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Abstract. We consider the integrated density of states N(\) of the difference
Laplacian — Δ on the modified Koch graph. We show that N(X) increases only with
jumps and a set of jump points of N(λ) is the set of eigenvalues of —Δ with the
infinite multiplicity. We establish also that

where ds = 21og5/log(40/3) is the spectral dimension of MKG.

1. Introduction

In this paper, we consider the integrated density of states (IDS) iV(λ), λ £ R of the
difference Laplacian —Δ on the modified Koch graph (MKG). The function N is
defined as the normalized limit of the number of eigenvalues less than Λ as the size
of the finite graph being expanded to infinity. It turns out that N increases only with
jumps and the set of jumps points of N is the set of eigenvalues with the infinite
multiplicity Dx U D2 U D3, where the set <F* — D2 is the Julia set of the iteration of
the rational function

R(z) = 9z(z -\){z- 4/3) (z - 5/3)/(z - 3/2).

Moreover, the set . ^ is the set of accumulation points for points from the set Dγ UD3.
We shall see that the behavior of the function 7V(λ) near zero is λd s/2, ds =

21og5/log(40/3), or more exactly, there exist two positive constants, C 1 ? C2 such
that

0 < C{ < lim - ^ - ^ < US ^ ^ < C2 < oo (1.0)

i.e., the ratio N(X)/Xds^2 is oscillating and non-convergent as λ —» 0.
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The number ds denotes the so-called spectral dimension of the MKG. The power
that is singled out is, unlike in the W1 case, not the Hausdorff dimension of the MKG
df = log5/log3, but its spectral dimension ds.

We will note that for the first time Rammal [R] discovered the high singularity of
the IDS of the difference Laplacian on the Sieφinski gasket. Recently, Fukushima
and Shima [FS] proved this fact for the differential Laplacian on the infinite Sieφinski
gasket. Finally Fukushima [F] considered the asymptotic behavior of the IDS for the
infinite nested fractals.

2. Preliminaries

Here we collect those preliminary notions and relations from [M] which we shall use
in this paper.

Beginning with the line segment of length 1 in Fig. 1, we first replace it by five
line segments of length 1/3 (Fig. 2), and then we replace each one of these by five
segments of length 1/9 (Fig. 3). The limit set is the modified Koch curve.

Fig. 1 xΛ χ2

Fig. 2 x1 x2 x4

We define the modified Koch graph somewhat more formally.
Let G = (Λ(G), E{G)) be a connected infinite locally finite graph without loops

with the vertex set Λ(G) and the edge set E(G). We use the following graph distance:

d(x,y) = min{k:3{xt}*r*:x0 = x,xk = y,0<i< k^x^^xj e E(G)} ,

d(x, x) = 0.

Let dx denote the degree of the vertex x G Λ(G), i.e., be the largest number of the
edges that meet at the point x. If D is a finite subgraph of G, then the degree of
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a vertex x in D will be denoted by dx(D). By dD we denote the boundary of the
subgraph D, i.e.,

dD = {xeΛ(D),dx(D)<dx},

and intD is the set of internal points of D, i.e.,

intL> = {xe Λ(D),dx(D) = dx} .

We define the MKG by induction.

Definition 1. Let Gx = (Λ(GX),E(GX)) be a graph having the set of vertices
A{GX) — {a^Ui and the set of edges

= {{xx, x2), (x2, X3), (z2>
 X4^ (^3,^4), (α4, x5)}

We introduce dGx = {x G ΛίGj), ^ ( G ^ = 1} and intGj = {x e Λ(GX) > 1}. Now
5

we define the graph G2 as G 2 = [J G|, where G| and Gx are isomoφhic graphs for

any i = 1,2, 3,4,5, G^ = Gx, which satisfy the following conditions (conditions A):

1. intGJ Π intGf = 0 for i ± j ,

2. E(G|) n E(G\) = 0 for i φ j ,

3. if dG\ = (x\,y\)9 then y} = x\ = x\, y\ = x\, y\ = x\ = y\ and
d a ! |(G 2) = dy5(G2) = l.

Let dG2 = (xe Λ(G2), dx(G2) = 1).
5

Now we define the subgraph Gn+X = | J Gι

n, where the Gι

n satisfy conditions A

(with G\ replaced by G\)\ see Fig. 4. Let ΘGn+x = (x e Λ(Gn+x),dx(Gn+x) = 1).
00

Then the MKG is defined by the formula G = | J Gn.
n=\

Fig. 4 G n

4 G π

5

Let us denote by Bx N or BN the ball in G centered at x with radius N, i.e.

and by bxN = \BX^N\ its cardinality.

The fractal (Hausdorff) dimension of a graph can be defined as the following:

Definition 2.

d{x) = lim sup - log TV

It is easy to see that d(x) is independent of x for MKG and we can use the common
value df of d(xYs as the fractal dimension. Moreover, df = log 5/ log 3. We will note
here that the Hausdorff dimension of the modified Koch curve is also log 5/ log 3 [H].
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We define the function m on G as m(x) — dx for every x £ A. Let

, ^ mix) \f{x)\2 < oo\ .
xeΛ(G) I

Then the finite difference Laplacian A on the graph G is defined by the formula

(Δu) (x) = d~ι J2 U(V ~ u^
t,d(x,t)=l

It is easy to see that the operator Δ is a symmetric operator with respect to the
product

x<ΞΛ{G)

For a set 4̂ c Λ, \A\ will denote the number of points in A. We denote by f\A the
restriction of a function / to the set A. It is easy to see that |Λ(Gn)| = (3 5 n + 5)/4.
Let l2(Gn) = {g = g(x),xe A(Gn),g\dGn = 0} with the product

(u,v)= Σ dx(Gn)u(x)v(x), u,vel2(GJ. (1.1)

Then we obtain that dim/2(Gn) = 3(5n - l)/4. We denote by Δn the operator A
restricted to l2(Gn) with zero boundary conditions (the Dirichlet boundary conditions).
In the sequel we denote A(Gn) by Λn for n > 1.

Let —Δ{ be an operator on 12(G{). We denote the function / = f(x) on G{ by
/ = (fχ2ifχ3ifχA)> w n e r e / X i = f(χΰ> i = 2^Λ BY a straightforward calculation
we have

Lemma 2.1. 77ze eigenvalue \, i = 1,2,3, of—Δι and the corresponding eigenfunc-
tion φif i = 1,2, 3, are as follows:

λj = (5 - \/Ϊ3)/6), λ2 = 4/3 , Λ3 - (5 + v/Ϊ3)/6)

^ ! = (2, - (1 - Λ/Ϊ3), 2), φ2 = (1,0, - 1 ) , ^ 3 = (2, - (1 + >/Ϊ3), 2).

By τ(—Δ) we denote the spectrum of the operator —A
There is the following statement [M]:

Proposition 2.2. The number Al5A2,A3 are eigenvalues of the operator —Δn with
multiplicity rn(Λ^) and

for n > 2 , i = 1,2,3.

We introduce the rational function

i?(z) - 9x(x - 1) (x - 4/3) (z - 5/3)/(x - 3/2)

and R_x is inverse to i?. The main result which makes it possible to calculate all
eigenvalues of the operator — Z\n + 1 is the following:

Theorem 2.3 [M]. (i) If λ0, λ0 Φ \, i = 1,2,3, is an eigenvalue of the operator
—Δn+ι corresponding to the eigenfunction f = f(x), x G An+ι, then the function
u = f(x)\j\n is a solution of the problem

-(Δnu) (x) = R(λo)u(x), u\dGn = 0, x £ An .
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(ii) Let R(X), X Φ λ1? λ2, λ3 be an eigenvalue of the operator —An corresponding to
the eigenfunction u(x), x G An. Then there exists a unique extension f — f{x),
x G Λn+ι of u such that f is an eigenfunction of the operator — Z\n + 1 with the
eigenvalue X.
(iii) Let X G τ(-An) and β G {R_ι(X)}. Then the multiplicity of X equals that of β.

From Proposition 2.2 and Theorem 2.3 we get the following diagram of the
eigenvalues of — Δn.

- A Λ λ, , / = 1 , 2 , 3 .

-Λ2 R4_,(λ,) R3_,(λi) R2_,(λi) RU(λi) (λ,)

Let us denote

R 0 ( z ) = z , R { ( z ) = R ( z ) , R n + λ = R { ( R n ( z ) ) , n = 0 , 1 , 2 , 3 . . . .

Definition 3 [B]. If w = Rn(z), then we say that tί; is a successor of z and 2; is a
predecessor of w of order n.

We denote by Z ẑ = {R_n(Xi)}, n > 0 the set of all predecessors of Xi,i= 1,2,3.
It is easy to see that Di cΈ, for all i.

Let ζ be the maximal fixpoint of the function R, i.e. ζ = max{^:i?(^) = 61}. Then
1.75 < C < 1.76.

Theorem 2.4 [M]. The following statements are true:
(i) £αc/z /?6>mί <^/^i U D2U D3 is an eigenvalue of the operator —A with infinite

multiplicity.
(ii) The spectrum τ(—Δ) of the operator —A on l2(G,m) is

r(-Δ) = jr u Dx U D3 c [0, ζ], ^ = D2.

(iii) 77z£ spectrum τ(—Δ) is a set of Lebesgue measure zero.
(iv) The Julia set & of the rational function R is a set of accumulation points of the
set Dλ UD3.

00

We shall divide Dt into Di = \J S^) such that St(Xτ) Π S^XJ = 0 if only
I φ j and we define k=ι

S^X,) = {X I λ G r(-Ak)\r(-Ak_^ k>2},

Sι(\) = {\}> i = 1,2,3.
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3. The Integrated Density of States

We introduce the following function:

7Vz(λ) = #{Xk < X I Xk are eigenvalues of the - Δt} 5 ι = nt(

Lemma 3.1. There exists
\ lim ΛΓz(λ) = JV(λ) (3.1)

at each continuity point X of N(X). N(X) is called the integrated density of states.

Proof. We shall prove that the sequence {iVj(λ)} are not decreasing for / > 1, i.e.,
Nt(X) < Nι+ι(X) for any λ e M. Let

•^+1 = {/ I / e l2(GM)J\dGί = 0,i = 1,2.. .5}

and —Δ\ be the restriction of the —Δ on 12(G\). Moreover, — Δ\ — — Δv We denote
5

by φ — Δ\ — Δ*ι+1 the direct sum of the operators —Δ\. We need the following

functions:
n^+1 = #{λ^ < λ I λ^ are eigenvalues of — Δ®+1}.

Because Δι+ι = Δ®+1 on the space J^~+1 we have the inequality

~ 5 / + 1 ~ ι

Thus the lemma is proved. D

Remark. We note that codimif+1 = 3 in the space 12(G1+1) and J^ + 1 is the invariant

space under Δ^+v so we have

By (3.3) we get

and consequently

that gives us the following inequality

N(X) < - NL(X) + ^ . (3.4)

We note also that

\ Nt(X) < N(X) for any / > 1 and λ e R. (3.5)

The number 4/3 in (3.1) is necessary so that 0 < iV(λ) < 1.

Proposition 3.2. The following statements are true:
(i) The function N(X) is the nondecreasing function of X and 0 < iV(λ) < 1, λ G R,

N(0) = 0.
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(ii) The function N is the continuous function for any λ G R \ [j Di. If X E Sk(Xτ),
then we have \%=ι

N(X + 0) - N(X - 0) = 5"fc/3 , (3.6)

where
N(X±0)= lim N(t)

and
N(λ + 0) = N(\Ό) = lim JVz(λ0).

Z—>oo

(ϋi)

Proof The statement (i) follows from the definition of the function A" and Theo-
rem 2.4 (ii).
(ii) At first, let λ0 G Sk(Xλ) U Sk(λ3) C Dλ U D3. There exists an interval (c, d) such

that (c, d)Πτ(-Δ) = λ0 and (c, cί)nr(-Z\n) = λ0 for any n > k. If we take arbitrary
numbers λ1? λ2 G (c, d) such that λj < λ0 < λ2, then we obtain from Proposition 2.2,

n z ( Λ 2 ) ~ n / ( Λ l ) = i ! ί i i
t 1 if Z = fc .

Thus, we get

A^(λ2) - NCλO = lim . ; / = (3.7)

4

and formula (3.6) is proved for Xo C DλU D3.
Let λ0 G Sk(X2) and λ~, λ+ are nearest points to λ0 from r(—Δn) such that

^n < λ0 < λ^, n > A:. Because λ0 G . ^ , we obtain that λ^ —> λ0 as n —> 00. We
note that

C~ — 4

1 3

G/+ = 1 ^z(λ 0 ) = I ^/(A^ - 0) = I ^ ( λ + + 1 - 0) < I NM(Xt+ι - 0) = C + 1 ,

and let
O — lim O;

We shall prove that C^ = A"(λ0 ± 0). Because AT is the monotony function, there
exists lim N(X) = N(X0 ± 0) and by using the following inequality:

- 0) - I Nt(χ-)\ < \N(X0 - 0) - N(X~)\ + |iV(λz-) - AΓz(λz")|

we obtain C~ = A^(λ0 — 0). Analogously to (3.7), we have

11m o — o :rr:
 J 1 D .

n—>oo

It is easy to see that the sum of all jumps of Â  equals

' 5 - 1 5- 2 5--- 1 λ
-IT + 4 - — + . . . 4 n - — — + . . . = 1. (3.8)
3 3 3 J

If C + < A'ίλQ + 0) then this statement contradicts (3.8).
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Finally, we shall prove the continuity of the function N in all points λ G

\ 3

R\ U Dv Let λ0 be such a point. There exists the sequence { λ j , λ G D2 such
\ι=l

that λ̂  —> λ0 as z —> oo. As above, we note N(λ0) = N(λ0 + 0) and the equality
7V(λ0 + 0) = 7V(λ0 - 0) follows from the sum (3.8).
(iii) Let (α, b) be an arbitrary interval such that (α, b) C M\τ(-zA). If we can find
t v t 2 e (α,6) such that JVX )̂ < 7V(f>) then there exists /0 G N that we have Nlo(t{) <
Nt (t2). From this fact we obtain that there is a number λ0 G T(—Δ1Q) Π [tι,t2] and
consequently we have λ0 G r(—Z\) that contradicts our supposition. That is why we
have

suppTV C τ(-Δ).

Now, we shall prove that r(-Δ) c suppiV. Let λ0 G .^. There exists a sequence
{λ^}, λ̂  G D2 such that λ̂  —> λ0 as ί —> oc. If we take an arbitrary ε > 0, we have
from (ii) that iV(λ0 + ε) — iV(λ0 — ε) > 0. The proposition is proved. D

4. Schroder's Equation and Kόnig's Function

Let i?!_i(aθ, i= 1,2,3,4 be the roots of the equation R(t) = x, x G [0, ζ] such that

We denote by Ψ = Ψ(x) the inverse function to R\[0,Rl_x(Q]

consequently Ψ: [0, ζ] -^ [0, ΛLi(C)]

[0, ζ] and

Fig. 5
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The iterates Ψ^ of the function Ψ are defined by

Ψ(0\x) = x , Ψ{n+X\x) = Ψ(Ψ{n\x)), x e [0, ζ].

We shall denote by θn(x) = Ψ{n\x) and θn = (Rf(0))nθn, R'(0) = 40/3.

Lemma 4.1. There exists
lim ΘΛx) = φ(x) (4.1)

for all x G [0, ζ\.

Proof. We note that θn+1(x) = Φ(θn(x)), x € [0,ζ] and then R{θn+X) = θn. Thus,

we have θn = (R'(0))nR(θn+ι) = θn+ιdn(θn+ι), where

{\-θn+ί)(\-\θn+ι){\-\θn+{)
a —

f 6 > ) ~ 1
It is clear that cίn < 1 for θn+ι > 0 because (1 -θn+ι) (1 - f 6>n+1)~1 < 1 and dn = 1

if x = 0. That is why θn(x) < θn+ι(x) for any x e (0, ζ] and 0n(O) = θn+ι(0) = 0.
The statement (4.1) will be proved if we show that there exists a number C such

that θn(x) < C for all x G [0, ζ] and n > 1. We note

and consequently

/40\-l= (dn R'φ))-1 < C{(Rf(0)rl = (f)

We can write $n as

then
oo . oo

Π (0) - ^ - Π ί ' < C < oo (4.3)
n = l n - * ?i=l

because <in = 1 + a(θn), a(θn) < C2θn < C3(^)n. The lemma is proved. D

Proposition 4.2. The function φ(x) is the smooth strictly increasing function on [0, ζ]
and φ is the exactly one Kδnig s solution of Schroder s equation (4.4), i.e.

φ{Ψ(x)) = sφ(x), s=(f)~\ xe[0,ζ] (4.4)

and
y>(0) = 0, ^ ( 0 ) = l .

Proof The continuity of the function φ follows from (4.2), (4.3). By (4.1) we obtain
also

lim ( f ) n + θn(Ψ(x)) = ̂  ^(l?(x)) = φ(x), x € [0, ζ].

The equality (̂ (0) = 0 follows from the definition of the function φ. We note also
that -χψ(x) < 0 and (Ψ(χ) - x) (-x) > 0, x e (0, C) The proof of Proposition 4.2
follows right now from [K] (Theorem 6.1, p. 137).
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5. Bounds of the IDS

Let λ^ = ^ ( n - 1 } ( λ ), i = l , 2 , 3 . It is clear that λ^ = inf r(-Δn). Due to Lemma4.1
and Proposition 4.2, we have

Proposition 5.1.
lim λ^CRW1"1 = Ψi\) (5.1)

n » o o

and
φ(\x) < φ(λ2) < φ(λ3).

Let λ^+1 be the 4th eigenvalue of the operator —Δn+ι, then λ^ = λA

nΛ

Lemma 5.2. Let λ G [λ^+1, λ^]. Then the following statement is true:

4

3 . 5n+

/V00/. We get from (3.4),

< N(λ) < — . (5.2)

4 1 4
- — ^ < -
4 1 4

The lower bound follows from (3.5), i.e. - — ^ < - A^n+1(λ) < N(λ).

The lemma is proved. D

The main result of this section are bounds of the function

where d^= 2 log 5/ log(40/3) is a so-called spectral dimension of the MKG. We shall
prove that iVs(λ) is oscillating and non-convergent as λ —* 0.

Theorem 5.3.

-^- ψ{\)ds/2 < lim JV8(λ) < M Ns(λ) < 3 ψiλ^12 . (5.3)

Proof. Let λ e [λ^+^λ^]. By (5.2) we get

4 ( Λ . Γ d , / 2 < Wλ) ^Njλ) N(λ) 3 ds/2

3 . 5 n + 1 (λn) < ( χ l j d s / 2 < χ d s / 2 < (χln+i)ds/2 ^ 5n (λn+l)

We note that ( y ) s = - and from Proposition 5.1 we have

Now, let n —> CXD in the inequality (5.4), then we get

4

3 25

To prove the strict inequality in (5.3) we shall take the sequences {λjj,}, i = 1,2,3,
k = 1,2, . . . . By (3.6) we get

r 7V(λ*fc + 0) - N(X[ - 0)
l im , . J / o

 fc = l im

The theorem is proved. D
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