Delta_{l}^{i}$ be the restriction of the $-\Delta$ on $l_{2}\left(G_{l}^{i}\right)$. Moreover, $-\Delta_{l}^{4}=-\Delta_{l}$. We denote by $\bigoplus_{\imath=1}^{5}-\Delta_{l}^{i}=\Delta_{l+1}^{0}$ the direct sum of the operators $-\Delta_{l}^{i}$. We need the following functions:

$$
n_{l+1}^{0}=\#\left\{\lambda_{k}^{0}<\lambda \mid \lambda_{k}^{0} \text { are eigenvalues of }-\Delta_{l+1}^{0}\right\}
$$

Because $\Delta_{l+1}=\Delta_{l+1}^{0}$ on the space \mathscr{F}_{l+1} we have the inequality

$$
\begin{equation*}
N_{l+1}=\frac{n_{l+1}(\lambda)}{5^{l+1}} \geq \frac{n_{l+1}^{0}}{5^{l+1}}=\frac{5 n_{l}}{5^{l+1}}=N_{l}(\lambda) \tag{3.2}
\end{equation*}
$$

Thus the lemma is proved.
Remark. We note that codim $\mathscr{F}_{l+1}=3$ in the space $l_{2}\left(G_{l+1}\right)$ and \mathscr{F}_{l+1} is the invariant space under Δ_{l+1}^{0}, so we have

$$
\begin{equation*}
n_{l+1}(\lambda) \leq n_{l+1}^{0}+3 \tag{3.3}
\end{equation*}
$$

By (3.3) we get

$$
N_{l+1}(\lambda) \leq N_{l}(\lambda)+\frac{3}{5^{l+1}}
$$

and consequently

$$
N_{l}(\lambda) \geq-\frac{3}{5^{l+1}}+N_{l+1}(\lambda) \geq \frac{3}{4} N(\lambda)-\frac{3}{5^{l}} \cdot \frac{1}{4}
$$

that gives us the following inequality

$$
\begin{equation*}
N(\lambda) \leq \frac{4}{3} N_{l}(\lambda)+\frac{1}{5^{l}} \tag{3.4}
\end{equation*}
$$

We note also that

$$
\begin{equation*}
\frac{4}{3} N_{l}(\lambda) \leq N(\lambda) \quad \text { for any } l \geq 1 \text { and } \lambda \in \mathbb{R} \tag{3.5}
\end{equation*}
$$

The number $4 / 3$ in (3.1) is necessary so that $0 \leq N(\lambda) \leq 1$.
Proposition 3.2. The following statements are true:
(i) The function $N(\lambda)$ is the nondecreasing function of λ and $0 \leq N(\lambda) \leq 1, \lambda \in \mathbb{R}$, $N(0)=0$.
(ii) The function N is the continuous function for any $\lambda \in \mathbb{R} \backslash \bigcup_{\imath=1}^{3} D_{i}$. If $\lambda \in S_{k}\left(\lambda_{2}\right)$,
then we have

$$
\begin{equation*}
N(\lambda+0)-N(\lambda-0)=5^{-k} / 3 \tag{3.6}
\end{equation*}
$$

where

$$
N(\lambda \pm 0)=\lim _{t \rightarrow \lambda \pm 0} N(t)
$$

and

$$
N(\lambda+0)=N\left(\lambda_{0}\right)=\lim _{l \rightarrow \infty} N_{l}\left(\lambda_{0}\right)
$$

(iii) $\operatorname{supp} N=\tau(-\Delta)$.

Proof. The statement (i) follows from the definition of the function N and Theorem 2.4 (ii).
(ii) At first, let $\lambda_{0} \in S_{k}\left(\lambda_{1}\right) \cup S_{k}\left(\lambda_{3}\right) \subset D_{1} \cup D_{3}$. There exists an interval (c, d) such that $(c, d) \cap \tau(-\Delta)=\lambda_{0}$ and $(c, d) \cap \tau\left(-\Delta_{n}\right)=\lambda_{0}$ for any $n \geq k$. If we take arbitrary numbers $\lambda_{1}, \lambda_{2} \in(c, d)$ such that $\lambda_{1}<\lambda_{0}<\lambda_{2}$, then we obtain from Proposition 2.2,

$$
n_{l}\left(\lambda_{2}\right)-n_{l}\left(\lambda_{1}\right)= \begin{cases}\left(5^{l-k}+3\right) / 4 & \text { if } l>k \\ 1 & \text { if } l=k\end{cases}
$$

Thus, we get

$$
\begin{equation*}
N\left(\lambda_{2}\right)-N\left(\lambda_{1}\right)=\lim _{l \rightarrow \infty} \frac{\left(5^{l-k}+3\right) / 4}{\frac{3}{4} \cdot 5^{l}}=\frac{5^{-k}}{3} \tag{3.7}
\end{equation*}
$$

and formula (3.6) is proved for $\lambda_{0} \subset D_{1} \cup D_{3}$.
Let $\lambda_{0} \in S_{k}\left(\lambda_{2}\right)$ and $\lambda_{n}^{-}, \lambda_{n}^{+}$are nearest points to λ_{0} from $\tau\left(-\Delta_{n}\right)$ such that $\lambda_{n}^{-}<\lambda_{0}<\lambda_{n}^{+}, n \geq k$. Because $\lambda_{0} \in \mathscr{F}$, we obtain that $\lambda_{n}^{ \pm} \rightarrow \lambda_{0}$ as $n \rightarrow \infty$. We note that

$$
\begin{aligned}
& C_{l}^{-}=\frac{4}{3} N_{l}\left(\lambda_{l}^{-}\right)=\frac{4}{3} N_{l}\left(\lambda_{l+1}^{-}\right) \leq \frac{4}{3} N_{l+1}\left(\lambda_{l+1}^{-}\right)=C_{l+1}^{-} \\
& C_{l}^{+}=\frac{4}{3} N_{l}\left(\lambda_{0}\right)=\frac{4}{3} N_{l}\left(\lambda_{l}^{+}-0\right)=\frac{4}{3} N_{l}\left(\lambda_{l+1}^{+}-0\right) \leq \frac{4}{3} N_{l+1}\left(\lambda_{l+1}^{+}-0\right)=C_{l+1}^{+}
\end{aligned}
$$

and let

$$
C^{ \pm}=\lim _{l \rightarrow \infty} C_{l}^{ \pm}
$$

We shall prove that $C^{ \pm}=N\left(\lambda_{0} \pm 0\right)$. Because N is the monotony function, there exists $\lim _{\lambda \rightarrow \lambda_{0} \pm 0} N(\lambda)=N\left(\lambda_{0} \pm 0\right)$ and by using the following inequality:

$$
\begin{aligned}
\left|N\left(\lambda_{0}-0\right)-\frac{4}{3} N_{l}\left(\lambda_{l}^{-}\right)\right| & \leq\left|N\left(\lambda_{0}-0\right)-N\left(\lambda_{l}^{-}\right)\right|+\left|N\left(\lambda_{l}^{-}\right)-N_{l}\left(\lambda_{l}^{-}\right)\right| \\
& \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \quad l \gg 1
\end{aligned}
$$

we obtain $C^{-}=N\left(\lambda_{0}-0\right)$. Analogously to (3.7), we have

$$
\lim _{n \rightarrow \infty} C_{n}^{+}-C_{n}^{-}=5^{-k} / 3
$$

It is easy to see that the sum of all jumps of N equals

$$
\begin{equation*}
3\left(\frac{5^{-1}}{3}+4 \cdot \frac{5^{-2}}{3}+\ldots 4^{n} \frac{5^{-n-1}}{3}+\ldots\right)=1 \tag{3.8}
\end{equation*}
$$

If $C^{+}<N\left(\lambda_{0}+0\right)$ then this statement contradicts (3.8).

Finally, we shall prove the continuity of the function N in all points $\lambda \in$ $\mathbb{R} \backslash \bigcup_{i=1}^{3} D_{i}$. Let λ_{0} be such a point. There exists the sequence $\left\{\lambda_{i}\right\}, \lambda_{i} \in D_{2}$ such that $\lambda_{i} \rightarrow \lambda_{0}$ as $i \rightarrow \infty$. As above, we note $N\left(\lambda_{0}\right)=N\left(\lambda_{0}+0\right)$ and the equality $N\left(\lambda_{0}+0\right)=N\left(\lambda_{0}-0\right)$ follows from the sum (3.8).
(iii) Let (a, b) be an arbitrary interval such that $(a, b) \subset \mathbb{R} \backslash \tau(-\Delta)$. If we can find $t_{1}, t_{2} \in(a, b)$ such that $N\left(t_{1}\right)<N\left(t_{2}\right)$ then there exists $l_{0} \in \mathbb{N}$ that we have $N_{l_{0}}\left(t_{1}\right)<$ $N_{l_{0}}\left(t_{2}\right)$. From this fact we obtain that there is a number $\lambda_{0} \in \tau\left(-\Delta_{l_{0}}\right) \cap\left[t_{1}, t_{2}\right]$ and consequently we have $\lambda_{0} \in \tau(-\Delta)$ that contradicts our supposition. That is why we have

$$
\operatorname{supp} N \subset \tau(-\Delta)
$$

Now, we shall prove that $\tau(-\Delta) \subset \operatorname{supp} N$. Let $\lambda_{0} \in \mathscr{F}$. There exists a sequence $\left\{\lambda_{i}\right\}, \lambda_{i} \in D_{2}$ such that $\lambda_{i} \rightarrow \lambda_{0}$ as $i \rightarrow \infty$. If we take an arbitrary $\varepsilon>0$, we have from (ii) that $N\left(\lambda_{0}+\varepsilon\right)-N\left(\lambda_{0}-\varepsilon\right)>0$. The proposition is proved.

4. Schröder's Equation and König's Function

Let $R_{-1}^{i}(x), i=1,2,3,4$ be the roots of the equation $R(t)=x, x \in[0, \zeta]$ such that

$$
R_{-1}^{1}(x)<R_{-1}^{2}(x)<R_{-1}^{3}(x)<R_{-1}^{4}(x) .
$$

We denote by $\Psi=\Psi(x)$ the inverse function to $R:\left[0, R_{-1}^{1}(\zeta)\right] \rightarrow[0, \zeta]$ and consequently $\Psi:[0, \zeta] \rightarrow\left[0, R_{-1}^{1}(\zeta)\right]$.

Fig. 5

The iterates $\Psi^{(n)}$ of the function Ψ are defined by

$$
\Psi^{(0)}(x)=x, \quad \Psi^{(n+1)}(x)=\Psi\left(\Psi^{(n)}(x)\right), \quad x \in[0, \zeta] .
$$

We shall denote by $\theta_{n}(x)=\Psi^{(n)}(x)$ and $\tilde{\theta}_{n}=\left(R^{\prime}(0)\right)^{n} \theta_{n}, R^{\prime}(0)=40 / 3$.
Lemma 4.1. There exists

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{\theta}_{n}(x)=\varphi(x) \tag{4.1}
\end{equation*}
$$

for all $x \in[0, \zeta]$.
Proof. We note that $\theta_{n+1}(x)=\Psi\left(\theta_{n}(x)\right), x \in[0, \zeta]$ and then $R\left(\theta_{n+1}\right)=\theta_{n}$. Thus, we have $\tilde{\theta}_{n}=\left(R^{\prime}(0)\right)^{n} R\left(\theta_{n+1}\right)=\tilde{\theta}_{n+1} d_{n}\left(\theta_{n+1}\right)$, where

$$
d_{n}=\frac{\left(1-\theta_{n+1}\right)\left(1-\frac{3}{4} \theta_{n+1}\right)\left(1-\frac{3}{5} \theta_{n+1}\right)}{\left(1-\frac{2}{3} \theta_{n+1}\right)}
$$

It is clear that $d_{n}<1$ for $\theta_{n+1}>0$ because $\left(1-\theta_{n+1}\right)\left(1-\frac{2}{3} \theta_{n+1}\right)^{-1}<1$ and $d_{n}=1$ if $x=0$. That is why $\tilde{\theta}_{n}(x)<\tilde{\theta}_{n+1}(x)$ for any $x \in(0, \zeta]$ and $\tilde{\theta}_{n}(0)=\tilde{\theta}_{n+1}(0)=0$.

The statement (4.1) will be proved if we show that there exists a number C such that $\tilde{\theta}_{n}(x) \leq C$ for all $x \in[0, \zeta]$ and $n \geq 1$. We note

$$
\frac{\tilde{\theta}_{n}}{\tilde{\theta}_{n+1}}=\frac{\left(R^{\prime}(0)\right)^{n} \theta_{n}}{\left(R^{\prime}(0)\right)^{n+1} \theta_{n+1}}=d_{n}
$$

and consequently

$$
\frac{\theta_{n+1}}{\theta_{n}}=\left(d_{n} \cdot R^{\prime}(0)\right)^{-1} \leq C_{1}\left(R^{\prime}(0)\right)^{-1}=\left(\frac{40}{3}\right)^{-1} \cdot C_{1}
$$

We can write $\tilde{\theta}_{n}$ as

$$
\begin{equation*}
\tilde{\theta}_{n}=R^{\prime}(0) \frac{\theta_{n}}{\theta_{n-1}} \cdot \frac{\theta_{n-1}}{\theta_{n-2}} R^{\prime}(0) \ldots R^{\prime}(0) \frac{\theta_{2}}{\theta_{1}} \cdot \theta_{1} R^{\prime}(0) \tag{4.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\prod_{n=1}^{\infty} R^{\prime}(0) \frac{\theta_{n}}{\theta_{n-1}}=\prod_{n=1}^{\infty} d_{n}^{-1} \leq C<\infty \tag{4.3}
\end{equation*}
$$

because $d_{n}=1+\alpha\left(\theta_{n}\right), \alpha\left(\theta_{n}\right) \leq C_{2} \theta_{n} \leq C_{3}\left(\frac{3}{40}\right)^{n}$. The lemma is proved.
Proposition 4.2. The function $\varphi(x)$ is the smooth strictly increasing function on $[0, \zeta]$ and φ is the exactly one König's solution of Schröder's equation (4.4), i.e.

$$
\begin{equation*}
\varphi(\Psi(x))=s \varphi(x), \quad s=\left(\frac{40}{3}\right)^{-1}, \quad x \in[0, \zeta] \tag{4.4}
\end{equation*}
$$

and

$$
\varphi(0)=0, \quad \varphi^{\prime}(0)=1
$$

Proof. The continuity of the function φ follows from (4.2), (4.3). By (4.1) we obtain also

$$
\lim _{n \rightarrow \infty}\left(\frac{40}{3}\right)^{n+1} \theta_{n}(\Psi(x))=\frac{40}{3} \varphi(\Psi(x))=\varphi(x), \quad x \in[0, \zeta] .
$$

The equality $\varphi(0)=0$ follows from the definition of the function φ. We note also that $-x \Psi(x)<0$ and $(\Psi(x)-x)(-x)>0, x \in(0, \zeta)$. The proof of Proposition 4.2 follows right now from [K] (Theorem 6.1, p. 137).

5. Bounds of the IDS

Let $\lambda_{n}^{i}=\Psi^{(n-1)}\left(\lambda_{i}\right), i=1,2,3$. It is clear that $\lambda_{n}^{1}=\inf \tau\left(-\Delta_{n}\right)$. Due to Lemma 4.1 and Proposition 4.2, we have

Proposition 5.1.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{n}^{i}\left(R^{\prime}(0)\right)^{n-1}=\varphi\left(\lambda_{i}\right) \tag{5.1}
\end{equation*}
$$

and

$$
\varphi\left(\lambda_{1}\right)<\varphi\left(\lambda_{2}\right)<\varphi\left(\lambda_{3}\right) .
$$

Let λ_{n+1}^{4} be the $4^{\text {th }}$ eigenvalue of the operator $-\Delta_{n+1}$, then $\lambda_{n}^{1}=\lambda_{n+1}^{4}$.
Lemma 5.2. Let $\lambda \in\left[\lambda_{n+1}^{1}, \lambda_{n}^{1}\right]$. Then the following statement is true:

$$
\begin{equation*}
\frac{4}{3 \cdot 5^{n+1}} \leq N(\lambda) \leq \frac{3}{5^{n}} \tag{5.2}
\end{equation*}
$$

Proof. We get from (3.4),

$$
N(\lambda) \leq \frac{4}{3} N_{n}(\lambda)+\frac{1}{5^{n}} \leq \frac{3}{5^{n}}
$$

The lower bound follows from (3.5), i.e. $\frac{4}{3} \cdot \frac{1}{5^{n+1}} \leq \frac{4}{3} N_{n+1}(\lambda) \leq N(\lambda)$.
The lemma is proved.
The main result of this section are bounds of the function

$$
N_{s}(\lambda)=N(\lambda) / \lambda^{d_{s} / 2}
$$

where $d_{s}^{-}=2 \log 5 / \log (40 / 3)$ is a so-called spectral dimension of the MKG. We shall prove that $N_{s}(\lambda)$ is oscillating and non-convergent as $\lambda \rightarrow 0$.

Theorem 5.3.

$$
\begin{equation*}
\frac{4}{3 \cdot 25} \varphi\left(\lambda_{1}\right)^{d_{s} / 2} \leq \lim _{\lambda \rightarrow 0} N_{s}(\lambda)<\varlimsup_{\lambda \rightarrow 0} N_{s}(\lambda) \leq 3 \cdot \varphi\left(\lambda_{1}\right)^{d_{s} / 2} \tag{5.3}
\end{equation*}
$$

Proof. Let $\lambda \in\left[\lambda_{n+1}^{1}, \lambda_{n}^{1}\right]$. By (5.2) we get

$$
\begin{equation*}
\frac{4}{3 \cdot 5^{n+1}}\left(\lambda_{n}^{1}\right)^{-d_{s} / 2} \leq \frac{N(\lambda)}{\left(\lambda_{n}^{1}\right)^{d_{s} / 2}} \leq \frac{N(\lambda)}{\lambda^{d_{s} / 2}} \leq \frac{N(\lambda)}{\left(\lambda_{n+1}^{1}\right)^{d_{s} / 2}} \leq \frac{3}{5^{n}}\left(\lambda_{n+1}^{1}\right)^{-d_{s} / 2} \tag{5.4}
\end{equation*}
$$

We note that $\left(\frac{40}{3}\right)^{-d_{s} / 2}=\frac{1}{5}$ and from Proposition 5.1 we have

$$
\lim _{n \rightarrow \infty}\left(\lambda_{n+1}^{1}\right)^{d_{s} / 2}\left(\left(\frac{40}{3}\right)^{n}\right)^{d_{s} / 2}=\varphi\left(\lambda_{1}\right)^{d_{s} / 2}
$$

Now, let $n \rightarrow \infty$ in the inequality (5.4), then we get

$$
\frac{4}{3 \cdot 25} \varphi\left(\lambda_{1}\right)^{-d_{s} / 2} \leq \frac{N(\lambda)}{\lambda^{d_{s} / 2}} \leq 3 \cdot \varphi\left(\lambda_{1}\right)^{-d_{s} / 2}
$$

To prove the strict inequality in (5.3) we shall take the sequences $\left\{\lambda_{k}^{i}\right\}, i=1,2,3$, $k=1,2, \ldots$. By (3.6) we get

$$
\lim _{k \rightarrow \infty} \frac{N\left(\lambda_{k}^{i}+0\right)-N\left(\lambda_{k}^{i}-0\right)}{\left(\lambda_{k}^{i}\right)^{d_{s} / 2}}=\lim _{k \rightarrow \infty} \frac{5^{-k}}{3\left(\lambda_{k}^{2}\right)^{d_{s} / 2}}=\frac{1}{15 \varphi\left(\lambda_{i}\right)^{d_{s} / 2}}
$$

The theorem is proved.

References

[B] Brolin, H.: Invariant sets under iteration of rational functions. Arkiv for Matematik 6, 103-144 (1965)
[F] Fukushima, M.: Dirichlet forms, diffusion processes and spectral dimension for nested fractals. Ideas and Meth. in Math. Anal. Stoch. Appl. 1. Cambridge: Cambridge University Press (to appear)
[FS] Fukushima, M., Shima, T.: On a spectral analysis for the Sierpinski gasket. Preprint (1989)
[H] Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713-747 (1981)
[K] Kuczma, M.: Functional equations in a single variable. Warszawa: Polish Scientific Publishers 1968
[M] Malozemov, L.A.: Difference Laplacian Δ on the modified Koch curve. Russ. J. Math. Phys. 3, 1 (1992)
[R] Rammal, R.: Spectrum of harmonic excitations on fractals. J. Phys. 45, 191-206 (1984)

Communicated by B. Simon

