

The Integrated Density of States for the Difference Laplacian on the Modified Koch Graph

Leonid Malozemov

Department of Applied Mathematics, Moscow Civil Engineering Institute, Yaroslavskoe Shosse, 26, Moscow 129337, Russia. Present address: Division of Physics, Mathematics and Astronomy, California Institute of Technology 253-37, Pasadena, CA 91125, USA

Received November 23, 1992; in revised form January 13, 1993

Abstract. We consider the integrated density of states $N(\lambda)$ of the difference Laplacian $-\Delta$ on the modified Koch graph. We show that $N(\lambda)$ increases only with jumps and a set of jump points of $N(\lambda)$ is the set of eigenvalues of $-\Delta$ with the infinite multiplicity. We establish also that

$$0 < C_1 \leq \lim_{\lambda \to 0} \ \frac{N(\lambda)}{\lambda^{d_s/2}} < \overline{\lim_{\lambda \to 0}} \ \frac{N(\lambda)}{\lambda^{d_s/2}} \leq C_2 < \infty \,,$$

where $d_s = 2 \log 5 / \log(40/3)$ is the spectral dimension of MKG.

1. Introduction

In this paper, we consider the integrated density of states (IDS) $N(\lambda)$, $\lambda \in \mathbb{R}$ of the difference Laplacian $-\Delta$ on the modified Koch graph (MKG). The function N is defined as the normalized limit of the number of eigenvalues less than λ as the size of the finite graph being expanded to infinity. It turns out that N increases only with jumps and the set of jumps points of N is the set of eigenvalues with the infinite multiplicity $D_1 \cup D_2 \cup D_3$, where the set $\mathscr{F} = \overline{D}_2$ is the Julia set of the iteration of the rational function

$$R(z) = 9z(z-1)(z-4/3)(z-5/3)/(z-3/2).$$

Moreover, the set \mathscr{F} is the set of accumulation points for points from the set $D_1 \cup D_3$.

We shall see that the behavior of the function $N(\lambda)$ near zero is $\lambda^{d_s/2}$, $d_s = 2 \log 5 / \log(40/3)$, or more exactly, there exist two positive constants, C_1 , C_2 such that

$$0 < C_1 \leq \lim_{\lambda \to 0} \frac{N(\lambda)}{\lambda^{d_s/2}} < \overline{\lim} \ \frac{N(\lambda)}{\lambda^{d_s/2}} \leq C_2 < \infty$$
(1.0)

i.e., the ratio $N(\lambda)/\lambda^{d_s/2}$ is oscillating and non-convergent as $\lambda \to 0$.

The number d_s denotes the so-called spectral dimension of the MKG. The power that is singled out is, unlike in the \mathbb{R}^n case, not the Hausdorff dimension of the MKG $d_f = \log 5/\log 3$, but its spectral dimension d_s .

We will note that for the first time Rammal [R] discovered the high singularity of the IDS of the difference Laplacian on the Sierpinski gasket. Recently, Fukushima and Shima [FS] proved this fact for the differential Laplacian on the infinite Sierpinski gasket. Finally Fukushima [F] considered the asymptotic behavior of the IDS for the infinite nested fractals.

2. Preliminaries

Here we collect those preliminary notions and relations from [M] which we shall use in this paper.

Beginning with the line segment of length 1 in Fig. 1, we first replace it by five line segments of length 1/3 (Fig. 2), and then we replace each one of these by five segments of length 1/9 (Fig. 3). The limit set is the modified Koch curve.

We define the modified Koch graph somewhat more formally.

Let $G = (\Lambda(G), E(G))$ be a connected infinite locally finite graph without loops with the vertex set $\Lambda(G)$ and the edge set E(G). We use the following graph distance:

$$\begin{split} &d(x,y) = \min\{k \colon \exists \{x_i\}_{i=0}^{i=k} \colon x_0 = x, x_k = y, 0 < i \le k, (x_{i-1}, x_i) \in E(G)\}, \\ &d(x,x) = 0\,. \end{split}$$

Let d_x denote the degree of the vertex $x \in \Lambda(G)$, i.e., be the largest number of the edges that meet at the point x. If D is a finite subgraph of G, then the degree of

a vertex x in D will be denoted by $d_x(D)$. By ∂D we denote the boundary of the subgraph D, i.e.,

$$\partial D = \left\{ x \in \Lambda(D), d_x(D) < d_x \right\},\$$

and int D is the set of internal points of D, i.e.,

$$\operatorname{int} D = \left\{ x \in \Lambda(D), d_x(D) = d_x \right\}.$$

We define the MKG by induction.

Definition 1. Let $G_1 = (\Lambda(G_1), E(G_1))$ be a graph having the set of vertices $\Lambda(G_1) = \{x_i\}_{i=1}^{i=5}$ and the set of edges

$$E(G_1) = \{(x_1, x_2), (x_2, x_3), (x_2, x_4), (x_3, x_4), (x_4, x_5)\}.$$

We introduce $\partial G_1 = \{x \in A(G_1), d_x(G_1) = 1\}$ and int $G_1 = \{x \in A(G_1) > 1\}$. Now we define the graph G_2 as $G_2 = \bigcup_{i=1}^{5} G_1^i$, where G_1^i and G_1 are isomorphic graphs for any $i = 1, 2, 3, 4, 5, G_1^4 = G_1$, which satisfy the following conditions (conditions A): 1. int $G_1^i \cap \operatorname{int} G_1^j = \emptyset$ for $i \neq j$, 2. $E(G^i) \cap E(G^j) = \emptyset$ for $i \neq j$.

2. $E(G_1^i) \cap E(G_1^j) = \emptyset$ for $i \neq j$, 3. if $\partial G_1^i = \langle x_1^i, y_1^i \rangle$, then $y_1^1 = x_1^2 = x_1^4$, $y_1^2 = x_1^3$, $y_1^3 = x_1^5 = y_1^4$ and $d_{x_1^1}(G_2) = d_{y_1^5}(G_2) = 1$. Let $\partial G_2 = \langle x \in \Lambda(G_2), d_x(G_2) = 1 \rangle$.

Now we define the subgraph $G_{n+1} = \bigcup_{i=1}^{5} G_n^i$, where the G_n^i satisfy conditions A (with G_1^i replaced by G_n^i); see Fig. 4. Let $\partial G_{n+1} = (x \in \Lambda(G_{n+1}), d_x(G_{n+1}) = 1)$. Then the MKG is defined by the formula $G = \bigcup_{n=1}^{\infty} G_n$.

Let us denote by $B_{x,N}$ or B_N the ball in G centered at x with radius N, i.e.

 $B_{x,N}=\left\{y\in \Lambda(G), d(x,y)\leq N\right\},$

and by $b_{x,N} = |B_{x,N}|$ its cardinality.

The fractal (Hausdorff) dimension of a graph can be defined as the following:

Definition 2.

$$d(x) = \lim_{N \to \infty} \sup \frac{\log |b_{x,N}|}{\log N} \,.$$

It is easy to see that d(x) is independent of x for MKG and we can use the common value d_f of d(x)'s as the fractal dimension. Moreover, $d_f = \log 5/\log 3$. We will note here that the Hausdorff dimension of the modified Koch curve is also $\log 5/\log 3$ [H].

L. Malozemov

We define the function m on G as $m(x) = d_x$ for every $x \in \Lambda$. Let

$$l_2(G,m) = \left\langle f = f(x), x \in \Lambda(G), \sum_{x \in \Lambda(G)} m(x) |f(x)|^2 < \infty \right\rangle.$$

Then the finite difference Laplacian Δ on the graph G is defined by the formula

$$(\Delta u)(x) = d_x^{-1} \sum_{t,d(x,t)=1} u(t) - u(x).$$

It is easy to see that the operator Δ is a symmetric operator with respect to the product

$$(f,g) = \sum_{x \in \Lambda(G)} m(x) f(x) g(x) \,.$$

For a set $A \subset \Lambda$, |A| will denote the number of points in A. We denote by $f|_A$ the restriction of a function f to the set A. It is easy to see that $|\Lambda(G_n)| = (3 \cdot 5^n + 5)/4$. Let $l_2(G_n) = \{g = g(x), x \in \Lambda(G_n), g|_{\partial G_n} = 0\}$ with the product

$$(u,v) = \sum_{x \in \Lambda(G_n)} d_x(G_n) u(x) v(x), \quad u, v \in l_2(G_n).$$
(1.1)

Then we obtain that dim $l_2(G_n) = 3(5^n - 1)/4$. We denote by Δ_n the operator Δ restricted to $l_2(G_n)$ with zero boundary conditions (the Dirichlet boundary conditions). In the sequel we denote $\Lambda(G_n)$ by Λ_n for $n \ge 1$.

Let $-\Delta_1$ be an operator on $l_2(G_1)$. We denote the function f = f(x) on G_1 by $f = (f_{x_2}, f_{x_3}, f_{x_4})$, where $f_{x_i} = f(x_i)$, i = 2, 3, 4. By a straightforward calculation we have

Lemma 2.1. The eigenvalue λ_i , i = 1, 2, 3, of $-\Delta_1$ and the corresponding eigenfunction φ_i , i = 1, 2, 3, are as follows:

$$\lambda_1 = (5 - \sqrt{13})/6), \quad \lambda_2 = 4/3, \quad \lambda_3 = (5 + \sqrt{13})/6)$$

and

$$\varphi_1 = (2, -(1 - \sqrt{13}), 2), \qquad \varphi_2 = (1, 0, -1), \qquad \varphi_3 = (2, -(1 + \sqrt{13}), 2)$$

By $\tau(-\Delta)$ we denote the spectrum of the operator $-\Delta$.

There is the following statement [M]:

Proposition 2.2. The number $\lambda_1, \lambda_2, \lambda_3$ are eigenvalues of the operator $-\Delta_n$ with multiplicity $r_n(\lambda_i)$ and

$$r_n(\lambda_i) = (5^{n-1} + 3)/4$$
 for $n \ge 2, i = 1, 2, 3$.

We introduce the rational function

$$R(x) = 9x(x-1)(x-4/3)(x-5/3)/(x-3/2)$$

and R_{-1} is inverse to R. The main result which makes it possible to calculate all eigenvalues of the operator $-\Delta_{n+1}$ is the following:

Theorem 2.3 [M]. (i) If λ_0 , $\lambda_0 \neq \lambda_i$, i = 1, 2, 3, is an eigenvalue of the operator $-\Delta_{n+1}$ corresponding to the eigenfunction f = f(x), $x \in \Lambda_{n+1}$, then the function $u = f(x)|_{\Lambda_n}$ is a solution of the problem

$$-(\varDelta_n u)(x) = R(\lambda_0) u(x), \qquad u|_{\partial G_n} = 0, \qquad x \in \Lambda_n \,.$$

(ii) Let $R(\lambda)$, $\lambda \neq \lambda_1, \lambda_2, \lambda_3$ be an eigenvalue of the operator $-\Delta_n$ corresponding to the eigenfunction u(x), $x \in \Lambda_n$. Then there exists a unique extension f = f(x), $x \in \Lambda_{n+1}$ of u such that f is an eigenfunction of the operator $-\Delta_{n+1}$ with the eigenvalue λ .

(iii) Let $\lambda \in \tau(-\Delta_n)$ and $\beta \in \{R_{-1}(\lambda)\}$. Then the multiplicity of λ equals that of β .

From Proposition 2.2 and Theorem 2.3 we get the following diagram of the eigenvalues of $-\Delta_n$.

Let us denote

$$R_0(z) = z$$
, $R_1(z) = R(z)$, $R_{n+1} = R_1(R_n(z))$, $n = 0, 1, 2, 3...$

Definition 3 [B]. If $w = R_n(z)$, then we say that w is a successor of z and z is a predecessor of w of order n.

We denote by $D_i = \{R_{-n}(\lambda_i)\}, n \ge 0$ the set of all predecessors of $\lambda_i, i = 1, 2, 3$. It is easy to see that $D_i \subset \mathbb{R}$ for all *i*.

Let ζ be the maximal fixpoint of the function R, i.e. $\zeta = \max\{\theta : R(\theta) = \theta\}$. Then $1.75 \le \zeta \le 1.76$.

Theorem 2.4 [M]. The following statements are true:

(i) Each point of $D_1 \cup D_2 \cup D_3$ is an eigenvalue of the operator $-\Delta$ with infinite multiplicity.

(ii) The spectrum $\tau(-\Delta)$ of the operator $-\Delta$ on $l_2(G,m)$ is

$$\tau(-\varDelta) = \mathscr{F} \cup D_1 \cup D_3 \subset [0,\zeta]\,, \qquad \mathscr{F} = \bar{D}_2\,.$$

(iii) The spectrum $\tau(-\Delta)$ is a set of Lebesgue measure zero.

(iv) The Julia set \mathscr{F} of the rational function R is a set of accumulation points of the set $D_1 \cup D_3$.

We shall divide D_i into $D_i = \bigcup_{k=1}^{\infty} S_k(\lambda_i)$ such that $S_l(\lambda_i) \cap S_j(\lambda_i) = \emptyset$ if only $l \neq j$ and we define

$$\begin{split} S_k(\lambda_i) &= \left\{ \lambda \mid \lambda \in \tau(-\Delta_k) \backslash \tau(-\Delta_{k-1}), k \geq 2 \right\}, \\ S_1(\lambda_i) &= \left\{ \lambda_i \right\}, \qquad i = 1, 2, 3 \,. \end{split}$$

3. The Integrated Density of States

We introduce the following function:

$$N_l(\lambda) = \#\{\lambda_k < \lambda \mid \lambda_k \text{ are eigenvalues of the } -\Delta_l\} \cdot 5^{-l} = n_l(\lambda)5^{-l}$$

Lemma 3.1. There exists

$$\frac{4}{3}\lim_{l \to \infty} N_l(\lambda) = N(\lambda)$$
(3.1)

at each continuity point λ of $N(\lambda)$. $N(\lambda)$ is called the integrated density of states.

Proof. We shall prove that the sequence $\{N_l(\lambda)\}$ are not decreasing for $l \ge 1$, i.e., $N_l(\lambda) \le N_{l+1}(\lambda)$ for any $\lambda \in \mathbb{R}$. Let

$$\mathscr{F}_{l+1} = \{ f \mid f \in l_2(G_{l+1}), f \mid_{\partial G_l^i} = 0, i = 1, 2 \dots 5 \}$$

and $-\Delta_l^i$ be the restriction of the $-\Delta$ on $l_2(G_l^i)$. Moreover, $-\Delta_l^4 = -\Delta_l$. We denote by $\bigoplus_{i=1}^5 -\Delta_l^i = \Delta_{l+1}^0$ the direct sum of the operators $-\Delta_l^i$. We need the following functions:

$$n_{l+1}^0 = \#\{\lambda_k^0 < \lambda \mid \lambda_k^0 \text{ are eigenvalues of } - \Delta_{l+1}^0\}.$$

Because $\Delta_{l+1} = \Delta_{l+1}^0$ on the space \mathscr{F}_{l+1} we have the inequality

$$N_{l+1} = \frac{n_{l+1}(\lambda)}{5^{l+1}} \ge \frac{n_{l+1}^0}{5^{l+1}} = \frac{5n_l}{5^{l+1}} = N_l(\lambda).$$
(3.2)

Thus the lemma is proved. \Box

Remark. We note that $\operatorname{codim} \mathscr{F}_{l+1} = 3$ in the space $l_2(G_{l+1})$ and \mathscr{F}_{l+1} is the invariant space under Δ_{l+1}^0 , so we have

$$n_{l+1}(\lambda) \le n_{l+1}^0 + 3. \tag{3.3}$$

By (3.3) we get

$$N_{l+1}(\lambda) \le N_l(\lambda) + \frac{3}{5^{l+1}},$$

and consequently

$$N_{l}(\lambda) \geq -\frac{3}{5^{l+1}} + N_{l+1}(\lambda) \geq \frac{3}{4}N(\lambda) - \frac{3}{5^{l}} \cdot \frac{1}{4}$$

that gives us the following inequality

$$N(\lambda) \le \frac{4}{3} N_l(\lambda) + \frac{1}{5^l} . \tag{3.4}$$

We note also that

$$\frac{4}{3}N_l(\lambda) \le N(\lambda) \quad \text{for any } l \ge 1 \text{ and } \lambda \in \mathbb{R}.$$
(3.5)

The number 4/3 in (3.1) is necessary so that $0 \le N(\lambda) \le 1$.

Proposition 3.2. The following statements are true:

(i) The function $N(\lambda)$ is the nondecreasing function of λ and $0 \le N(\lambda) \le 1$, $\lambda \in \mathbb{R}$, N(0) = 0.

(ii) The function N is the continuous function for any $\lambda \in \mathbb{R} \setminus \bigcup_{i=1}^{3} D_{i}$. If $\lambda \in S_{k}(\lambda_{i})$, then we have

$$N(\lambda + 0) - N(\lambda - 0) = 5^{-\kappa}/3, \qquad (3.6)$$

where

$$N(\lambda \pm 0) = \lim_{t \to \lambda \pm 0} N(t)$$

and

$$N(\lambda + 0) = N(\lambda_0) = \lim_{l \to \infty} N_l(\lambda_0).$$

(iii) supp $N = \tau(-\Delta)$.

Proof. The statement (i) follows from the definition of the function N and Theorem 2.4 (ii).

(ii) At first, let $\lambda_0 \in S_k(\lambda_1) \cup S_k(\lambda_3) \subset D_1 \cup D_3$. There exists an interval (c, d) such that $(c, d) \cap \tau(-\Delta) = \lambda_0$ and $(c, d) \cap \tau(-\Delta_n) = \lambda_0$ for any $n \ge k$. If we take arbitrary numbers $\lambda_1, \lambda_2 \in (c, d)$ such that $\lambda_1 < \lambda_0 < \lambda_2$, then we obtain from Proposition 2.2,

$$n_l(\lambda_2) - n_l(\lambda_1) = \begin{cases} (5^{l-k} + 3)/4 & \text{if } l > k \\ 1 & \text{if } l = k \end{cases}$$

Thus, we get

$$N(\lambda_2) - N(\lambda_1) = \lim_{l \to \infty} \frac{(5^{l-k} + 3)/4}{\frac{3}{4} \cdot 5^l} = \frac{5^{-k}}{3}$$
(3.7)

and formula (3.6) is proved for $\lambda_0 \subset D_1 \cup D_3$.

Let $\lambda_0 \in S_k(\lambda_2)$ and λ_n^- , λ_n^+ are nearest points to λ_0 from $\tau(-\Delta_n)$ such that $\lambda_n^- < \lambda_0 < \lambda_n^+$, $n \ge k$. Because $\lambda_0 \in \mathscr{F}$, we obtain that $\lambda_n^\pm \to \lambda_0$ as $n \to \infty$. We note that

$$\begin{split} C_l^- &= \frac{4}{3} \, N_l(\lambda_l^-) = \frac{4}{3} \, N_l(\lambda_{l+1}^-) \le \frac{4}{3} \, N_{l+1}(\lambda_{l+1}^-) = C_{l+1}^-, \\ C_l^+ &= \frac{4}{3} \, N_l(\lambda_0) = \frac{4}{3} \, N_l(\lambda_l^+ - 0) = \frac{4}{3} \, N_l(\lambda_{l+1}^+ - 0) \le \frac{4}{3} \, N_{l+1}(\lambda_{l+1}^+ - 0) = C_{l+1}^+, \\ d \text{ let} \end{split}$$

and let

$$C^{\pm} = \lim_{l \to \infty} C_l^{\pm} \,.$$

We shall prove that $C^{\pm} = N(\lambda_0 \pm 0)$. Because N is the monotony function, there exists $\lim_{\lambda \to \lambda_0 \pm 0} N(\lambda) = N(\lambda_0 \pm 0)$ and by using the following inequality:

$$\begin{split} |N(\lambda_0 - 0) - \frac{4}{3} N_l(\lambda_l^-)| &\leq |N(\lambda_0 - 0) - N(\lambda_l^-)| + |N(\lambda_l^-) - N_l(\lambda_l^-)| \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \,, \qquad l \gg 1 \end{split}$$

we obtain $C^- = N(\lambda_0 - 0)$. Analogously to (3.7), we have

$$\lim_{n \to \infty} C_n^+ - C_n^- = 5^{-k}/3$$

It is easy to see that the sum of all jumps of N equals

$$3\left(\frac{5^{-1}}{3} + 4 \cdot \frac{5^{-2}}{3} + \dots + 4^n \frac{5^{-n-1}}{3} + \dots\right) = 1.$$
 (3.8)

If $C^+ < N(\lambda_0 + 0)$ then this statement contradicts (3.8).

Finally, we shall prove the continuity of the function N in all points $\lambda \in \mathbb{R} \setminus \bigcup_{i=1}^{3} D_i$. Let λ_0 be such a point. There exists the sequence $\{\lambda_i\}, \lambda_i \in D_2$ such that $\lambda_i \to \lambda_0$ as $i \to \infty$. As above, we note $N(\lambda_0) = N(\lambda_0 + 0)$ and the equality $N(\lambda_0 + 0) = N(\lambda_0 - 0)$ follows from the sum (3.8).

(iii) Let (a, b) be an arbitrary interval such that $(a, b) \subset \mathbb{R} \setminus \tau(-\Delta)$. If we can find $t_1, t_2 \in (a, b)$ such that $N(t_1) < N(t_2)$ then there exists $l_0 \in \mathbb{N}$ that we have $N_{l_0}(t_1) < N_{l_0}(t_2)$. From this fact we obtain that there is a number $\lambda_0 \in \tau(-\Delta_{l_0}) \cap [t_1, t_2]$ and consequently we have $\lambda_0 \in \tau(-\Delta)$ that contradicts our supposition. That is why we have

supp
$$N \subset \tau(-\Delta)$$
.

Now, we shall prove that $\tau(-\Delta) \subset \operatorname{supp} N$. Let $\lambda_0 \in \mathscr{F}$. There exists a sequence $\{\lambda_i\}, \lambda_i \in D_2$ such that $\lambda_i \to \lambda_0$ as $i \to \infty$. If we take an arbitrary $\varepsilon > 0$, we have from (ii) that $N(\lambda_0 + \varepsilon) - N(\lambda_0 - \varepsilon) > 0$. The proposition is proved. \Box

4. Schröder's Equation and König's Function

Let $R_{-1}^i(x)$, i = 1, 2, 3, 4 be the roots of the equation $R(t) = x, x \in [0, \zeta]$ such that

$$R_{-1}^{1}(x) < R_{-1}^{2}(x) < R_{-1}^{3}(x) < R_{-1}^{4}(x)$$
.

We denote by $\Psi = \Psi(x)$ the inverse function to $R:[0, R_{-1}^1(\zeta)] \to [0, \zeta]$ and consequently $\Psi:[0, \zeta] \to [0, R_{-1}^1(\zeta)]$.

The iterates $\Psi^{(n)}$ of the function Ψ are defined by

$$\Psi^{(0)}(x) = x$$
, $\Psi^{(n+1)}(x) = \Psi(\Psi^{(n)}(x))$, $x \in [0, \zeta]$.

We shall denote by $\theta_n(x) = \Psi^{(n)}(x)$ and $\tilde{\theta}_n = (R'(0))^n \theta_n$, R'(0) = 40/3. Lemma 4.1. There exists

$$\lim_{n \to \infty} \tilde{\theta}_n(x) = \varphi(x) \tag{4.1}$$

for all $x \in [0, \zeta]$.

Proof. We note that $\theta_{n+1}(x) = \Psi(\theta_n(x))$, $x \in [0, \zeta]$ and then $R(\theta_{n+1}) = \theta_n$. Thus, we have $\tilde{\theta}_n = (R'(0))^n R(\theta_{n+1}) = \tilde{\theta}_{n+1} d_n(\theta_{n+1})$, where

$$d_n = \frac{(1 - \theta_{n+1})(1 - \frac{3}{4}\theta_{n+1})(1 - \frac{3}{5}\theta_{n+1})}{(1 - \frac{2}{3}\theta_{n+1})} \,.$$

It is clear that $d_n < 1$ for $\theta_{n+1} > 0$ because $(1 - \theta_{n+1})(1 - \frac{2}{3}\theta_{n+1})^{-1} < 1$ and $d_n = 1$ if x = 0. That is why $\tilde{\theta}_n(x) < \tilde{\theta}_{n+1}(x)$ for any $x \in (0, \zeta]$ and $\tilde{\theta}_n(0) = \tilde{\theta}_{n+1}(0) = 0$. The statement (4.1) will be proved if we show that there exists a number C such

The statement (4.1) will be proved if we show that there exists a number C such that $\tilde{\theta}_n(x) \leq C$ for all $x \in [0, \zeta]$ and $n \geq 1$. We note

$$\frac{\theta_n}{\tilde{\theta}_{n+1}} = \frac{(R'(0))^n \theta_n}{(R'(0))^{n+1} \theta_{n+1}} = d_n \, ,$$

and consequently

$$\frac{\theta_{n+1}}{\theta_n} = (d_n \cdot R'(0))^{-1} \le C_1 (R'(0))^{-1} = \left(\frac{40}{3}\right)^{-1} \cdot C_1.$$

We can write $\tilde{\theta}_n$ as

$$\tilde{\theta}_n = R'(0) \frac{\theta_n}{\theta_{n-1}} \cdot \frac{\theta_{n-1}}{\theta_{n-2}} R'(0) \dots R'(0) \frac{\theta_2}{\theta_1} \cdot \theta_1 R'(0), \qquad (4.2)$$

then

$$\prod_{n=1}^{\infty} R'(0) \, \frac{\theta_n}{\theta_{n-1}} = \prod_{n=1}^{\infty} d_n^{-1} \le C < \infty \tag{4.3}$$

because $d_n = 1 + \alpha(\theta_n), \ \alpha(\theta_n) \le C_2 \theta_n \le C_3 \left(\frac{3}{40}\right)^n$. The lemma is proved. \Box

Proposition 4.2. The function $\varphi(x)$ is the smooth strictly increasing function on $[0, \zeta]$ and φ is the exactly one König's solution of Schröder's equation (4.4), i.e.

$$\varphi(\Psi(x)) = s\varphi(x), \qquad s = \left(\frac{40}{3}\right)^{-1}, \qquad x \in [0, \zeta]$$
(4.4)

and

$$\varphi(0) = 0, \qquad \varphi'(0) = 1.$$

Proof. The continuity of the function φ follows from (4.2), (4.3). By (4.1) we obtain also

$$\lim_{k \to \infty} \left(\frac{40}{3}\right)^{n+1} \theta_n(\Psi(x)) = \frac{40}{3} \varphi(\Psi(x)) = \varphi(x) \,, \qquad x \in [0, \zeta] \,.$$

The equality $\varphi(0) = 0$ follows from the definition of the function φ . We note also that $-x\Psi(x) < 0$ and $(\Psi(x) - x)(-x) > 0$, $x \in (0, \zeta)$. The proof of Proposition 4.2 follows right now from [K] (Theorem 6.1, p. 137).

L. Malozemov

5. Bounds of the IDS

Let $\lambda_n^i = \Psi^{(n-1)}(\lambda_i)$, i = 1, 2, 3. It is clear that $\lambda_n^1 = \inf \tau(-\Delta_n)$. Due to Lemma 4.1 and Proposition 4.2, we have

Proposition 5.1.

$$\lim_{n \to \infty} \lambda_n^i (R'(0))^{n-1} = \varphi(\lambda_i)$$
(5.1)

and

$$\varphi(\lambda_1) < \varphi(\lambda_2) < \varphi(\lambda_3)$$

Let λ_{n+1}^4 be the 4th eigenvalue of the operator $-\Delta_{n+1}$, then $\lambda_n^1 = \lambda_{n+1}^4$. Lemma 5.2. Let $\lambda \in [\lambda_{n+1}^1, \lambda_n^1]$. Then the following statement is true:

$$\frac{4}{3 \cdot 5^{n+1}} \le N(\lambda) \le \frac{3}{5^n} \,. \tag{5.2}$$

Proof. We get from (3.4),

$$N(\lambda) \le \frac{4}{3} N_n(\lambda) + \frac{1}{5^n} \le \frac{3}{5^n}$$

The lower bound follows from (3.5), i.e. $\frac{4}{3} \cdot \frac{1}{5^{n+1}} \leq \frac{4}{3} N_{n+1}(\lambda) \leq N(\lambda)$.

The lemma is proved.

The main result of this section are bounds of the function

$$N_s(\lambda) = N(\lambda)/\lambda^{d_s/2}$$
,

where $d_s = 2 \log 5 / \log(40/3)$ is a so-called spectral dimension of the MKG. We shall prove that $N_s(\lambda)$ is oscillating and non-convergent as $\lambda \to 0$.

Theorem 5.3.

$$\frac{4}{3\cdot 25}\,\varphi(\lambda_1)^{d_s/2} \le \lim_{\lambda \to 0} \,N_s(\lambda) < \overline{\lim}_{\lambda \to 0} \,N_s(\lambda) \le 3\cdot \varphi(\lambda_1)^{d_s/2}\,. \tag{5.3}$$

Proof. Let $\lambda \in [\lambda_{n+1}^1, \lambda_n^1]$. By (5.2) we get

$$\frac{4}{3 \cdot 5^{n+1}} (\lambda_n^1)^{-d_s/2} \le \frac{N(\lambda)}{(\lambda_n^1)^{d_s/2}} \le \frac{N(\lambda)}{\lambda^{d_s/2}} \le \frac{N(\lambda)}{(\lambda_{n+1}^1)^{d_s/2}} \le \frac{3}{5^n} (\lambda_{n+1}^1)^{-d_s/2} .$$
(5.4)

We note that $\left(\frac{40}{3}\right)^{-d_s/2} = \frac{1}{5}$ and from Proposition 5.1 we have

$$\lim_{n \to \infty} \left(\lambda_{n+1}^1 \right)^{d_s/2} \left(\left(\frac{40}{3} \right)^n \right)^{d_s/2} = \varphi(\lambda_1)^{d_s/2} \,.$$

Now, let $n \to \infty$ in the inequality (5.4), then we get

$$\frac{4}{3\cdot 25}\,\varphi(\lambda_1)^{-d_s/2} \leq \frac{N(\lambda)}{\lambda^{d_s/2}} \leq 3\cdot \varphi(\lambda_1)^{-d_s/2}\,.$$

To prove the strict inequality in (5.3) we shall take the sequences $\{\lambda_k^i\}$, i = 1, 2, 3, k = 1, 2, ... By (3.6) we get

$$\lim_{k \to \infty} \frac{N(\lambda_k^i + 0) - N(\lambda_k^i - 0)}{(\lambda_k^i)^{d_s/2}} = \lim_{k \to \infty} \frac{5^{-k}}{3(\lambda_k^i)^{d_s/2}} = \frac{1}{15\varphi(\lambda_i)^{d_s/2}}$$

The theorem is proved. \Box

396

References

- Brolin, H.: Invariant sets under iteration of rational functions. Arkiv for Matematik 6, 103–144 (1965)
- [F] Fukushima, M.: Dirichlet forms, diffusion processes and spectral dimension for nested fractals. Ideas and Meth. in Math. Anal. Stoch. Appl. 1. Cambridge: Cambridge University Press (to appear)
- [FS] Fukushima, M., Shima, T.: On a spectral analysis for the Sierpinski gasket. Preprint (1989)
- [H] Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713-747 (1981)
- [K] Kuczma, M.: Functional equations in a single variable. Warszawa: Polish Scientific Publishers 1968
- [M] Malozemov, L.A.: Difference Laplacian Δ on the modified Koch curve. Russ. J. Math. Phys. 3, 1 (1992)
- [R] Rammal, R.: Spectrum of harmonic excitations on fractals. J. Phys. 45, 191–206 (1984)

Communicated by B. Simon