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Abstract. Two different approaches to (Kostant-Leites-) super Riemann surfaces
are investigated. In the local approach, i.e. glueing open superdomains by super-
conformal transition functions, deformations of the superconformal structure are
discussed. On the other hand, the representation of compact super Riemann
surfaces of genus greater than one as a fundamental domain in the Poincare upper
half-plane provides a simple description of super Laplace operators acting on
automorphic p-forms.

Considering purely odd deformations of super Riemann surfaces, the number of
linear independent holomorphic sections of arbitrary holomorphic line bundles
will be shown to be independent of the odd moduli, leading to a simple proof of the
Riemann-Roch theorem for compact super Riemann surfaces. As a further conse-
quence, the explicit connections between determinants of super Laplacians and
Selberg's super zeta functions can be determined, allowing to calculate at least the
2-loop contribution to the fermionic string partition function.

1. Introduction

In recent years, the theory of super Riemann surfaces has gained some attention,
mainly motivated by the study of fermionic strings and superconformal field
theories. As is well known, Polyakov's functional integral describing the g-loop
contribution in the perturbation expansion of the fermionic string partition func-
tion can be reduced to a finite dimensional integral over super moduli space Jέg,
the space parametrizing all super Riemann surfaces of genus g. The integrand
contains some determinants of super Laplace operators acting on p-forms, which
may be expressed via Selberg's super zeta functions in the case of genus greater
than one. The explicit structure of these relations depends on the number of linear
independent zero modes of the super Laplacian.

Two basically different approaches to supermanifolds exist: the one introduced
by DeWitt [8] and the theory of graded manifolds in the sense of Kostant and
Leites [27, 28]. I will follow the second approach, because it allows to use a lot of
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standard methods of complex analysis and algebraic topology, generalized to the
Z2-graded case. Furthermore the Kostant-Leites description seems to be phys-
ically more natural (see e.g. [30]).

Besides having physical applications, the theory of super Riemann surfaces is
interesting on its own from the mathematical viewpoint. The intention of this paper
is, on the one hand, to present two different descriptions of (Kostant-Leites-) super
Riemann surfaces and their connections: namely the representation as a collection
of open superdomains glued via superconformal transition functions, and for genus
greater than one, using uniformization, the representation as a fundamental do-
main in the Poincare upper half-plane. On the other hand, considering purely odd
deformations of a super Riemann surface, it will be shown that the number of
linearly independent holomorphic sections of arbitrary holomorphic line bundles is
independent of the odd moduli, a statement allowing to generalize the Riemann-
Roch theorem to the case of compact super Riemann surfaces [35].

This paper is organized as follows. At first, I review some basic facts concerning
supermanifolds and Berezin integration. After defining super Riemann surfaces in
the local approach and holomorphic line bundles over it, deformations of super
Riemann surfaces respecting the superconformal structure will be discussed in
order to determine the dimension of super moduli space. The following section
deals with hyperbolic geometry on the super Poincare upper half-plane and
automorphic forms. Finally the connection to fermionic string theory will be
pointed out, ending with the calculation of the 2-loop contribution to the fermionic
partition function.

2. Supermanifolds

In this section some basic facts about supermanifolds will be reviewed, e.g. split-
ness, Batchelor's theorem, volume forms and Berezin integration. A more detailed
treatment can be found in Leites [27] and Manin [28].

At first recall the following

Definition. A Έ2-graded commutative ringed space (M, ̂ M\ i e a topological mani-
fold M and a sheaf ^M of super commutative rings, is called a supermanifold of
dimension m | n, if

(i) (M, ̂ M/J^) is an ordinary £fM / JV-manifold of dimension m. Jί ci^M denotes
the subsheaf of nilpotents Jί = % j 0 ( ^ M , Ϊ ) 2

(ii) JίjJί1 is a locally free sheaf of ^uJJί-moduls of rang 0|n.
(iii) The structure sheaf £fM is locally decomposable, i.e. locally isomorphίc to the

symmetric algebra of JίjJί 2,

yM\u = SyMιA^I^2)\υ, UczM. (2.1)

The ordinary manifold (M, 6^M/JV) is often called the reduced manifold
M r e d and arises (loosely speaking) by "setting all nilpotents of SfM to zero."
Condition (iii) means that the structure sheaf <9*M is locally generated by linear
independent sections (x1,. . ., xm, ξ1,. . ., ξn) which are subject to no other rela-
tions than supercommutativity. Therefore locally every superfunction (i.e. section
of £fM) can be uniquely represented as

^ ) . (2.2)
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A supermanifold is said to be decomposable or split, if the isomorphism (2.1)
holds globally. The meaning of this notion can be easily seen by considering the
effect on the transition functions between two intersecting open domains
(7, Fez M. Let (x1,. . ., xm, ξ\ . . ., ξn) and (y\ . . ., jΛ η\ . . ., ηn) be local co-
ordinates on U and V, respectively. On a general supermanifold they are related by

ηι(x, ξ) = ?bl(x) + ξιξlξkb\jk{x) + . (2.3)

However on a split supermanifold the global Z-grading of £fM results in a reduction
of (2.3) to

/ ( x , ξ) = ak

0(x), ηk(x, ξ) = ξ'feftx) . (2.4)

For this reason on a split supermanifold the component decomposition (2.2) of an
arbitrary superfunction/e Γ(M, ^M) is globally well defined, and each component
is a section of a vector bundle on the reduced manifold M r e d . Whereas complex
analytic supermanifolds are in general not decomposable, in the differentiable
category one has the following

Theorem. (Batchelor [5]). Every differentiable supermanifold (M, SM) is decompos-
able.

For defining integration on supermanifolds, remember that objects which can
be integrated over an ordinary (orientable, compact) manifold M r e d are sections of
the maximum exterior power of the cotangent bundle

Λ^Ω'M^), (2.5)
locally

σ=f(x)dx1 Λ . . . Λ dxm . (2.6)

Therefore under a change of coordinates f(x) is multiplied by the Jacobian.
On a supermanifold, however, because of the presence of anticommuting

coordinates, no maximum exterior power of the cotangent bundle exists, but
volume forms can be consistently defined to look locally like

σ = D*(dx9dξ)-f(x9ξ)9 (2.7)

with/transforming on the intersection of two coordinate neighbourhoods accord-
ing to

) = j s d e t ! ^ | j f(x,ξ). (2.8)

The sheaf of volume forms is also denoted as the Berezinian Ber M of M

σ e Γ ( M , B e r M ) . (2.9)

Finally, the Berezin integral over a (super-) domain (17, ̂ M\U) with local coordi-
nates (x1,. . ., xm, ξ\ . . ., ξn) can be defined as [16]

(u,yMlϋ)

σ:= f dx1 A . . . Λ dxm d° fix, ξ) . (2.10)
v dξ ...dξ
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This definition is independent of the choice of local coordinates, and obviously the
Berezin integral depends only on the coefficient function of the maximum degree
monomial ξ1 . . . ξn in the component decomposition of/(x, ξ). In complete anal-
ogy to the classical case, the integral over the whole supermanifold (M, ̂ M) is
obtained by glueing superdomains using a partition of unity and the additivity of
the Berezin integral.

3. Super Riemann Surfaces

Imposing a superconformal structure on a complex 111-dimensional supermani-
fold leads to an object, which in spite of having a complex dimension greater than
one, shows many features of ordinary Riemann surfaces. This construction enables
one to build a first order differential operator valued in the half-volume forms,
a fact being of some interest in fermionic string theory [16, 17, 18]. From the
viewpoint of string theory, the presence of the gravitino field makes it necessary to
have additional odd parameters besides the odd coordinates. It is therefore quite
natural to consider families of super Riemann surfaces. Finally in this section some
basic properties of holomorphic line bundles over families of super Riemann
surfaces will be treated.

3.1. Superconformal Structure. More precisely one has the following [15].

Definition. A super Riemann surface (M, ΘM) is a complex 111-dimensional super-
manifold, with the property that in local coordinates

(i) the transition functions are holomorphic

z'=f(z,θ)9 Θ' = ψ(z,θ), (3.1)

(supercomplex structure),

(ii) the differential operator D = dθ + θdz transforms homogeneously

D'ozD , (3.2)

(superconformal structure).

Since D1 — dz this means: there exists on a super Riemann surface a nonintegr-
able distribution of rank 011, and therefore no single "good" coordinate η can be
found to write D as D = dη [18].

Using the chain rule one finds

D = (DΘ')D' + (Dzf - θ'DΘ')Df2 , (3.3)

so the condition (3.2) characterizing superconformal coordinate transformations
can also be written in the form

Dz' = Θ'DΘ' . (3.4)

Calculating the Jacobian of the coordinate transformations
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the transformation law for the D-operator reads explicitly

V

With regard to (2.7) this relation shows that

d:=D*(dz9dθ)<g>D (3.7)

is an invariantly defined first order differential operator, valued in the "half-volume
forms" [18]. Such a differential operator can be considered as an analogue of the
Cauchy-Riemann operator on ordinary Riemann surfaces, because for an arbitrary
superfunction /

D*(dz, dθ)D*(dz, dθ) {Df)(Df) (3.8)

is a volume form, which can be integrated over a super Riemann surface using no
extra information besides the supercomplex and superconformal structure and
containing only first order derivatives. This is a special feature of super Riemann
surfaces. On ordinary complex two-dimensional manifolds no first order differen-
tial operator valued in the half-volume forms exists.

The possibility to define a functional on the set of functions, which is indepen-
dent of the local structure of the super Riemann surface and is invariant under
worldsheet supersymmetry transformations, is the reason for considering super
Riemann surfaces in the context of fermionic string theory.

3.2. Families and Line Bundles. So far every super Riemann surface, defined as
described in the previous section, is trivially split, for if the odd dimension equals
one, the coordinate transformations (3.1) are by reasons of parity necessarily of the
form

z'=fz(z)9 θ' = θfβ(z). (3.9)

But for applications in the fermionic string theory there is the need for allowing the
coefficient functions of a superfunction (2.2) to have odd parity. This demand can
only be realized by introducing families of super Riemann surfaces.

Definition. Let m be a submersive map between complex superspaces

w = (π, ψ)
(3.10)

such that π is proper. Furthermore let

dim(X, s/) - dim(Γ, &) = 111 . (3.11)

The map w is called a family of compact super Riemann surfaces, if there exists
a 0 | 1-dimensίonal distribution Sf in the relative tangent sheaf ZΓreϊX, such that the
super commutator mod 2

[ , ] * : ® ®.*® -> fnlX/@ (3.12)

is an isomorphism. Here the relative tangent sheaf is defined as the sheaf
$~rt\X cz ZΓX of derivations which annihilate y\ι(β\ Finally call sections z, θ of si,
such that dz, dθ are a basis for ^~r%xX, a relative coordinate system [13, 26].
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The connection with the previous definition is given by a lemma of LeBrun and
Rothstein [26], which states that for every family of compact super Riemann
surfaces a relative coordinate system (z, θ) can be found, such that 3) is generated
by dθ + θδz. In this sense a super Riemann surface, defined as in the beginning of
Sect. 3.1, agrees with a family of super Riemann surfaces, where (Y, έ%) consists of
a single point, and thus will be further on denoted as a "single" or "isolated" super
Riemann surface.

If only local properties of the parameter space (Y93t) are of interest, it is
possible [34] to consider single super Riemann surfaces with enlarged structure
sheaf instead of families of super Riemann surfaces, i.e. demanding a local isomor-
phism

®M\U = SΘMIA^I^2)\U®ΛΘMIAW1), UC:M, (3.13)

which provides the structure sheaf with the necessary additional odd parameters.
The explicit form of superconformal coordinate transformations can be derived

by imposing the condition (3.4) on holomorphic transition functions

. (3.14)

Here the convention is used that functions with values of odd parity are denoted by
Greek letters.

Let m: X -• Γbe a differentiable family of compact super Riemann surfaces, i.e.
the map w is differentiable. A holomorphic line bundle L over X is completely fixed
by specifying a 1-cocycle {gaβ} with coefficients in 0 X , the sheaf of even holomor-
phic functions/such that f(p)mod Jί Φ 0, VpeX. Defining an equivalence rela-
tion

(*α, σα) ~ (xβ9 σβ) : <=> (xa9 σΛ) = (xβ, gaβσβ) ,

(3.15)

for (^ α ) α e / an open covering of X, the bundle L can be represented as the quotient
space

L={+) ^ x C 1 ' 1 / - . (3.16)
αeJ

In the further text I will use a notation which discriminates more explicitly
between the relative fiber coordinates z, θ and the coordinates t\ ζj of the para-
meter space Y of the family w. Remember that w is a submersive differentiable map.
and is therefore locally a projection. For a sufficiently small open set A a Y it is
possible [25] to consider each fiber Mttζ:= m~ι(t\ ζj\ V(ί', ζj)eΔ as a union

Muζ= U Ua9 (t\ζj)eA, (3.17)
αeJ

where each Ua is independent of the parameters (t\ ζj\ only the way of glueing the
(ί/ α ) α e ί by superconformal transition functions of the form (3.14) depends on the
parameters (t\ ζj).

The transition functions gaβ(zβ, θβ; t\ ζj) of a holomorphic line bundle L are
holomorphic in the relative fiber coordinates z, θ and differentiable in thό moduli
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t\ζj. For'fixed t\ζj the 1-cocycle {gaβ(zβ, θβ; t\ ζj)} can be considered as the
defining data of a holomorphic line bundle on the single super Riemann surface
Mtίζ with enlarged structure sheaf.

Rejecting the nilpotent part of the transition functions {gaβmodjV}, a holo-
morphic line bundle L on M always determines a reduced bundle L r e d on M r e d .

As in the classical case, the canonical bundle ω of a super Riemann surface
M can be defined by splitting the bundle of volume forms1 BerM using the
supercomplex structure

B e r M = : ω ( χ ) ώ . (3.18)

Observing that the superdeterminant is a multiplicative homomorphism, relation
(2.8) shows the transition functions of the canonical bundle ω to be

I close this section by stating some facts about the Chern class c(L) of
a holomorphic line bundle L. It is defined as the coboundary map resulting from
the exponential sequence on super Riemann surfaces

c: Hι(M,Θx)^ H2(M, Z), L H δ*(L). (3.20)

Since Z (like every constant sheaf) is completely determined by the topological
structure of M, the cohomology group H2(M, Έ) can be identified with
H2(Mred, Z\ and one finds [33] that the Chern class of L coincides with the Chern
class of the reduced bundle

(3.21)

Noting that

sdet
3(zβ,

d(zβ9

θa)

θβ)
mod ./Γ

c(L) =

Dβθa

c(Lτed) .

IdfaβiZβ)

V dzβ

djr, (3.22)

the reduced canonical bundle on a super Riemann surface is a spinor bundle on

M r e d

ω r e d ^ K* , (3.23)

and therefore Eq. (3.21) yields

c(ω) = g - 1 . (3.24)

4. Deformation of Superconformal Structures

Deforming the coordinate transformations of a split super Riemann surface in
a way which respects the superconformal structure, makes it possible to calculate
the dimension of the super moduli space Jίg^ the space parametrizing all super
Riemann surfaces of genus g. The consideration of purely odd deformations leads
to the fact that the number of linear independent holomorphic sections of a line

Vector bundles and locally free sheafs are considered to be equivalent in the obvious way.
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bundle L ί ζ over M ί s ζ is independent of the odd moduli ζ\ a statement which can be
used to establish a generalized version of the Riemann-Roch theorem, valid on
super Riemann surfaces.

4.1. The Dimension of Super Moduli Space. Denoting the derivative with respect to
the even coordinate dzf(z) by f'(z\ the clutching functions of a split super Riemann
surface M o read

z*=f*β(zβ)9 θa = Θβ^f:β(zβ). (4.1)

They don't contain any additional odd parameters ζj besides the odd coordinate θ,
so the set of all split super Riemann surfaces is completely described by the reduced
super moduli space Jίg^. Furthermore, as can be seen from (4.1), a split super
Riemann surface contains exactly the same information as an ordinary Riemann
surface equipped with a spin structure to fix the sign ambiguity of the square root.

To find the number of linearly independent parameters describing different
superconformal structures, one starts by deforming the transition functions (4.1) up
to first order in the parameters t9ζ [12]. Proceeding this way, it is important to
preserve the general form of superconformal clutching functions (3.14)

α̂ = faβ(zβ) + tbaβ(zβ) + θβζcaβ(zβ)^/f;β{zβ) + tVaβ{zβ) ,

) + tKβ(zβ) + ζcaβ(zβ) . (4.2)

Considering the cocycle relations on a triple intersection U(χnUβn Uy

Z<x{Zβ(ZJ> Qy\ θβ(zγi θy)} = Za(zγ, θy) ,

θa{zβ(zγ, θy\ θβ(zγ, θy)} = 9α(zy, θγ) (4.3)

and neglecting terms of second order in ί, ζ, leads by comparing coefficients to three
independent equations

faβ{fβy{Zy)} = faγ(Zγ) ,

Kβ{fβγ(Zy)} +f*β{fβy(Zy)}bβγ{Zy) = bay{zy) ,

CΛβ{fβy(Zy)} + y/f*β{fβy(Zy)}Cβγ(zy) = Cay{zy) . (4.4)

The first relation is the usual cocycle condition for the glueing functions faβ on the
reduced manifold M r e d , whereas the remaining two equations can also be written
as (suppressing the argument zy)

b«β -z h bβy — = bay —— ,
pδza

 pydzβ

 7 5z α

r\ r\ r\

Caβ9α7- + cβyθβ^~ = c«yθ«T" ' ( 4 5 )
(7Zα 0Zβ OZa

which show, together with the transformation properties (4.1) of θ, that defor-
mations of the superconformal structure are described by the cocycles

(4.6)



Deformations of Super Riemann Surfaces 275

Under local superconformal reparametrizations

zα M> zα + ί5α(zα) + θaζra(za)yj\ + ί5;(zα) ,

these cocycles can be seen to change by coboundaries

"βdza

 α δz α ^ δ ^ J '

3 d d )

so in fact they define cohomology classes

Λ ^ - ] e t f Wed, Θ{K~*)) . (4.9)

Using the Riemann-Roch theorem and Serre duality yields for compact Riemann
surfaces M r e d of genus g ^ 2, the case of main interest in the further text,

dimtf ^Mred, β(K~*)) = 2g-2. (4.10)

Since higher order deformations of the superconformal structure are either com-
pletely fixed by first order deformations or just linear combinations of them, the
dimension of super moduli space is determined to be

d i m J ί g = ( 3 g - 3 \ 2 g - 2 ) , g ^ 2 . (4.11)

4.2. Purely Odd Deformations. In order to get some information about holomor-
phic sections of line bundles over super Riemann surfaces, it is helpful to consider
fibers of a differentiable family of compact super Riemann surfaces, which belongs
to a fixed value ( ί 1 , . . ., tm) of the even moduli parameters. Let M ζ := w~ 1(ί I, ζJ) be
the super Riemann surface corresponding to the point (t\ ζj) of the parameter
space - the reference to the fixed even parameters will be omitted in this section
and Lζ a holomorphic line bundle over Mζ. Then one finds the following

Theorem. On a compact super Riemann surface the dimension of the space of
holomorphic sections of a holomorphic line bundle dim H°(Mζ, Θ(Lζ)) is independent
of the odd moduli.

Proof. Denote by Mo a split super Riemann surface, i.e. a fiber over some fixed
point of the reduced parameter space. The transition functions between two open
domains Ua,Uβ a Mo can be written in the form

(zα, θa) = {fΛ%o(Zβ)> θβL
θ

β,o(Zβ)} . (4.12)
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A holomorphic line bundle Lo -> M o is described by a 1-cocycle with values in the
nonvanishing holomorphic functions on M o ,

and a deformed line bundle Lζ -» M ζ with transition functions

β;0) = gaβ,o(zβ). (4.13)

Varying only the odd moduli (ζ 1 , . . ., ζn\ one obtains a super Riemann surface
M ζ with glueing functions (the argument zβ will be omitted)

( 4 1 4 )

gaβ(zp, θβ; C) = ^ , o + θβζtg^t + C C j ^ , 0 + ' ' ' (4-15)

Now consider a global holomorphic section of Lζ, represented by a collection of
holomorphic functions

{σa}eH°(Mζ,Θ(Lζ)), (4.16)

which are glued on the intersection of two open domains Uar\JJβ c M ζ by the
prescription

σα(zα, θα; C) = M z , , θβl 0σP(zβ9 θβ; ζ) . (4.17)

Using the notation

σ«(z«, θa; ζ) = σα,0(zα? θa) + ζ'σ^z,, θa) + C ' C ^ . , ^ , θa) + , (4.18)

a power series expansion of Eq. (4.17) with respect to the odd parameters ζj results
in consistency relations for each of the finitely many coefficient functions of the
section {σα}. Namely, one has

σ*,o(f*zβ.o> θβfa,o) = g*β,o<rβ,o(zβ, θβ) (4.19)

in the lowest order. The first order terms yield

_ /fz n rθ \ , ^σcc,0 ( f z n rθ \n rθ , ^σ«» 0 ( fz Ω fθ \ fz
σ<x,ΛJ<xβ,0> υβjχβ,θ) "1 « Uaβ,θ9 υβJaβ,θ)VβJ<xβ,i "Γ ~D KJaβ,O> υβJocβ,θ)Jaβ,i

= g«β,o<7β,i(zβ, θβ) - θβgaβtiσβ9o(zβ9 θβ), (4.20)

and writing as a shorthand notation

σ«, = ^ α , . (/4o, θβfa

$

βt0), σβt. = σβ,.(zβj θβ), (4.21)

one finds in second order

= gaβ,o^β,ij + Θβg
θ

aβ>iσβJ + gzβ,ijσβ,o ' (4.22)
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As can be seen easily, comparing coefficients of the kth order lead to a relation of the
form

σ«, ix... ik(f*%o> θβfjβ.o) + {terms in σα, f i... u (/ < k)}

= 9*β,oσ*, h... ik(
zβ> θβ) + {terms in σα, ^ . . . h (I < k)} . (4.23)

The next step is a discussion of the possible solutions of the consistency
relations restricting the coefficient functions of the section {σα}. At first notice that
(4.19) characterizes {σα>0} as a section of the bundle Lo over the split super
Riemann surface M o . Secondly, if there exists a solution of Eq. (4.23), this solution
is determined only up to addition of sections of the line bundle Lo -• M o . Therefore
the lowest coefficient function {σαs0} of a section of Lζ -> Mζ fixes all higher order
functions up to addition of further elements of H°(M0, Θ(L0))9 so

dimH°(Mζ9 Θ(Lζ)) ^ dimH°{M0, Θ(L0)) . (4.24)

If solutions of (4.23) only exist for k < n, an ansatz of the form

σα(zα, 6>α; 0 = ί1"1. C 1 " " - * 1 ^ . . . i w _. + 1 (^ β«) + * ' + ί f l. C ^ . . . * ^ . ) ,

2gf-2 fer ^ 2) (4.25)

gives a global section of Lζ^Mζ. In this case {σα>I 1 . . . I N_ιι+1} obeys relations
analogous to (4.19), and the nth order equation, which was the reason for the
obstruction, does not appear anymore.

Finally one observes that the glueing functions faβ(zβ, θβ; ζ) and the bundle
transition functions gaβ{zβ, θβ; ζ) are per definitionem always holomorphic in the
relative fiber coordinates z, θ. Furthermore a section {σa}eH°(Mζ9 0(Lζ)) depends
differentiably on the odd parameters ζj, but since the property of being holomor-
phic in the relative fiber coordinates z, θ is a local property, one only has to ensure
that each coefficient function in the power series expansion of {σα} with respect to
ζj is holomorphic.

To summarize, an arbitrary holomorphic section of Lo -• M o always allows the
construction of a holomorphic section of Lζ-^> Mζ, which together with relation
(4.24) leads to

dim #°(M ζ , 0{Lζ)) = d i m # ° ( M 0 , 0(L0)) (4.26)

and finishes the proof. •

A direct consequence of Eq. (4.26) is the following

Theorem. (Riemann-Roch). Let M be a compact super Riemann surface of genus
g and L a holomorphic line bundle over M, then

dim#°(M, β{L)) - d imtf^M, G(L)) - (11 l) c(L) = (1 - g\Q) . (4.27)

Proof Because of (4.26) the super Riemann surface M can be considered to be split.
In this case by (3.22) and (4.1) the cohomology groups H'(M, Θ(L)) are direct sums
of some cohomology groups on the reduced Riemann surface M r e d ,

H'(M9 Θ(L)) = H(Mred Θ(Lred)) ® ΠH'(Mted9 Θ(Lred ® ω r e d ) ) , (4.28)
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where the so-called parity change functor Π [28] is used to achieve the correct
parity of the second term. Therefore application of the ordinary Riemann-Roch
theorem gives

dim/J°(M, G{L)) - dim/fX(M, Θ(L)) - (11 l) c(L) = (1 - g\ 1 - g + c(ω r e d)) ,
(4.29)

yielding the desired result with the help of (3.24). •

5. Hyperbolic Geometry o

A more explicit way to represent compact super Riemann surfaces of genus g ^ 2 is
the tessellation of the super Poincare upper half-plane by Fuchsian groups. As
a preparation I will first consider superconformal automorphisms of the gener-
alized Riemann sphere. Automorphic forms will be introduced as the analogs of
sections of tensor powers of the canonical bundle over a super Riemann surface.
The last part of this chapter deals with the super Laplace operator Πp acting on
automorphic forms, especially with the number of linear independent zero modes
of D p , which is of interest in the calculation of the fermionic string partition
function.

5.7. Unίformization. One of the classical theorems of complex analysis states that
every simply connected Riemann surface is conformally equivalent to
C = (Cu {oo}, (C or Jf (Riemann, Poincare, Koebe). As was shown by Crane and
Rabin [7], unique generalizations C 1 ' \ C1 '*, Jf 1 ' { of these Riemann surfaces exist.
The reason is that the superconformal structure on C 1 ' \ (C1 ' ι or 3tf1'ι can always
be described by coordinates, whose transition functions have the form (4.1), so like
every split super Riemann surface C 1 ' \ (C1' * and fflγ'1 are completely determined
by their reduced spaces.

The super Riemann sphere (C1'1 can be covered by two open domains, glued by

(5.1)

But to determine the superconformal automorphisms of C 1 ' { i t is more convenient
to use homogeneous coordinates and to think of (C1'1 as a projective space,

(zl9z2,η)~(z'l9z'29η') :<> 3 A G ( C 1 ' 0 ) X : (zu z2, η) = (λzu λz2, λη) ,

~ . (5.2)

The notation / l 6 ( C 1 | 0 ) x means that λ is allowed to contain odd parameters, since
implicitly always families of supermanifolds will be considered. Expressing the local
coordinates on the two charts of C 1 ' 1 by the homogeneous coordinates of P 1 ' ι((C),

(5.3)
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Aut (C1'1 consists of invertible linear maps o n P 1 ' 1 (<C), being superconformal in the
local coordinates2 (5.3),

AutC 1 ' 1 c G L ( 2 | l , C ) . (5.4)

Writing

a b ε\

c d δ e G L ( 2 | l , C ) , (5.5)

α β e]

yields

z> = aB^Tr θ' = ^lifθ> (5 6)

if z, θ and z', θ' are the local coordinates of x9 x' e P 1 ' x (CC), respectively. Ensuring
the map (5.6) to be superconformal, the condition (3.4) results in (defining
k:= ad — be)

k + βa + 2δε = e2 ,

αe + εc — δa = 0 ,

βe + εd - δb = 0 . (5.7)

Eliminating e, (5 and ε, a square root ambiguity appears, which can be removed by
introducing a character vy = ± 1 ,

e = +

ε = vy^k(ab-βa). (5.8)

Calculating the determinant of the transformation y, one finds

(5.9)

but since γ acts on homogeneous coordinates of P 1 ] 1(C), without loss of generality

the choice sdet γ = vγ = + 1 can be made, leading to

k = 1 + ocβ . (5.10)

Inserting into (5.8) one obtains the general form of a superconformal automor-
phism on C 1 ' 1 ,

a b vγ((xb - βa)\

y = \c d vγ(ocd-βc)\, ad-bc=\+aβ. (5.11)

α i» vJl + βc

2 Simplifying notation, I will write GL(2|1, (C) even if the entries of a matrix are allowed to have
odd parity. Odd variables will be denoted by Greek letters as usual.
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In the absence of any odd parameters, y reduces to an ordinary Mδbius trans-
formation (with ad — be = 1) accompanied by a character vy = ± 1.

To characterize AutC1 '1 as a subgroup of GL(2|1, C), notice that every
yeAutC 1 ' 1 leaves invariant the canonical alternating bilinear form on C2 '1,

0 1 0\

/:= - 1 0 0 , (5.12)

0 0 1/

i.e. for all y e GL(211, <C) fulfilling sdet y = ± 1 the relations (5.7) are equivalent to

ysΊy = I . (5.13)

Matrices y having this property make up the superanalogue OSp(2| 1, C) of the
symplectic group [1, 28, 33], and since y and - y describe the same element in
Aut C1 '1, finally

^ . ,5,4,

Acting on local coordinates, a superconformal automorphism of the super
Riemann sphere takes the form

ez + d ' γ (cz + d)2'

~ cz + d cz + d'

The transformation rule for the D-operator (3.6) can be seen to be

D' — F D F m= (Dθ'λ'1 — v (cz 4- d 4- δθ) (5 16)

To find the superconformal automorphisms of the super Poincare upper halfplane
tf1'1 := {(z, θ) e (C1! 11 5(z) mod Jί > 0), one considers the two conditions y(z, θ) e
f̂111, \/(z,θ)e34?lli and y2eAutJf1 '1, which can be fulfilled by choosing all

coefficients in the map (5.15) to be real

(5.17)
{+1} '

In complete analogy to the classical case, every compact super Riemann surface
M of genus g ^ 2 can be represented [3, 23] as a quotient space 3#pl\1/Γ, where
Γ denotes a discrete subgroup of Aut 2tf{'{ having no fixed points. Γ is isomorphic
to the first homotopy group of the reduced Riemann surface Γ = π!(Mred). A trans-
formation (5.11) is said to act discretely and without fixed points, if the correspond-
ing transformation ymod^GSL(2, R) has this property. Therefore Γ — {1}
contains only hyperbolic elements, i.e. ymoάjV, VyeΓ — {t} is hyperbolic in the
usual sense (\a + d)modJ^\ > 2).

Choosing for some element of Aut Jf1 ' ι a representative with str y mod Jί > 0,
it is always possible [1] to achieve the form

_z
έ?2 0 0\

0 e~i 0 (5.18)

0 0 vj
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by conjugation in Aut Jf1 '1. Since the supertrace is invariant under conjugation,
comparing with (5.11) yields

2cosh^ = a + d + vγocβ . (5.19)

ly can be interpreted as a generalized length of the shortest geodesic in the
homotopy class corresponding to y.

5.2. Automorphic Forms. Let M = 3ful/Γ, Γ c A u t ^ 1 1 1 be a super Riemann
surface of genus g. Differentiable sections of powers of the canonical bundle ω (in
the sense of tensor products) can be represented on Jίf{'* by automorphic forms of
weight (p,q)9

= F*F*f(Z), VyeΓ} , (5.20)

where the shorthand notation Z:= (z9 θ) for the coordinates on the super Poincare
upper halfplane is used. Defining

Y:= y + Lθθ = Z ^ g g e ( T ( - l ? - 1 ) , (5.21)

it is possible to construct an OSp(2| 1, R)-invariant volume form on

ψ (522)
In contrast to the classical case, the scalar product on S(p, q),

a9>:=jdVY'+"fg, Vf,ged?(p,q) (5.23)
M

is not positive definite, < / / > can even be complex-valued.
The operator D = dβ + ffd? transforms under the action of y e Γ, Z' = yZ

according to

D' = FyD (5.24)

(compare (5.16)), therefore D maps an automorphic form of weight (p, 0) to S(p, 1).
Writing\_DP = D to indicate more clearly the weight of the automorphic formson
which D acts, the scalar product (5.23) allows to define the adjoint operator Dp ,

- θ)\ , (5.25)

/denoting the parity of the values (!) of/ Using Dp , the Laplace operator on the
super Riemann surface M reads

Up. £{p, 0) -> ί ( p , 0), Πp:= - 2D;DP^ ΠP = 2YDD + ίp(θ - Θ)D . (5.26)

Comparing with the ordinary Laplacian

Λp: <Tred(p, 0) -> ̂ r e d ( p , 0) , Δp:= 4d; dp = - 4y2dzδ, + lipyd, (5.27)
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the relation

ΠpΠioάj^ = Ap (5.28)

holds.
A consequence of the scalar product (5.23) failing to be positive definite is that

at first sight there is no such simple connection between dim ker Πp and dim ker Dp

as the corresponding one in the classical case

ker Δp = kerdp = H°(M, Θ(KP/2)), (5.29)

i.e. classically the harmonic p-forms are just the holomorphic forms of weight p. In
order to determine dimker D p one proceeds as follows: For a Fuchsian group
Γ a Aut J f 1 | 1 containing no odd parameters - in this case the super Riemann
surface M = 3tfpl\1/Γ is split - automorphic forms can be invariantly decomposed
as

/(Z, Z) =/0(z, z) + 0/i(z, z) + θf2{z, z) + Θθf3(z, z) , (5.30)

where each/^z, z) is a well defined classical automorphic form. Evaluating Πpf = 0

leads to

(z - z)d-Jx = - pf2, {(z-z)

The last two relations can be rearranged to give

p = 0: 3 z -Λ=0, δzf

p + 0: Ap+1f±=09 f2 -(

(5.31)

(5.32)

but using (5.29) one finds f2 = 0 for p Φ 0. So on split super Riemann surfaces the
number of linear independent harmonic p-forms is given by

dimker D o =

dim ker Πp = + 0 . (5.33)

To calculate dimker \JP in the case of M being a non-split super Riemann
surface, the same formalism as in Sect. 4.2 applies. Namely, deforming a split super
Riemann surface in the "odd direction," and using the fact that the property of
a section σeH°(M, S(ωp)) to be harmonic is a local one, the invariance of
dimker D p can easily be seen. So the classical Riemann-Roch theorem yields for
super Riemann surfaces of genus g

weight

Vύ-2
p=-ί

p = \
V = 2

dimker Πp

(0|0)
(OH)

(q\g)
(9\2g-2)

(5.34)
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The number of linear independent Dirac zero modes or harmonic spinors
q := dim ker dx is not topologically invariant. Therefore it is impossible to calculate
q using the Riemann-Roch theorem. But on a Riemann surface with fixed spin
structure, q mod 2 is invariant under deformation of the complex structure, i.e.
independent of the moduli [2]. In [22] it is shown that generally q is a discontinu-
ous function of the moduli, restricted by the relation

q^Ug+l). (5.35)

6. Application to the Fermionic String

The investigation of super Riemann surfaces was originally motivated by the study
of fermionic string theory [10,11,20,24]. In this section I will point out the
connection between worldsheet supersymmetry and the introduction of anticom-
muting coordinates, as well as the necessity of considering families of super
Riemann surfaces in order to describe a ghost-free fermionic theory. Reducing
Polyakov's functional integral to a finite dimensional integral over super moduli
space, the string integrand contains some determinants of the super Laplace
operator, which can be expressed by Selberg's super zeta functions. The explicit
structure of these relation depends on dim ker Πp, calculated in the preceding
section.

6.1. Supersymmetry. Using Polyakov's bosonic string action

j J » , (6.1)
M

the g-\oop contribution to the partition function of the closed string can be written
as a functional integral

Zg = J ®hmn@X» e ~ W - *"3 (6.2)

over all metrics hmn on the worldsheet M and all embeddings X: M -• R d of M into
d-dimensional euclidean spacetime. The Polyakov action is invariant under
a change of the worldsheet coordinates and Weyl rescalings of the metric hmn

hmn(σk)^Λ(σk)hmn(σk). (6.3)

A detailed treatment shows a Weyl anomaly, which exactly cancels by choosing the
dimension of spacetime to be d = 26 [31]. So in the critical dimension the
contribution of each surface M to the partition function only depends on the
conformal structure, leading to a reduction of (6.2) to a finite dimensional integral
over the moduli space JifF parametrizing all Riemann surfaces of genus g.
Unfortunately the Fock space of the quantum theory described by the action (6.1)
contains state vectors of negative norm (ghosts). Due to this fact a consistent
probability interpretation seems to be impossible. A possible way out is a restric-
tion of the Fock space by imposing the Gupta-Bleuler condition

<b\Tmn\b} = 0, (6.4)
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i.e. for all physical states | b > the expectation value of the energy-momentum tensor

Γ m " = 7 ^ (6-5)

has to vanish.
In order to describe fermions too, one introduces some anticommuting sections

φμ of spinor bundles over M besides the "bosonic fields" Xμ and extends the
Polyakov action (6.1) to

SF[h,X9 φ2 = J d2Zy/h(hzίdzX
μdsX

μ - φμ+d-zφ\ - φμ-dzφ
μ.) . (6.6)

M

In addition to reparametrization- and Weyl-invariance, the new action also is
invariant under global worldsheet supersymmetry transformations

δXμ = ζ+φμ

++ζ~φμ-, δφμ

+ = -ζ+dzX
μ, (6.7)

where ζ ± denotes a spinor, constant with respect to the worldsheet M. In the
fermionic case, it has been found [6, 29, 32], that a cancellation of the Weyl
anomaly can be achieved by choosing the dimension of spacetime to be d = 10. To
eliminate ghost states in the quantized theory, one demands

<f\TmΛ\f>=09 <f\Jmn\f>=0, (6.8)

the second Gupta-Bleuler condition arising from an additional conserved current
Jmn corresponding to the worldsheet supersymmetry.

Calculating the commutator of two global supersymmetry transformations
(6.7) results in (considering only the simpler case ζ~ = 0)

ίδsuδS2W+=2ζΐζidzφ
μ

+. (6.9)

Since the partial derivative dz can be considered as the generator of spatial
translations

δτf(z) :=f(z + e) -f(z) = edzf(z) + O(e2), (6.10)

and spatial translations commute among themselves as well as with global super-
symmetry transformations, the supersymmetry algebra reads

LδτuδT2l=O = lδs,δτl lδsl9δS2 ] = 2δτ. (6.11)

Searching for a differential operator generating the supersymmetry transforma-
tions (6.7) fails on an ordinary Riemann surface, because δs mixes Xμ and φμ. But
introducing an anticommuting complex coordinate θ besides z on the worldsheet,
and putting bosonic and fermionic fields together to build one superfield

Φμ(z, z, θ) = Xμ(z, z) + θφμ(z, z), (6.12)

the transformations (6.7) can be written as

D = dθ + θdz. (6.13)
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Especially, acting on the coordinates z, θ one sees that supersymmetry transforma-
tions are generalized "translations" in superspace

=> δsΦ
μ = Φ{z + ζ+θ,θ + ζ+) - Φμ{z, θ) . (6.14)

The Gupta-Bleuler conditions (6.8) so far imposed "by hand" can be built in the
theory by demanding the fermionic string action to be locally supersymmetric. This
can only be done by introducing a superpartner of the worldsheet metric, the
gravitino field χ, which is an anticommuting section of the bundle K® K~*. Now
writing

S[£, φ ] = J d(vol)sdetEM

ADΦμDΦμ , (6.15)
M

where the superdeterminant of the frame field EM

A is a function of the worldsheet
metric and the gravitino field, describing the different geometries on the world-
sheet, one has an action which is locally supersymmetric, i.e. invariant under
a generalized version of the transformations (6.7) with ζ ± not necessarily constant
[11]. Furthermore, the relations

^ f ^ 0 (6.16)

can be deduced from the action by using all invariances of S[_E9 Φ]. So the
corresponding string theory is free of ghosts from the beginning.

Investigating all invariances of the action (6.15), one observes, that S[£, Φ]
only depends on the superconformal structure on M, so in complete analogy to the
bosonic case the functional integral expressing the #-loop contribution to the
fermionic partition function can be reduced to a finite dimensional integral over the
moduli space Jίg parametrizing all super Riemann surfaces of genus g [4, 9, 21]

Zg = J d(sWP)[sdet'(- D 0

2 ) Γ ^ [ s d e t ' ( - D _ 2

2 ) F , (6.17)

d(sWP) denoting the integration measure in Jίg, the Weil-Petersson measure, and
the primes indicating suppression of zero modes.

It should be noted that the fermionic string has to be well distinguished from
the Green-Schwarz superstring. Since the spectrum of the fermionic string - also
denoted as the Ramond-Neveu-Schwarz string [20] - contains a tachyon, a trun-
cation by means of the GSO-projection is necessary to obtain a consistent theory.
This somewhat unnatural procedure can be avoided by using the Green-Schwarz
superstring, which in addition to the worldsheet supersymmetry possesses a space-
time supersymmetry from the very beginning. Using the light-cone gauge quantiz-
ation, it has been found that the spectra of the Green-Schwarz superstring and
the Ramond-Neveu-Schwarz string with additionally imposed GSO-projection
coincide [20].

6.2. Calculating the Partition Function. In the case of genus g ^ 2 the determi-
nants sdet(— D p

2 ) can be expressed via Selberg's super zeta functions [21]

zΛs):= Π Π [1 - v\e~<s + *>'>] , 9t(s) > 1 , r = 0, 1 (6.18)
{γeΓ}p k = 0
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(cf. (5.19)). Defining

):= ( # bosonic zero modes of Ώp)

— ( # fermionic zero modes of Πp), (6.19)

table (5.34) shows that

A n ( - 2 ) = 0, A n ( 0 ) = l - 2 q . (6.20)

Using the relation

one finds, since ord _±Z1(s) = — An{0\ Z x ( i + ε) ca: a ε2ί* x and Z0(s) has a zero
s~ 2

of order 2# — 2 at 5 = 0,

sdet(ε2 - D 0

2 ) ~* ^ u v ; u

2 ^ ε 2 - 4 , ( 6 > 2 2 )

(2gf — 2)! α

A consequence of the functional relation of Selberg's super zeta functions

Z1(i-s)Z0(s)

is

Z^- 2 ) (0) = ( - l ) ^ V " - 2 ( 2 0 - 2)! Z o ( l ) | ^ , (6.24)

so suppression of the zero modes leads to

s d e t ' ί - D o 2 ) ^ - ! ) 1 - 2 * π * " 1 ^ ^ ^ ^ . (6.25)

L a J z i ( ! )

For p = — 2 no zero modes appear, and

lim sdet(ε2 — Π - 2

2 ) = 4 1 - ί ? - — ^ 4 g _ 4 ) (6.26)

results in

sdet(— D _ 2

2 ) = - ° 3 * . (6.27)

Separating

- p ^ , 2 β - l > 0 ,
j > (6.28)

n ( i + ε ) , 2 ( ? - l < 0 ,
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and using the relation (5.35), the 2-loop contribution to the fermionic partition
function can be written as

(— i)[res =iZ1(s)']5 , even spin structure on M r e d ,

z ' [Zi( i ) ] 5 , odd spin structure on M r e d .

However, since the Selberg super zeta functions are defined in terms of the
geometrical structure, i.e. the length spectrum of the underlying surface, the lack of
information about the complex structure makes it impossible to carry out the
GSO-projection explicitly.

7. Summary

In this paper super Riemann surfaces were discussed from two different points of
view. The description via glueing open superdomains was found to be very
convenient for deforming the superconformal structure in the sense of the
Kodaira-Spencer approach [25]. Representing super Riemann surfaces as a funda-
mental domain in the super Poincare upper half-plane results, on the other hand, in
quite explicit relations offering (in my opinion) the simplest way to consider
properties of the super Laplacian.

The central result proved in this work, the invariance of dimH 0 (M ζ , Θ(Lζ))
under purely odd deformations of super Riemann surfaces, has led to two conse-
quences. On the mathematical side, a generalized version of the Riemann-Roch
theorem has been established for compact super Riemann surfaces, and on the
physical side, by giving the explicit relations expressing determinants of super
Laplace operators in terms of Selberg's super zeta functions, at least the 2-loop
contribution to the fermionic string partition function has been stated.
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