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Abstract. Quantum (difference) Knizhnik-Zamolodchikov equations [S1,FR] are
generalized for the i?-matrices from [Chi] with the arguments in arbitrary root systems
(and their formal counterparts). In particular, QKZ equations with certain boundary
conditions are introducted. The self-consistency of the equations from [FR] and the
cross-derivative integrability conditions for the r-matrix KZ equations from [Ch2] are
obtained as corollaries. A difference counterpart of the quantum many-body problem
connected with Macdonald's operators is defined as an application.
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0. Introduction

In a recent paper [FR], the so-called quantum .R-matrices (solutions of the Yang-Baxter
equations) were used to introduce certain systems of difference equations. Their quasi-
classical limits are the r-matrix Knizhnik-Zamolodchikov equations defined in [Ch2]
(see also [Ch3]). To be more precise, the systems of differential equations from the
latter are connected with the root systems (A, B, . . . , G) describing the structure of
the arguments. The construction from [FR] corresponds to the r-matrix equations with
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the arguments of type A (the values are in tensor products of representations of a
given Lie algebra of any type). The main purpose of this paper is to involve arbitrary
root systems and give a uniform proof of the self-consistency of the arising systems
of difference equations.

The equation from [FR] in 2 x 2-matrices and for a special choice of the difference
interval coincides with the Smirnov equation [SI] inspired by certain problems from
the quantum inverse scattering technique (Faddeev and others). However the approach
from [FR] is different. Frenkel and Reshetikhin deduced their system from a g-version
of the conformal field theory (for the basic trigonometric i?-matrices). See also [S2]
where a similar construction was considered for the Yang iϋ-matrices.

We note that the interpretation of the general iϊ-matrix equations from [FR] and
the present paper (we call them QKZ) via either QIST or CFT is unknown. As for
the r-matrix KZ equations with the arguments of type A, a deduction from the theory
of Kac-Moody algebras was obtained in [Ch2, Ch6] for any r. It is not purely formal
but gives a way of integrating these equations. For example, a generalization of
Schechtman-Varchenko theorem [SV] was found by means of this interpretation (see
[Ch6] for details). This approach is connected with the technique of vertex operators
for ordinary KZ equations [KZ]. Hopefully (affine) quantum groups could help in
integrating QKZ equations as Kac-Moody algebras do for the classical ones.

We will discuss here neither the interpretation nor the integration. Certain formulas
(and references) can be found in [SI, FR, S2]. It is worth mentioning that particular
cases of QKZ equations (and some other related difference equations) were obtained
by Aomoto, Kato, Mimachi as a development of the classic theory of g-special func-
tions (see e.g. [AKM]).

Given an arbitrary quantum .R-matrix in the sense of [Chi] (with the arguments
from any fixed root system - see below) we construct QKZ which is a set of difference
(or more general) equations. If R = 1 + hr + o(h) for a proper r then the quasi-
classical limit (h —• 0) of QKZ is the corresponding r-matrix KZ equation from
[Ch2, Ch3]. One can obtain a formal version of QKZ by considering arbitrary (pairwise
commutative) automorphisms instead of the independent translations of the arguments.
The quantum iϋ-matrices for the classical root systems (A, B, C, D) and for G describe
certain theories of one-dimensional factorizable particles on a segment with moving
endpoints ([Chl,Ch5]). It makes the definition of QKZ rather visual. As for E, F,
such an interpretation is unknown. We note that the corresponding QKZ are closely
connected with the so-called monodromy and transfer matrices from the theory of
integrable one-dimensional models.

The principal aim of the present paper is to define QKZ. We also give two con-
crete examples of .R-matrices, based on [Chi] and [Ch3]. The dependence of the
arguments is rational and respectively trigonometric, the root system is arbitrary. As
an application, we define a difference counterpart of the Calogero quantum many-
body problem [C] and prove the commutativity of the arising difference operators
("the integrability"). The comparison with Macdonald's difference operators for the
g-Jacobi polynomials seems to be very fascinating (see [M]).

From an abstract point of view, the quantum jR-matrix can be introduced as a
one-cocycle on the corresponding Weyl group. Our key construction is in extending
this cocycle to the affine completion of the Weyl group by means of the lattice of
the weights. It gives a more direct way to establish the connection from [Ch2, Ch3]
between quantum Λ-matrices and r-matrix KZ equations.

This paper is organized as follows. We give the necessary properties of affine root
systems in Sect. 1. The main purpose is to make the definitions quite constructive. Sec-
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tion 2 contains the main theorems on the β-matrix cocycles on the affine Weyl groups.
The definition and the self-consistency of the quantum Knizhnik-Zamolodchikov equa-
tions from Sect. 3 result directly from these theorems. We discuss the formal theory of
the monodromy representation and consider examples (in particular, the quasi-classical
limits). The main application is in constructing difference Calogero operators. Sec-
tions 4, 5 are devoted to the classical root systems. We give a geometric interpretation
for the corresponding QKZ. A discussion of certain connections with Macdonald's
operators can be found in the Appendix.

1. Affine Root Systems

We do not give (complete) proof if the statement is well-known (easily verified by the
tables of [B]). The main facts are valid for the non-reduced root systems as well. See
[L] for the necessary details (and [B] for the basic properties of affine root systems).
As for the dual roots and weights, our notations are different from those of [B]. We
use the letters A, B instead of QV,PW.

We fix a euclidean form (v, v') on R n 3 υ, v' and a root system Σ — {a} c R n

of type An, Bn, . . . , G 2. Given a = [α, k] for a G Σ, k G Z,

sά(v) = v - ((v, α) + k)av , α v = 2α(α, α ) " 1 (1.1)

is the orthogonal reflection in the affine hyperplane (α, υ) + k = 0. The roots are
identified with the pairs [α,0]. We will use the Weyl chamber C and the set of
positive (a > 0) roots Σ+ with respect to the set αi, . . . , an of simple roots from
the corresponding table of [B]. Let

a0 = [-0,1], 50 = saQ, Si = sa. (1 < i < ή), (1.2)

where Θ G Σ is the maximal positive root.
Later on, ά = [a,k] will be considered as vectors in R n x Z with the natu-

ral addition and multiplication by numbers. The action of W on ά is via the first
component.

The completed affine root system, its subset of positive roots and the affine Weyl
chamber are as follows:

Σa = {a = [a,k] e Σ x Z} , Σ% = {a G Σa, k > 0 or k = 0 < α} , (1.3)

0, Li = La., Lά = {ve Rn, (α, v) + k> 0} . (1.4)
2=0

We use the same notation a > 0 for affine positive roots. One has:

Σ+ = {a,Ce La} cΣ$ = {a,Ca c Lά} , (1.5)

Σ = Σ+ U {~Σ+} c Σa = Σ% U {-Σ%} . (1.6)

The Weyl group W is generated by {sa, a G Σ} and, moreover, by {s*, 1 < i <
n}. The following relations are defining:

s\ = \ (sisj)
m = l for m = 2,3,4,6, (1.7)

where m = 2 if α^ and a0 are disconnected (the corresponding indices are not
neighbouring) in the Dynkin graph Γ. Otherwise, m = 3,4,6 when 1,2,3 lines
respectively connect aι and otj in Γ.
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The affine Weyl group Wa = (sa, OL € Σa) is generated by {si, 0 < i < n}
with the same relations (1.7), where αo is identified with the additional vertex of the
completed Dynkin graph Γa (see [B]). The number of the lines between α 0 and α^
in Γa gives the order m of SiSo or soSi as above. We note that m coincides with the
order of SΪSQ or SΘSZ, the number of the lines (and their direction) is the same as for
the pair {—θ,ai}.

Let us introduce the dual simple roots and fundamental weights together with the
corresponding lattices:

a { = a ( = 2θLil(θLi, α * ) , ( A , OL3) = δ i 3 , l < i , j < n , (1.8)
n

ai = (α v, a e Σ) C B = 0 Zh , (1.9)
i=\

n

where δij is the Kronecker delta. In the sequel, we will use A+ = φ Z+a>ι,

B+ = φ Z+h and consider vectors x G R n as the affine shifts (translations)
f , ^ c R n . (1.10)

The group B 3 b acts on the set {L&, a = [&,k] e Σa}, the set {sά} and
on Σa:

b'(Lά) = L~β , b's&Q/r1 =s0, β = b'{ά) = [a, k - (6,a)]. (1.11)

The natural action of W on A, B coincides with the action of W on A\ B' by
conjugations:

wb'w-1 =wφ)', weW,beB. (1.12)

Proposition 1.1. a) 77*e gr6)wp Wa contains A' and is isomorphic to the semi-direct
product ofW and A!':

a' = sasάeWa if α = α v , ά = [ α , l ] , aeΣ. (1.13)

b) The group Wb generated by W and B' is the semi-direct product of these groups.
As an abstract group, it is generated by {si, 1 < i < n} satisfying (1.7) andpairwise
commutative {b'if 1 < i < n} with the following defining cross-relations:

sφ'jSi = Si(bj)r = (bj - δijCLi)', l<i,j<n. D (1.14)

Let Γo be the subset of the vertices of Γ (identified with α*, 1 < i < n) which can
be obtained from α 0 by automoφhisms of Γa. This set is empty for î g, i<4, G2. We
introduce Γo* c Γo:Γo* = {a{} for A, B,E6,= {an} for C, D2m+\,E7,= {au an}
for D2m, 1 < m G N, = I otherwise. The numeration is from [B],

Corollary 1.2. The group Wb is generated by {b'p, p e Γo*} over Wa (as well as B
over A). The following relations (together with (1.14) and the commutativity of {bf

p})
are defining for this extension:

sobpso = bf

p-tf, t = θ\ φ'py eA'cW". (1.15)

Here v = n + 1,4,3 respectively for An, D2m+i, Ee, and v = 2 in the remaining
cases when /Q Φ 0.
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Definition 1.3. a) The length I — l(w) ofw G Wa is the length of the shortest possible
(reduced) decomposition

w — Si{ . . . sl2Siχ 0 < ir < n, l(id) = 0. (1-16)

b) The length l(w) ofwE Wb is the number of elements in the set (see (1.4))

Xw = {a G Σ% w~\Ca) t Lά} (1.17)

This definition coincides with a) for w G Wa.

The proof of the equivalence of a) and b) results from the following explicit
description of Xw. Given a decomposition (1.16),

Xw = {Xi1,slί(\i2),siίSi2(λi3), . . . , w~ιs^X^)} . (1.18)

This can be either extracted from [B] or easily proved by induction on /. D

Proposition 1.4. The following conditions for x,y G Wb are equivalent:

a) l(xy) = l(x) + l(y), b) λ^ C λxy , c) y~ι(Xx) C λxy .

// they are imposed then

Ky = \y U y-\\x) , λy Π V~l (Xx) = 0

Proof Let us verify that Xxy\Xy = y~ι(Xx) Π Σ+ for X'y = Xy Π λ^^. Indeed, if
a G λίC2/\λ/

?/, i.e.

(xy)-ιCa<£L&Dy-ιCa for ά > 0 ,

then x " 1 ^ 0 ςzί Ly(&) D Ca and y(α) G λ^. The converse is clear as well. Hence
Xy C Xxy, y~ι(Xx) C λ x y , and Xy Π ̂ /"^A^) = 0 if l(xy) = l(x) + /(2/)

Let us suppose that λ y c Xxy and check that y~ι(Xx) C i7+. If ά G λ x and
y~ι(ά) < 0, then λ y 3 L_ά = —Lά ^ λ ^ . This contradiction proves the equivalence
of a) and b). As for c), it is equivalent to b) for y = x~ι, x — y~ι [since λx-i =
-x(Xx)] and therefore to a) because l(x) = l(x~ι). Π

Let î o be the longest element in W relative to the above length, wo{J} the
longest element in the subgroup W{ J} C W generated by {ŝ , 1 < i < n, i φ J}
for J = {j}, {j,/}, 1 < j , j ' < n. These elements are involutive. We introduce

σj = wo{j}wo, Tj = b'3σj for α^ G Γo. (1.19)

Proposition 1.5. a) 77ze ̂ ^ 5 = {id,σj} dW,T = {id.Tj} c W6, α^ G Γo, αr^
subgroups. They are generated by {σp} and {τp} for ap G Γa and are isomorphic to
B/A with respect to the maps σ3 —> bj —̂ Tj. The group Wb is the semi-direct product
ofWa andT.
b) The elements of S preserve the set {—θ, a\, . . . , an} and may be embedded into
Aut(i^α) after the identification of —θ with the vertex corresponding to a$. The group
T leaves the set {αo,, . . . , an} invariant and induces the same subgroup in Aut(Γa)
as S. In particular,

σj(-θ) = OLj = Tj(a0) T={we Wh, l(w) = 0} .

The multiplicities of ctj G i~b in arbitrary a G Σ+ are 0 or 1.
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Proof. It follows from the tables of [B] that Oj for aj G I~b takes the set {α*, 1 < i <
n} except one element onto {c^, i φ j , 1 < i < n}. The image β of the excluded
element is a root having the same scalar products with α^, 1 < i φ j < n as — θ.
Hence β = — θ + mbj for a proper m G Z. The tables show that m has to be zero for
£ 6 , EΊ. As for A, B, C, D, it follows from the direct description of σj. The invariance
of {—θ, αi, . . . , α n } and the formula σj(—θ) — aj — Tj(ao) result from the same
considerations. It gives the corresponding properties of T. The statement about the
multiplicities is clear, since aj are of multiplicity one in θ and the latter is maxi-
mal. D

We will describe the following λ-sets for later reference.

Proposition 1.6. In the above notations,
a) K% = {ae Σ+, (6i,α) φ 0}, 1 < i < n;
b) \ y = {ά = [a, k] eΣ$,ae Σ+, (6, a) > k > 0} for b e B+ = 0 bif-
c) λσ_i = λ ^ ifaj G Γ 0 ; ί=ι

d) λJ=\sθV[θ,l]fort = θ;
e) SΘ = wo\l,n}wofor An and SΘ = σiQ

for the other types, where α^0 is the unique vertex joined with ao in Γa.

Proof The right-hand side of a) belongs to λσ. [see (1.18)]. The cardinality of λσ.
(the length of σ )̂ is equal to the order of Σ+ minus the number of positive roots
written without α^. It gives a). Assertion b) is valid because a G λ^ iff —b £ closure
(La), where a G Σ+, b G B+. The coincidence of the sets from c) follows from a),
b). Statement d) is clear, since t' = SOSΘ [apply (1.18)]. As for e), it can be checked
by the tables of [B] (cf. the proof of Proposition 1.5). D

2. R-Matrices

We fix an arbitrary C-algebra &. Our aim is to introduce J^-valued (abstract) non-
affine R-matrices like in [Chi] (see also [Ch3], Proposition 3.3) and then to extend
them to affine ones. We use the notations from Sect. 1. Let us denote Rα + Rβ C R n

by R(α,/3) for a,βe Σ.

Definition 2.1 a) A set R = {Ra G i^, a G Σ+} is an R-matrix if

= RβRa , (2.1)

RaRot+βRβ — RβRa+βRa ? (2.2)

RctRa+βRθί+2βRβ — RβRa+2βRcί+βRθί j (2.3)

RaR3a+βR2a+βR3a+2βRa+βRβ = RβRa+βR3a+2βR2a+βR3a+βRa j (2.4)

under the assumption that α, β G Σ+ and

R(α, β) Π Σ = {±7}, 7 runs over all the indices (2.5)

in the corresponding identity.
b) An affine R-matrix Ra — {Ra G ̂ , a e Σ+} has to obey the same relations for
oκ, β G Σ+ with the condition that

where {7} is the set of the indices in the corresponding relation ((2A)-(2A)for a, β).
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c) A closed R-matrix (or a closure of the above R) is a set {Ra G &, a G Σ}
(extending R and) satisfying relations (2A)-(2A)for arbitrary (maybe negative) a, β £
Σ such that the corresponding condition (2.5) is fulfilled. Affine closed R-matrices are
defined in the same manner. D

The condition (2.5) for identity (2.1) means that

(α,/?) = 0 and R(α,/3) Π Σ = {±α, ±β} , (2.6)

i.e. there exists w G W such that a = w(ai), β = w{aι) for simple oci ̂  ctj (1 < i,
j < n) disconnected in Γ (check the equivalence). The same holds true for Ra, when
0 < i, j < n, and for the closed counterparts of R, Ra as well.

The corresponding assumptions for (2.2)-(2.4) give that α, β are the simple roots
of a certain two-dimensional root subsystem in Σ (or Σa) of type A2, B2, (?2 Here
α,/3 stay for a\,OLΪ in the notations from the figure of the systems of rank2 from
[B]. One can represent them as follows: a — w(ai), β = W(OLJ) for a proper w from
W (or from Wa) and joined (neighbouring) α ^ α j .

Definition 2.2. a) Let us suppose that the R-matrix from Definition!.1 is closed and

RaRβ = RβRa for long roots such that (a, β) = 0. (2.7)

In the case of G2, we add conditions (2.2) and (2.7) respectively for long a,β and

when a is short but β is long. We call such an R-matrix extensible.
b) If the group A 3 a (see (1.9)) operates on the algebra β* 3 f (written f —• a(f))
and

a(Ra) = Roc whenever (a, a) = 0, a G A, a G Σ , (2.8)

then the extensible R-matrix is called to be of a-type. If

b(Ra) = Ra whenever (b, a) = 0, b G B, a G Σ (2.9)

for a certain action of B (see (1.9)) on ^, then it is ofb-type. D

We note that condition (2.1) does not result in (2.7) since α, β in the latter are not
supposed to satisfy (2.6). However in the most interesting examples, (2.1) holds true
for arbitrary orthogonal roots without any limitations.

We will use the following formal notations for R, Ra and their closed counterparts:
wc = c for c G C,

w(cRά) = cRw{a),
 w(cRάRβ) = cRw(ά)Rwφ), . . . , (2.10)

where w is from W, Wa or Wb, the roots ά,β are from the corresponding system.
We do not assume here that either W or its affine extension acts on $F.

Mathematically, it is convenient to introduce the root algebra ^ generated by
{Ra, a G Σ} considered as independent variables satisfying the relations from Def-
initions 2.1, 2.2, a). Then (2.10) can be uniquely extended to an action of W on J^.
The algebra 3Fa and the universal action of Wa on it can be defined in the same
way.

Theorem 2.3. a) If R is an R-matrix then there exists a unique set {Rw, w G W}
satisfying the (cocycle) relations

Rxy —V RχRy , RSi = Ri = Raι Rid ~ 1 5 (2.12)
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where 1 < i < n, x, y £ W, and l{xy) = l(x) + l(y). Given w and an arbitrary
reduced decomposition (1.16) with 1 < ir < n,

Rw =w SiiRh . . . snsnRi3

 shRhRiλ . (2.13)

The same holds true for Ra ifx,y £ Wa and 0 < i, ir < n.
b) Given invertible R (or Ra), let R (or Ra) be its unique extension as follows:

R_& = Rg\ άe Σ+ (or Σa

+). (2.14)

Then R is a closure of R. Moreover, it satisfies relations (2.12), (2.13) where x, y are
arbitrary and the decomposition of w is not assumed to be reduced. The same holds
true for Ra.
c) Let us suppose that a closed R-matrix is of a-type (Definition2.2) and put (see
(1.11))

afRa = Rά = a(Ra), if ά = a'(a) = [α, -(α, a)] (2.15)

for arbitrary a G Σ, a e A with respect to the action of A on β~ (f —• a(f)). Then
Ra are well-defined (depend on the corresponding scalar products (α, a) only) and
form a closed affine R-matrix. //"(2.14) is valid for {Ra} the same is true for {Ra}.

Proof The roots {λ ί p Siι(X%2),siιSi2(Xi3), . . . , ^ " ^ ^ λ ^ ) } [see (1.18)], which are
the indices of the jR-factors in (2.13), appear positive since (1.16) is reduced. The
group W is a Coxeter group [see (1.7)], the right-hand side of (2.13) does not depend
on the choice of decomposition (1.16) due to Definition2.1. Hence {Rw} may be
defined by (2.13) and satisfy (2.8). The uniqueness of this set is clear because (2.13)
results from (2.12). This reasoning can be applied to Ra as well.

As for b), the transitivity of the action of W (or Wa) on the set of Weyl cham-
bers and a direct consideration of the root systems of_rank2 prove that R (or ^ α )
is a closure of R (Ra). Relations (2.12), (2.13) for R,Ra follow from a). Let us
verify c).

The elements Rά are well-defined by virtue of (2.8). Arbitrary elements ά,β e Σa

satisfying (2.5α) can be represented as ά = w(ai), β — w(otj) for (1 < i φ j < n)
and a proper w e Wa. If ij φ 0 then the corresponding relation [see (2.1)-(2.4)] is
valid because R is an .R-matrix. Let us suppose that ij = 0 and the root system is
not of type G2.

If Oίi and ctj are connected in Γa then the conjugation by another suitable w will
give a pair ij φ 0. These pairs have been already considered. Otherwise one may use
the conjugations by t' £ A, t = θy and SQ to reduce the problem to the case when
a = θ, β = ai, (#, ai) = 0. It immediately results in condition (2.7). The system G2
has to be treated separately. We arrive at the remaining relations from Definition 2.2.

The compatibility of the construction from b) and that from c) is clear. D
One may reformulate c) in a formal way by means of the algebras 3F and 3Fa

(see above). We obtain that 3Γa is the universal extension of <F equipped with an
action of A satisfying relations (2.8).

In the next sections we will use the following generalization of this theorem
involving a character (a homomorphism) χ:T ^ B/A —» C*.

Theorem 2.4. a) Given a closure of an R-matrix R ofb-type, let the set {Rw, w £
Wa} be from Theorem2.3, c). Then it can be uniquely extended to the set \RW, w £
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Wb} satisfying relations (2.12) for arbitrary x, y G Wb (l(xy) — l(x) + l(y)) by means
of the pairwise equivalent conditions

Ry. = χ(τj)Rσ-ι <* RTj = χ(τj) for aά G Γo . (2.16)

b) Arbitrary Rw in the above set is the product of R& when ά runs over \ w (see
Proposition 1.6). It does not depend on the choice of the closure of R if λw contains
no elements ά = [α, fc] with a < 0 (we call such w G Wb dominant). Moreover, the
elements Rwfor non-dominant w vanish if the following closure of R is taken:

R+ = {Ra, R__a

 άM OifaeΣ+}. (2.17)

If the closure R is from Theorem 23, b), then formulas (2.12) are valid for any
x,yβWb.

c) The elements from B'+ = 0 Zty are dominant. Given b,c G B+, l((b + c)') =
l(bf) + l(c') and *=*

(2.18)

Rθ, = R[θ,i]RSθ , Ry% = &Wσ-ι , 1 < i < n, (2.19)

where ̂  w α product of R^ for all a = [a, k] such that a G Σ+, φi,a) > k > 0.

Proof. If w G VFα then Rw is a product of R& for ά G λ^ in a certain order [see
(1.18) and (2.13)]. Arbitrary w G Wb has a representation w = TjW for an appropriate
α^ e Γo, w £ Wa. It gives the uniqueness of {Rw, w G Wb} and the statements
from b). As for c), formulas (2.17), (2.18) result from a) and the relations

λ6, C λy+cf , λσ-i C λy (2.20)

(see Proposition 1.4, b) and Proposition 1.6, c)). The equivalence of the two formulas
from (2.16) is clear since ftj = ησj1 and /(r^) = 0. The existence of {Rw, w G Wb}
follows directly from

Lemma 2.5. As an abstract group, Wb is generated by Wa and T with the relations

TjSi = SiiTj , where a^ = Tj(ai), 0 < ί, i' < n, OLJ G ΓQ , (2.21)

(see Proposition 1.5). D

Given Wb 3 w = TjW, W G Wa, put Rw = χ(rj)R^. It gives (2.16). Let us prove
(2.12) for x = TjX, y = rpy G Wb satisfying the condition l(xy) = l{x) + l(y). Here
x,y G Wa, (Xj,ap G Γo. One has:

l(x) = /(*), % ) = /(y), Z(5§) = 1(2) + Z(y)

for z = Tplxτp G VFα, since Z(TJ) = Z(rp) = 0. Hence,

iky = i ^ rpΛ^ = X(τjτpy~l R2Rϋ = y~ιRxRy

because TPR2 = R& [use (2.21), (2.13), and (2.10)]. D

We will show that the constructions of the above theorems are compatible with the
embeddings of the Dynkin graphs. Let Γ be a connected subgraph of Γ with m> n
vertices (representing the simple roots άi, . . . , ά m ) . Then every α^ (1 < i < ή)
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coincides with a proper ά^* (1 < i* < m). We will fix the notation i —> z* for the

corresponding map Γ —> Γ. The set Σ contains Σ in the natural way, Σ+ D Σ+.

Proposition 2.6. a) Given a closed R-matrixfor Σy the set

{R& = Ra when a G Σ, Rά = 1, elsewhere (2.22)

is a closed R-matrixfor Σ 3 ά. If the initial R-matrix R is ofb-type so is its extension
(2.22) for the following action of B:

δ<*(/) = &»(/), ¥ / ) = / i f i ^ i* for 1 < i < n. (2.23)

b) L^ί W51 suppose that the above character \ on B/A is the restriction of a certain

character χ on B/A with respect to the embedding bι —» b(i) = 6̂ * :B —> 5

β ^ constructed as in Theorem2.3 for R coincides with Rw for w G Wa C l
Λ def Λ

i2b/ = Ry(z) = Ry for 1 < i < n.

Proof Let α,/? be from Σ. Given a certain formula (2.1)-(2.4), if there exists an
index 7 from Σ\Σ, then not more than one index (among all the indices in the
considered formula) can be from Σ. So the validity of the required relation is clear in
this case [see (2.22)]. Otherwise {7} C Σ and we arrive at the relations for R only.
The compatibility of Definition 2.2 with extension (2.22) follows directly from (2.23).
As for b), the coincidence of Rw and Rw for w e Wa is evident. The description of

the λ-sets for b\ and b'(i) = b'^ gives the other statement (see Proiposition 1.6, b) and
Theorem 2.4, b)). D

For instance, let χ = χ = 1 and Γ C Γ be the natural embedding of Γ for E$
or EΊ into Γ of type £78. Then Λ = B mά Wa = Wb. Therefore Theorem 2.4 is
equivalent to Theorem 2.3 for E% (in contrast with E^^). There is no need to guess
formula (2.16) in this case. However the latter for Eβ, Eη and arbitrary given R can
be deduced from Theorem 2.4 applied to R constructed by means of Proposition 2.6.
Let us check it.

One has λσ-i C λ σ -i ( i ) C λ ^ φ where σ~ι(i) = σ^1, &j is defined by (1.19) for

W (σ» G W e W), 1 < i < n. In particular, Rbι{i) = Rσ-\ when i = 1,6 for £ 6 and

i = l ϊoτ EΊ. We have arrived at formula (2.16) for £β j 7 .

The same deduction of Theorem 2.4 from Theorem 2.3 for a suitable bigger Γ may
be applied for other root systems. Roughly speaking, formula (2.16) is necessary to
ensure the compatibility of the above construction with the embeddings of Dynkin
graphs.

3. The Definition of QKZ

We fix a i^*-valued i^-matrix R (β~* is the group of invertible elements in i^) .
In this section, R = {Ra, a G Σ} is the closure of R from Theorem 2.3, b). Let us
suppose it to be of 6-type in the sense of Definition 2.2. We will denote its affine
completion (2.15) from Theorem2.3,c) by Ra. It satisfies (2.14). Let {Rw, w G Wb}
be the set from Theorem 2.4 [defined by (2.12) for arbitrary x, y G Wb]. In particular,
WRW = Rw-ι-
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Definition 3.1. The quantum Knizhnίk-Zamolodchikov equation (QKZ) is one of the
following equivalent systems of relations for an element Φ G 3?:

a) bϊ\Φ) = RyΦ, 1 < i < n; (3.1)

b) b~ι(Φ) = RyΦfor anybeB; (3.2)

c) the cocycle {Ry, b' G B} is the coboundary ofΦ. D

We will not use c) in this paper and give this condition to connect our definition
with the regular terminology from the theory of cohomologies of abstract groups only.
The equivalence of a), b) follows from (2.18). Actually these relations are nothing
else but the self-consistency conditions for (3.2). The special choice of the closure
(Theorem 2.3, c)) ensures the validity of (2.18) for arbitrary b,c G B (not only from

Theorem 3.2. a) Let us assume that the action ofB is extended to an action ofWb 3 w
on the algebra $F 3 f (/ —> w(f)) by C-automorphisms and

w(Ra) = Rw(a)for arbitrary a e Σ,w eW. (3.3)

Then w(Ra) = Rw{&)for w G Wb, a G Σa and R^from Ra (see above). In particular,

w(R&) = wRά, where the latter is from (2.10), and Ra is unitary: RZι

& = s&(R&).
b) The C-linear homomorphisms

ρ(f) ~ R-Uw(f)) = w(Rwf), w<ΞWb, (3.4)

of ^ considered as a linear space form a representation:

Qχ° Qy = Qxy for x,y eWb . (3.5)

Given a solution Φ and w G Wb', (3.3) implies that QW(Φ) satisfies (3.2) as well.

c) In the above setup, Qwy(Φ) — Qw(Φ) for bζB.IfΦis invertible then

Tw=Tw(Φ) = w~\φ-χ)l

and any b. Moreover, {Tw} satisfy (2.12):

= W-\Φ-1)RWΦ = TW9/ for weWb (3.6)

TXy=y~\Tx)Ty for χ,y eWb (3.7)

and belong to ̂ B d= {G J T , b(f) = /}.

Proof. Relations (2.10) result directly from (3.3) and (2.15). Formula (3.5) is equiv-
alent to (2.12). Given a solution Φ, let b G B, b = w~ιbw G B. One has:

b~\w(RwΦ)) = b~ιw(Rw)wb-\Φ) = b-χw(Rw)w(RyΦ)

- w(b-\Rw)RvΦ) = w(Rwh,Φ) = w(RywΦ) = Rb,w(RwΦ).

Hence ρw(Φ) satisfies (3.2). Relations (3.7) formally follow from (3.6) and (2.12)
(here Φ may be absolutely arbitrary). The B-invariance of each Tw and the equalities
Tw = Twy result from (3.2) and b). D

We will call T = {Tw, w G W} the monodromy cocycle. We notice that the
restriction of T onto W is enough to reconstruct its values for any w G Wb because
of c). See e.g. [Ch2, Ch4] for the discussion of the classic definition of the monodromy
representation applied to KZ equations. The analogous notions based on the theory
of difference equations are considered in [AKM] and [FR]. In certain contrast with
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the monodromy of KZ, that of QKZ is trivial if ^ is of matrix type. This property
was pointed out by Smirnov for the solutions of his equation and seems to be a rather
general feature of difference equations:

Corollary 3.3. Let ^ B be the matrix algebra MN(Jf) for a field X with a faithful
action ofW by C-automorphisms compatible with the action ofW on J^B :w(kf) =
w(k)w(f) for w £ W, k € 3&, f E &. We impose relations (3.3). Given an arbitrary
invertible solution Φ, T is a coboundary, i.e. there exists F e &"* — GL^{%) such
that

Tw=w~\F-ι)F, weW. (3.8)

The element Φ = ΦF~ι satisfies (3.2) and has the trivial monodromy cocycle T =
T(Φ):

ρw(φ) = φ far w eWb . (3.9)

Proof Indeed, W acts on ,^B = MN{3&) since Br is a normal subgroup of Wb.
The group W is finite. Hence we may apply a proper version of Hubert theorem 90

1 {id}). D

The corollary does not mean that (3.9) should be imposed from the very beginning
without any reservation. Sometimes it is more convenient to consider Φ with non-
trivial T{Φ) (e.g. for obtaining classical solutions as limits of quantum ones). Now
we will briefly describe the procedure of quasi-classical degeneration of QKZ.

Let us fix a W-invariant set {κa £ C, a G Σ}. The invariance means that
κα = κW(a) for arbitrary w e W, a £ Σ. The assumptions will be as those for
Definition 3.1. We suppose that the action of B on ^ and a given i?-matrix R
continuously depend on small h e C:

Kf) -f = hdb(f) + o(h), beB,fe^, (3.10)

Ra = l + hra + o(h) for ae Σ,rae^. (3.11)

Here db is a C-linear endomorphism of ^ , which has to be a C-derivative of ^
because / —> b(f) is its homomorphism as an algebra.

Proposition 3.4. IfΦ = Φ(h) is a continuous solution of (3.2) (relative to h), then
φ = φ(0) satisfies the system

db(φ) = ] Γ «α(6, a)raφ, where α G Σ+,be B, (3.12)

of udifferential" equations.

Proof One has: db(φ) = r^φ, where Ry = 1 + hrb + o(h). Let us apply Theo-
rem 2.4, b). We see that rb = Σ κaΦ, a)ra. D.

a

The connection of Eq. (3.12) and quantum iϋ-matrices was establishes in [Ch2] (see
also [Ch3], Proposition 3.3). The cross-derivative integrability conditions for (3.12)
were deduced from the r-matrix quadratic relations for {ra}, which are the quasi-
classical limit of the identities from Definitions 2.1, 2.2. We note that the r-matrix
relations are better to consider independently without any reference to quantum R-
matrix ones because there are (many) examples when r has no quantum deformations
R(h). We do not supply this paper with the r-matrix relations (see the mentioned
papers). The above way of getting (3.12) from QKZ (when B acts by the shifts of
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the arguments of type 4̂) coincides, in fact, with the corresponding reasoning from
[FR].

Examples. First, we put down system (3.1) in the cases ^42,ϋ?2,G2. Let a = ct\,
β = α 2 , a = &i, b = 62 (see Definition 2.1). One has the following systems:

β ββ (3.13)

OΓ\Φ) = Ra+2βRa+βRaΦ , b~\φ) = R[a+2βtl]Ra+βRa+2βRβΦ; (3-14)

a~l(Φ) = R[3a+2β,2]R[3a+β,2]R[2a+β,l]R[3a+2β,\]R[3a+β,\]

X Ra+βR3a+2βR2a+βR3a+βRaΦ j (3.15a)

iΓ^Φ) = R[3a+β,l]R3a+βR2a+βR3a+2βRa+βRβΦ (3.15b)

We remind that i?[7,fc] = cC/iγ) for 7 e Z"+, c e E if (c, 7) = — fc. Imposing relations
(3.3) under the assumption that Wb operators on JF, one obtains:

Ra+β = Sβ(Ra) = sa(Rβ) for A2 ,

Ra+β = Sa(Rβ) , R2a+β = S/3(Λα) for 5 2 ,

Ra+β = Sβ(Ra) ,

in the case of G2. We notice that the order of the J?-factors in (3.15a) is rather intricate.
Looking at this formula one can imagine how complicated the appropriate expressions
for F4, Ees should be! The number of the R-ϊactors in the fourth equation (for 64)
in the case E% is equal to 270 (the multiplicity of 0:4 in the sum 2ρ of all positive
roots).

The following examples of .R-matrices are from [Ch3], Lemma3.5. Let us intro-
duce the algebras C[y] = C[yuy2, . . . , yn] of polynomials in y = (yu . . . , yn) e Cn

and C[Ϋ] = QY^, Y2

±, . . . , Y±] for YΪ = exp(±^). We identify the roots a e Σ
with the corresponding linear combinations ya substituting y\, . . . , yn instead of
αi, . . . , an (yai — yi and so on). It gives the following action of Wb on C[y] and
C[SΊ:

w(ya) = yW(a), KVa) = b'(ya) = ya-(b,a)h, w eW, (3.16)

w(Ya) = Yw(a), b(Ya) = bf(Ya) = Ya exp{-(6, a)h} beB. (3.17)

Here h e C is supposed to be fixed.
Let 3ζ be the algebra of endomorphisms of C[y] considered as a vector space,

^ = Endc C[Ϋ]. We denote the composition of endomorphisms by "o". The group
Wb acts on 3§,3\ by conjugations with respect to the natural map Wb —» ^D,I. We
identify C[y] or C[Ϋ] with the corresponding subalgebras in ̂ J ^ Γ (y^ip) = VaP>
Ya(p) = γaP foγp e C[y], C[Ϋ]). Let us fix VF-invariant sets {κa} C C, {qa} C C*
(see above).

Proposition 3.5. The sets g = {ga} c i t , G = {Ga} C &ίfor a e Σ+ and

ga = 1 + κay~ι o (1 - Sa), (3.18a)

Ga = qa + (qa - q~l)(Ya - I ) " 1 o (1 - sa) (3.18b)

are R-matrices with the values in 3ζ, J^. Moreover,

{9a o saf = 1, (Gaosa- qa) o (Ga o sa + q~ι) = 0 (3.19)
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and the closure g ~ {ga,g_a = g~1} satisfies (3.3), i.e. g can be defined by (3.18a)
for all ae Σ. D

We note that {ga, Ga} are actually from certain smaller algebras. They commute
with the action of the algebra Sym of symmetric (VF-invariant) polynomials in y or
Ϋ by multiplications. Hence, {ga,Ga} C Endsym and they act in arbitrary quotient-
spaces of C[y] or C[Ϋ] by ideals generated by symmetric polynomials.

Next we will use {ga} to introduce a difference counterpart of the Calogero quan-
tum many-body problem (see [C] and [Ch4] for the definitions and references). A
similar construction can be made for {Ga} (the proof is somewhat different). We
obtain difference operators of Sutherland type [Su]. See the Appendix for certain
connections with Macdonald's construction [M].

Let C(y) be the field of rational functions in y\, yi, . . . , yn, 3% the subalgebra of
Endc C(y) generated by Wb and C(y). Arbitrary / G Jξ 7 can be uniquely represented
as follows:

where fw G 3 = C(y) o B' c &£ weW. (3.20)

We denote bf o gy, by ρy9 where gy = Ry for R = g [see (3.4)].

Theorem 3.6. Given an arbitrary finite W-invariant set X C B and m G N, let

_ _ lw, xeX, (3.21)
X W W

where Dw e&,w eW (see 3.20)). Then

w υ ΔΛx o w = Δχ , Zλχ o Z\z = Zλz o Zsx (5.22)

for arbitrary w G W, I G N and an invariant set Z C B.

Proof First, (3.5) results in

n τm _ rm γm jl _ j I γm /o ^Q\

Let us check that L^(Sym) c Sym. Indeed,

{Qw(p) = P for all w G W and p G C[?/]} <£> {p G Sym}

because it is true for { ŝ. = Si o ga%9 1 < i < n} generating {ρw}. Hence, the
relation ρw(Lrχ(p)) = L^(^w(p)) = L^ip) for p G Sym gives the desired inclusion.
We obtain that Z\^(Sym) c Sym and relations (3.22) are valid for the restrictions of
Δ™ and Δι

z onto Sym coinciding with those for L1^ and Lι

z. To deduce (3.22) from
its restriction on Sym we note that the operators on each side of these relations are
from & and use

Lemma 3.7. If D G !3ϊ and D(p) = Ofor arbitrary p G Sym, then D = 0.

d

Proof One has: D = Σ fr°cr, where fr G C(y)9 cr G B, cr φ cs for 1 < r, s < d.

There exists y° = (2/?, . . . , y°n) G R n such that w(a) - a & h{w(cr) - cS9 1 < r,
n

s < d} for a = Σ vfai a n < i anY ^ £ Ŵ» w φ id or, equivalently,
2 = 1

id} Π /ι{tί;(zr) - z s , 1 < r, 5 < d} = 0
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for zr = ((c r, 60, . . . , (c r, bn)). If D(p) (y) = Σ fΛy)p(y ~ hzr) = 0 for arbitrary
d r=\

p G Sym, y G Rn, then Σ ΦΛy)p(y° — hzr) = 0 for φr = fr(yQ). We may assume
r=\

that φrQ φ 0 for a certain r°. However the above conditions ensure that the numbers

p(y° — hzι), . . . , p{y° — hzd) can be made arbitrary for suitable p G Sym. DD

This theorem is a "quantization" of the corresponding Dunkl-Heckman way to
introduce Calogero-Sutherland operators (see [Ch4] for the references and details).
The latter can be obtained from {/i~mZ\^} when κa = hka, h —• 0 after a certain
conjugation. The properties of {Δ1^} and their trigonometric counterparts will not
be discussed here. We only mention that the equivalence of KZ equations and the
Calogero-Sutherland problem (established by Matsuo and the author - see [Ch4]) has
a quantum analogue (see [Ch7]).

The examples of Proposition 3.5 were of constant type. Now we are going to
consider a functional generalization of (3.18). We introduce the linear functions va =
(a,υ), v e Rn, a e Σ, the coordinates Vi = (θίi,υ), 1 < i < n, the field C(υ) of
rational functions in v = (v\, . . . , υn) and the field C(V) of rational functions in
V = (... , Vί = expfa), . . . ) . Let

)C{υ) or 3T = β[{V) = 3% <8> C(V)

and the action of Wb on JF* 3 f be as follows:

w{f) {v) = wo f{w~\v)) o w~x, {wb') (υ) = w{v) + hb, (3.24)

where Wb 3 w = wb' for w G W, b G B, w are considered as elements of ^ i due
to (3.16).(3.17). We fix a W-invariant set {ka} cC.ae Σ.

Proposition 3.8. In the notations of Proposition 3.5, the sets

9a = Ψάl(va) (9a + kav~ιsa), ψa{z) = 1 + kaz~ι , (3.25)

Ga = K\Va)(Ga + (qa - a~l)(Va - l ) " 1 ^ ) , where

Ψa(z) = qa + (qa - q~l) {z - I ) " 1 , a G Σ, z G C (3.26)

are closed (and unitary) R-matrices satisfying (33) for the above action ofW (see
(3.24)). D

The proposition follows from [Ch3], Proposition 1.2 (and is connected with certain
identities of [L]). As for (3.25), this formula is, in fact, from [Chi], where there are
other examples (e.g. with an elliptic dependence on the arguments {vi}). Many R-
matrices with the arguments of type A can be found in the papers of the last decade.

4. Particles on a Segment

We will give a graphic interpretation of the above constructions for the classical root
systems of types A,B,C,D. Let us consider a rather big segment [Ir] c R with the
moving left endpoint:

l{t) = l0 + tan(<S) < r = const, δ < 0 (\δ\ is sufficiently small). (4.1)

A particle is represented by a point x G [Ir] moving with constant velocity:

x{t) = xo + t tan(0), - π / 2 < φ < π/2. (4.2)
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We put σ(t) = — if the continuation of line (4.2) backwards for the values tf < t
intersects first the line r(t) = r. In this case, the particle is moving from right to
left and its angle is negative (the converse is true if δ is infinitesimal). Otherwise
σ(t) = +. We will call σ the sign of the particle.

The symbol Aσ(φ,x) = Aσ{φ,x)t means by definition that we place a particle
with the angle φ and the sign σ in the position x at the moment t. We suppose that
the particles are reflected in the endpoints as follows. If Aσt (<//, x')'t for t' < t is the
symbol of the same particle just before the previous reflection then

φf = (σ + \)δ - φ and σ' = -σ. (4.3)

This rule corresponds to the behaviour of the rapidities iφ in the relativistic theory.
We prefer to use angles instead of rapidities in this paper. Here and further we assume
that (4.2) is fulfilled during the considered interval of time, i.e. transformation (4.3)
preserves the above inequality for φ.

Let us take n particles of different types 1,2, . . . , n or, equivalently, assign a
number to each particle. To distinguish them we use the symbols A1, A2, . . . , An.
Particles never change their types. Given a certain permutation I = (ii,Z2, . , in)
of (1, . . . , n), a set of angles u — {u\, ... , un) in a general position and a set of
the signs ε = (εi, . . . , ε n ), the corresponding set of the particles will be described
by the multi-symbol

AI

ε(u,X) = Ai\(uuxι)...Ail(un,xn) if X = (x{ < x2 < . . . < xn) • (4.4)

Note that the ordering of the A-ϊactors (and the numeration of u, ε, X) is due to the
positions of the particles at the considered moment t and has nothing to do with their
initial numbers (types). The order of the latter at t is described by /. Multi-symbol
(4.4) may be connected only with the particles in a general position. Later on, we
assume that the particle move independently (are transparent for each other) and the
velocities (angles) are in a general position. So the multi-symbols are well-defined
for almost all t.

Turning to the quantum scattering, let us fix an algebra i t (e.g. the tensor power
Mfp* of a certain matrix algebra M/v). To introduce the scattering of two intersecting
particles we set

Aί(ψ, xf)A^ y')m = R?T(φ - ψ)AUΦ, x)Ai(1>, yU, (4.5)

where the out-state (the suffix is "out") is at the moment t, the in-state is at t' < t
(written "in") and between tf and t these two particles (and only they) intersected
once. There are no reflections during the considered interval of time. Here R is a
function of one variable with the values in Jζ.

This writing means that the scattering "matrix" Rf^ depends only on the types,
the difference of the angles and the signs (and does not depend on the other particles).
By the way, the combination of the signs σr = H— is impossible because of the plain
geometric reasons. The considered particles are neighbouring in the complete set of
particles (between t1 and t). So their symobls stand side by side in (4.4) and dropping
the remaining A-terms cannot lead to confusion.

To describe the scattering for the reflections we set

Aΐσ(φ', xf)in = Q°((σ + l)δ - 2σφ)AUΦ, *)σut, (4.6)

where φl is from (4.3) and the particle in the out-state has been reflected in the
endpoint r or I if σ = — or σ = + respectively. Here the values of the function
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Qf are in i t as well and do not depend on the remaining particles (of type j φ i).
We leave out the unnecessary A-ίactors. Of course we suppose that there are no
other collisions (intersections or reflections) between the in-state and the out-state.
To ensure the desired reflection, symbol (4.6) of the considered particle has to be the
first (σ = +) or the last (σ = - ) in A*(u, X).

One may omit the coordinates x, x', y, yr in the above symbols because the scatter-
ing matrices [see (4.5), (4.6)] do not depend on them. As for more complicated pro-
cesses, dropping the coordinates of the particles involved is not safe. Certain changes
of the initial positions (even preserving the multi-symbols of the in-out-states) al-
ter the picture of the intermediate collisions during the considered interval of time.
However it can be done if the following conditions are imposed.

Given Aτ

ε(u) = Aε\(uι)... Aε^(un) for I = ( ή , i 2 , . . . , in), u = (uu . . . , un),

and ε = (εi, . . . , εn) as the out-state and the corresponding A! m = A^,{u'ym, we

postulate that

Aξ,{u')-m = u\fj,(u, u')4(u)out, (4.7)

where the it-valued function 9ί is the chronological product of the R, Q-matrices
over the intermediate "elementary collisions" (intersections and reflections) and does
not depend on the positions of the particles.

Here everything is in a general position so intersections of three particles (or more)
and simultaneous reflections of two or more particles are not considered. We note that
the R, Q-factors are the same for any initial position of the particles but their order
depends on the latter. If the algebra i t were commutative there would be nothing to
check. We will not discuss a geometric description of the corresponding conditions in
full detail. When R is taken as the space (I = — oo, r = +oo), these relations are due
to Yang, Baxter, Zamolodchikov and other physicists (see e.g. [ZZ]). The identities
for the general case were introduced in [Chi] and [Ch5]. We reformulate the main
postulate above in an algebraic way.

Let us introduce the following free ,%-module Λ> = Σ 3^Aι

ε(u), where the
I,u,ε

generators Al(u) are considered as independent letters (symbols) with the indices
I,u,ε (u is continuous). Given meromorphic it-valued functions {Rf^iφ), Qf(φ)}

for φ G C, 1 < i φ j < n, we define the quotient-module ^ by imposing the
R-relations

A%(u') = Rεζ εζl\ (up - up+ι)Ai(u), up - up+ι < 0, 1 < p < n, (4.8)

v! = sp(u), ε' = sp(ε), /' = sp(I), where sp = (pp + 1) G S n (4.9)

are the adjacent transpositions, and the Q-relations

A'jiu') = Q'ζiύpUliu), ύp = (εp + l)δ-2up<0, p = 1, n, (4.10)

where εi = +, εn = —, v! — tp

p(u), ε' = tp

p(ε) for the automorphisms

£P -• -εp , Uj -> Uj , εά -> εό , j φ p,

defined for arbitrary 1 < p < n, σ = ±. In these formulas, u is from a certain
connected neighbourhood of 0 e Cn.
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Definition 4.1. The scattering ''matrices'' dK do not depend on the initial positions
of the particles (the scattering theory is factorizable) iff the images of the following
elements

A[(u) for δ < u\ < u2 < . . . < un < 0, u G R n ,

are J^-linearly independent in ̂ βfor all the indices I, ε, and u as above. D.

Let us put down explicitly the corresponding fundamental relations (see [Chi,
Ch5]). We should note that the above definition provides the validity of these relations
only for rather small (and ordered in a special way) u — (ui). However R, Q are
supposed to be meromorphic. So the relations hold good for any complex {ui} such
that the R, Q-factors involved are well-defined. The arguments in all the formulas
below are complex numbers from a certain domain.

Given pairwise distinct 1 < i, j , k, /, < n, and arbitrary σ, r, C, ξ G {±},

= 0 = [R°3

τ(ψ), Qζ

k(φ)] = lQΐ(φ), Q](ψ)], (4.12)

Rj+(φ)Q;(2φ +

2φ + Φ)R;j(Φ), (4.14)
Rj-i(Φ)Qj(2φ + ψ)R;j(φ + ψ)QΪ(ΰ)

= Qt(ψ)Rj+(φ + φ)Qj(2φ + ψ)R;;(φ). (4.15)

We call that Rfj do not exist and notice that there are no identities involving Q±

for the coinciding signs.
To calculate the scattering matrices 9ΐ for arbitrary collisions we introduce the

group Ω generated by the symmetric group S n 3 w and tf, 1 < i < n with the
following relations:

( ί f ) = l tf *J = *J*f if σi + τj^O, wtσ

iw~ι=tσ

w{ί), (4.16)

where 1 < i, j < n, σ, r G {±}. Formulas (4.9), (4.11) define a faithful action of Ω
on R n 3 w. This group is isomorphic to the affine Weyl group Wa of type Cn (or A\
if n = 1). Identify the above sp with s p from Wa (Sect. 1) for 1 < p < n, t~ with
5 n and ί]1" with SQ to check this.

We will use this identification and a certain version of notations (2.10). Let

RI(uε) Rε
1 <P<n, (4.17a)

if ε i = + , (4.17b)

if ε n = - . (4.17c)

The values of J^Q or Rτ

n are not defined for the opposite signs of εi j T l. We do not im-
pose any other conditions on u = (u\, . . . , un), ε = (εi, . . . , ε n ) , I = (i\, . . . , zn)

[cf. (4.8), (4.10)]. Setting ££(/) = / for any p, σ, we obtain an action of Ω on {ε},
{/} [see (4.9) and (4.11)]. Finally, given ω G Ω, we put w c = c for c G C,

w, ε)RJ

p(v, 7)) = ̂ ( / ) (α;(^), α;(ε))^ ( J\ω(v\ ω{Ί))

for other {v, 7, J, g}, etc. (4.18)
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We come back to the geometric pictures. The arguments {Ui} are the angles again in-
equalities (4.8), (4.10) are fulfilled. One can describe an arbitrary elementary colli-
sion by

a) either sp, 1 < p < n, when the points with the coordinates xΌ,xΌ+ι are inter-
secting,

b) or s0 = tΊ when the point xx is reflected in the endpoint r,
c) or sn = t~ when xn is reflected in /. We remind that the points xγ < . . . < χn (the
positions of the particles) are numbered at the moment right after the corresponding
collision.

r

Fig. 1. Basic transformations for QKZ with two particles

Given in-out-states A|n, Aout and a certain picture of the lines between them, we
arrive at the corresponding set of the elements sPr . . . , sP2, sPί (see Fig. 1). Here
0 < pr < n, 1 < r < /. In particular, sPι describes the last collision just before

out, sPι is assigned to the first collision (the intersection or the reflection) right after
A/

in. We introduce

ω = siPι...sP2sPι e Ω (4.19)

and claim (see [Chl,Ch5]) that

a) this product depends on the multi-symbols A|n, Aout only (the concrete choice of
the initial positions of the particles does not matter),
b) (4.19) is a reduced decomposition of ω with respect to {su 0 < i < n} in the
sense of Definition 1.3 [in particular, / is equal the length l(ω) of ω],
c) arbitrary reduced decomposition of ω is associated with a proper set of the initial
positions (i.e. with a certain picture of the lines between A-m and Aout),
d) moreover, the element ω can be uniquely determined1 by the vector ω(u) =
(ω(uι), ω(u2), . . . , ω(un)) for generic uu . . . , un, δ.

Later on we will take / = Io = (1,2,, . . . , n) considering

4>ut = = A' (Uι)... A" (un)
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as the out-state, and use the simplified notations

Rp = R$>(u,ε), 0<p<n. (4.20)

The angles are supposed to be in general position (\δ\ is rather small).

Theorem 4.2. Let ω G Ω correspond to a certain process A[n = 9̂ 4̂Out and relations
(4.12)-(4.15) be imposed. Then

m = JBW = w~ls?ιRPι...
sPisP2Rp3

sPiRp2Rpι (4.21)

does not depend on the positions of the particles, i.e. on the choice of reduced decom-
position (4.19). Moreover,

Mxy = yl3%xMy if l(xy) = l(x) + l ( y ) , x,yeΩ. (4.22)

b) The arguments (angles) of the R^Q-factors obtained in (4.21) by applying (4.18)
are negative. They are pairwise distinct for generic iti, . . . , iλn, δ and belong to Σ+
of type Cn (or A\ for n — \) with respect to the Z-homomorphism defined by the
relations

θίp = up - up+\ , 1 < p < n, an = 2un , a0 = 2(δ - u\). (4.23)

This homomorphism is compatible with the action of Ω on {up} and that of Wa

on {aτ}.
c) Let us assume that u\ < UΪ < . . . < un < δ and δ —> 0 (i.e. δ is infinitesimal).

Then ε = εo = (—,—,...,—) and the above angles constitute the set of all roots
a = [α, k] G Σa such that a > 0, k > 0 (see (4.23) and Sect. 1).

Proof. These statements are easy to check geometrically (see [Ch5]). A formal alge-
braic deduction of a) from (4.12)-(4.15) is the same as for Theorem 2.3. Assertion
a) gives that the arguments in (4.21) coincide with the indices of the iϋ-factors from
(2.13) for Rω (in the case of Cn or A{). This implies b),c). D

5. QKZ with Reflection

Now let us turn to QKZ. We keep the notations from Sect. 4 and fix / = /o, ε = εo (see
Theorem4.2): Aout = A^iu). The condition ε = εo, implies that {u\, . . . , un} < 0.
Let us introduce certain special elements ω G Ω and the corresponding .R-matrices

Given 1 < i < n, we suppose that the zth particle from the out-state intersected
the other one (each two times) and was reflected in the both endpoints with no other
interactions (intersections or reflections) of the particles. Let us denote the corre-
sponding element ω by j i m It takes uout — (u\, . . . , un) to u m = (u\, . . . , Ui-\, 2δ +
Ui, Uι+ι, . . . , un). This description is equivalent to the above geometric explanation.
We remind that Ω acts on the angles (types, signs) of the out-state (not on those
of the in-state). Having associated the corresponding group element with this pro-
cess, one can forget about the geometric pictures and use the formal machinery from
Theorem 4.2. However the graphic interpretation is very convenient to see that

3%Ίi = RuZι(2δ + υ,i- Ui_i)... R^ϊ(2δ + υ,i- uι)Qf(2δ + 2u%)

x R^iui + uι)... R~ϊ(Ui + un)Qτ(2ui)

x Ri~(ui -un)... Rli^2(
ui ~ ui+2)Riilι(ui - uι+x). (5.1)
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Here and further R~[~\ — 1 by definition. Geometrically, the required chain of inter-
actions takes place if {UJ, j Φ i} "almost" coincide and u satisfies the conditions
Ui < Uj for each j Φ i (see Fig. 1, where n — 2, φ = u\ — u2, ψ = u2).

The next element 7 6 Ω is the transition

Assume that {ui} are close enough to each other to draw the picture. The formal
definition of the corresponding R-matήx is as follows:

(ΛΓt(w» + uχ)... Rr+U(ui + Ui-{)QT (lu )), (5.2)
2 = 1

where the index i increases from left to right (^% = Q\ J .).
The last set of elements {$ , 1 < i < n} c Ω geometrically correspond to the

conditions {u\, . . . , Ui} < {uι+\, . . . , un}, where the angles in each of these two
groups "almost" coincide (see Fig. 1). The transformations are as follows:

βi = 7 i 7i:(wi> ••• , Όout -> (2δ + i/i, . . . , 2δ + Ui, ui+u ••• 5 un)m. (5.3)

Here the corresponding i^-matrices are:

jΐ j i j j 2Uj))

3=1

x [Rr+u(ui+i + Mi)... R~t(un +

[R;X(ui+ι +Ui)... R~+(un +

i

Π (Rϊΐ(UJ + ̂ l) R]-lj(U3 + Uj-

We note that the elements {7^ β3 , 1 < i, j < n} do not change I = Io and ε = εo
They act as certain shifts of the arguments {ui}. Hence they are commutative. We
arrive at the following identities, where the arguments can be arbitrary real or complex
(from a certain domain).

Theorem 5.1. a) In the above notations, l(βιβj) = l(βi) + l(βj)for 1 < i, j < n and

Ήβiβjiu) = Ήβtfjiu^β.ίu) = ̂ β3{βi(u))^βi{u). (5.4)

b) If the following (unitarity) conditions

R7j(φ)Rj;(-φ)=l foranyφ,iφj, (5.5)

are imposed, then Rfj(φ)Rff(-φ) = 1 due to (4.14) (or (4.15)j and

MΊiΊi (u) = MΊι{Ίj{u))MΊi (u) = MΊ} {Ίi{u))MΊι(u), (5.6)

Mβi(u) = JBΊi(^ι...Ίι(u))...JBΊ2(Ίι(u))MΊl(u), l<i,j<n. (5.7)

c) Let us assume that

R-j(φ) = R+t(φ), R-+(φ) = Rj+(φ), Q+(φ) = Q-(φ) (5.8)
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for arbitrary φ, i φ j.We introduce the automorphism

βθ = 70 :(U\, , Un)out - * (U\ + δ, . . . , Un + <S)in

and put .9Bβo(u) = &>ΊQ(u) = 38^(u). Note that 70 Φ Ω. The relations (5.4) are valid
for 0 < i,j < n. The same holds true for (5.6) if conditions (5.5) are fulfilled. One
has

.JBΊί(u), (5.9)

where the second equality is valid for unitary R[j only.

Fig. 2. A graphic of the "commutativity" of Mβx and

Proof. The relation l(βiβj) = /(A) + /(^) is clear geometrically (the conditions for
u which ensure the corresponding processes are pairwise compatible for different
βi - see Fig. 2). It can be deduced from Proposition 1.6 as well (cf. Theorem 2.4, c)).
Formula (5.4) results from Theorem 4.2. The particular case of this formula when n =
2 is in Fig. 2. This reasoning does not work for {7^} since li'jijj) φ liji) + Klj) f° r

i Φ j . Indeed, there is no graphic representation of 7^7^ extending that of 7^ However
JBΊiΊj(u) can be obtained from MΊi(η3(u))JBΊj(u) by transformations (4.12)-(4.15)
together with cancellations of certain pairs R^γ(φ)Rf^(—φ) (see Fig. 2). To check
c) we add 70 to Ω (in the group of automorphisms of R n or C n ) and extend JBω

to this bigger group by the relation ^ 7 o 7 - i = 1 (cf. Theorem 2.4). Another (and the
most convenient) way is by means of the correponding pictures. D
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Definition 5.2. The QKZ equation (or simply QKZ) with reflection is the following
self-consistent system for a ̂ -valued function Φ(u):

Φ(βi(u)) = Mβi(u)Φ(u), 1 < % < n. (5.10)

If conditions (5.5) are imposed, then (5.10) is equivalent to the system

Φ(Ίi{u)) = MΊi(u)Φ(u), 1 < i < n. (5.11)

One may add the equation

Φ{Ί0(u)) = M

to these systems if relations (5.8) (with (5.5) for (5.11)) are valid. G
To discuss the connections with QKZ from Sect. 3 we postulate the following

symmetries [see (5.8)]:

Rij(φ) = Rjt(φ) = Rij(φ), Rrj(φ) = Rjτ(φ) dJί Rφ). (5.12)

The QKZ equations for the classical root systems of type An_\,Bn,Cn,Dn corre-
spond to the following four reductions of the above systems.
(A) Let us suppose that Rij = 1 = Ql = Q+ for 1 < i φ j < n. Then R has
to satisfy the commutativity relations [Rij(φ), RkiiΨ)] — 0 for the pairwise distinct
indices [see (4.12)] and the Yang-Baxter equations (4.13) without the signs. System
(5.11) in this case is, in fact, from [FR]. We should mention that it is self-consistent
only for unitary R [see (5.5) in contrast with (5.10)].

(B) Let Q+ = 1, [Rijiφ), Rij(φ)] = 0. Relations (4.12)-(4.14) are also imposed.
Then (4.15) is fulfilled identically. Here (like in the previous case) JEβί correspond
to Ry determined for Bn when 1 < i < n.

i

(C) We assume that Q~[(φ) = Qΐ(Φ) This case was considered in Theorem5.l,c).
The relations (4.14) and (4.15) coincide. System (5.9) with 0 < i < n is a particular
case of (3.1) for Cn. Substitute Ry for rβ0 and Ry for ^Bβτ, when 1 < i < n, to
see it.
(D) This case is the intersection of B and C:Q+ = 1 = Q", [Rij{φ), Rij(Φ)] = 0.
Here Ryn corresponds to ̂ p0, Ry to Ms -\s , Ry to Mβ% i f l < i < n — 1;
Ry are defined for the root system Dn.

3

To be more precise, systems A, B, C, D can be obtained from (3.2) when the algebra
of ^-valued functions of u with the above action of B by the shifts of the arguments
is considered as ̂  from Definition2.2. To connect 3%ω and Rω (e.g. Mβi and Ry)
we replace Rij(u) by RΊι^Ίj, Rij(u) by RΊi+Ίj, Q^(u) by either RΊι for B or R2Ίι

for C. Here we identify the union of {7^ ± 7^, 1 < i < j < n} and {07 ,̂ 1 < ί < n}
with the set Σ+ of positive roots either for Bn (c = 1) or Cn (c = 2) or Dn (c — 0);
{li — Ίh 1 — ̂  "̂  J — n} = ^ + m t n e c a s e °̂  ^ n - i (see [B]).

As a certain application, we will prove the main property of the monodromy matrix
for the particles with reflection (it has nothing to do with the monodromy cocycle
discussed in Sect. 4 and below). The definition is as follows:

rx(u) - ^n(u) = (Qt(2δ

- u3), (5.13)
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where (5.5) is imposed. Then (5.6) for i = 1, j = 2 gives the relation:

(u)

(uλ - u2), (5.14)

where Jξ" 3 n is defined by the right-hand side of the same formula (5.13) for the
index 2 instead of 1 in all expressions.

In case A (when R~+ = l = Q±, Rrj = R{j = R++)9 (5.14) is the well-known
formula for the monodromy matrix (due to Yang, Baxter, Faddeev and others - see
e.g. [F]). Usually, <F = MNχ 0 . . . 0 MNn for Nu . . . , Nn e N and Rij(φ) take
values in M^i 0 MNJ* Then (5.14) immediately results in the commutativity relation
[Ti(iO, T2(u)] = 0 for the transfer matrix Ti(u) = Sp;(Jf(iO). Here Sp^ is the trace
for the ith component MNI9 i = 1,2, the function Tι depends on ui, 113, . . . , un, and
takes its values in the tensor product of the component 3, . . . , n.

Relations (5.14) in case D were considered by Sklyanin [S]. They play an important
role in the recent paper [O] by Olshansky devoted to the construction of Yangians
(see [D]) for relation (4.14). See [CG] for some interpretation of the latter in terms
of open strings, [KS] about a generalization of the Pasquier and Saleur approach to
the Hamiltonian of the XXZ-moάel with certain linear terms (via the same relation)
and a recent Noumi paper on g-symmetric spaces [N]. We will not discuss these and
other applications here. However one point is worth mentioning.

Given fl~+, R~~, Λ++, Q^ for 1 < k, I < n+m satisfying relations (4.12)-(4.14),
we can construct other Q. Let us use the notations 1', 27, . . . , m! for n + 1 , . . . , n+m
and put Q^ = J^ 1 m / (ui\ Uγi, . . . , umt), where 1 < i < n, Jo is replaced by
(i, 1;, . . . , ra') Then Rff, Q~ for 1 <i,j <n obey all the relations (4.12)-(4.13).
Here {uγr, . . . , um/} are considered as some extra parameters. The same can be done
to produce new Q+ by means of the counterpart of (5.13) for Q+ instead of Q~.

Let us specialize the definition of the monodromy representation for the considered
systems [see (3.6)]. Given a certain action of S n on $>ζ, we impose (5.12) and assume
that there are four 3ζ-valued functions R, R, Q, Q of φ e C such that

Rij(φ) = w(R(φ)), Rijiφ) = w(R(φ)) if w = (ij,...), (5.15)

if w = (i, . . . ) . (5.16)

Here 1 <i,j < n and we use the so-called one-line notations for w 6 Sn.
Relations (4.12)-(4.15) for i = 1, j = 2, k = 3, I = 4 imply those for the

other indices because of (5.15)—(5.16). We postulate them together with the unitary
condition R\2{φ)R2\(—φ) = 1 [see (5.5)], ensuring the equivalence of (5.4) and (5.6).
Let Φ be an invertible i^-valued solution of the latter. If Q = Q, [R(φ), R(ψ)] = 0
(cases C or D) than i = 0,1, . . . , n. Otherwise 1 < i < n.

Corollary 5.3. a) The monodromy functions

Tw(u) = w-\φ-\w(u))Rw(u)Φ(u) for w e Sn (5.17)

are 2δ-periodic (i.e. Tw(ηi(u)) = Tw(u), ί = 1, . . . , n) and, moreover, satisfy the
additional relation T^^iu) = Tw(u) in cases C, D. The cocycle conditions Txy =
y-\Tx)Ty are valid for any x,yeSn (see 3.7)J.
b) Let the algebra 3^ be semi-simple and finite-dimensional. Then there exists a ^ * -
valued 26-periodic function F(u) (FW(JQ(U) = Fw{u) for C,Dj such that the trans-
formed solution Φ = ΦF of (5.4)-(5.6) has the trivial monodromy: fw = 1, for
w e Sn. D
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We conclude this paper with the following general remark. One can extend the
construction of QKZ to any group G. Let us fix a set {s\, 52, . . . , sn} of its generators
(maybe n = 00). Given an algebra &* with an action of G, we need a &-valued R-
matrix that is a set {Rw, w G G} satisfying the conditions

Rxy = y~lRxRy if l(χy) = l(x) + l(y),

where the length is defind relative to {si}. Then an arbitrary set {a\, α2, , &m} £ G
of pairwise commutative elements will give the corresponding QKZ if l(a^aj) =
Hβi) + l(a) for 1 < i,j < m. One finds a lot of examples. For instance, coboundaries
{Rw = ™~ι FF~\ w eG] are i?-matrices in the above sense for any F e i Γ * .

Practically, it is important to consider "homogeneous" G and R (this point could
be argued). The main requirement is as follows. Let WRS = RSi for arbitrary w e G,
1 < i < n such that wsi = siw and l(wsi) = l(w) + l(si). The problem of getting
Λ-matrices of this kind is much more delicate. All the examples are connected with
remarkable mathematical (and physical) structures.

It was known for a time that the i?-matrices in common use are cohomologically
trivial, i.e. are coboundaries (see [Chi]). Now we realize that the corresponding F
are very important for many reasons. As for the basic examples, these F appear to
be certain quantum counterparts of the n-point functions from the conformal field
theory. They are closely connected with the representation theory of Kac-Moody
algebras (and their ^-deformations), the theory of g-special functions and (last but not
the least) with integrable lattice models.

Appendix: Macdonald's Operators

We will apply the construction of Theorem 3.6 to the trigonometric i^-matrix in the
case An-\. In accordance with the notations from Sect. 5,

Σ = {aij =ji-jj,l<i^j<n}, a{ = aii+ι, 1 < i < n. (A.I)

Let us fix q,ξ e C*. We introduce the field C(Z) = C(ZU . . . , Zn) of rational

functions in Z\, . . . , Zn

transpose Zi and Zj]. Let

)

functions in Z\, . . . , Zn equiped with the natural action of S n [s^ = (ij) G S n

= δijZjξ, l<ij<n. (A.2)

The elements {Zi} are identified with the corresponding linear operators Zi(p) = Zφ
for p e C(Z\ 1 < i < n.

Formula (3.18b) can be rewritten as follows:

Gij - Gij(q) = q + (q- q~l) {ZiZj1 - I)" 1 o (1 - Sij), 1 < i φ j < n . (A.3)

One has [see (3.19)]:

G # = G^ ~ (Q ~ V~l)sij = Gijiq-1), l<iφj<n. (A.4)

Proposition 3.5 and formula (5.4) result in
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Corollary A.I. The operators (cf. (5.1))

n

•̂  = Π G J ! ° ^ ° Π G v e E n d c C ( Z ) (A 5)

3=1 j=i+l

are pairwise commutative for 1 < i < n. D

Let us introduce the operators

i=\

where m e N , l < K n . We can represent them as follows [see (3.21)]:

'w{k)ow, weSni (A.7)

where Dw{m),Dw(k) e & d= C(Z) o C[Γ] e Enάc(Z) for the algebra C[Γ] =
C[Γi, . . . , Γn] of polynomials in Γu . . . , Γn.

Corollary A.2. The following operators

J2w(k)e&, weSn, (A.8)

are pairwise commutative and belong to &my = {D G ̂ , w o D o w~ι = D},
where w G Sn. Ifξ is not a root of unity, then {Lk} (or {Mk}) are algebraically
independent over C(Z) for 1 < k < n and generate the commutative subalgebra
{D e &m\ [D, L2] = 0}. Moreover,

h = q2{l~n) Π Vitf - zr) (Zif - zr) (Ziξ - zry\Zi - zry
ι,

hj = q2{l-n)(q2 - 1) (ξ + 1) (q2 ~ ξ)ZiZj(Zιξ - ZjΓ^ξ - Zz)~l ( A ' 9 )

X

1 < r < n. ϋ

Conjecture A.3*. The operators Mk for 1 < k < n coincide with Macdonald s
operators (see e.g. [M]:

IΓI, where ΓI = Γiι...Γik

I

I = {1 < ix < i2 < ... < ik < n } ,

m / = ̂ - ) f ] (Z irq
2 - Zj) (Zir - ZjΓ1 ,

j 0 /, 1 < r < k. D

Note added in proof. Proved.
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The conjecture was checked for m = 1,2 and for arbitrary m when n < 5
(by computer). The above construction can be extended to the ^-operators from
Sect. 5 in a natural way. One arrives at a certain family of invariant scalar difference
operators of BC-type depending on four parameters. We will give some formulas for
the coefficients of the (pairwise commutative invariant) counterparts of {Mk} in this
case without going into detail. They are verified for small n only. We consider the
rational case (like in Theorem3.6) for the sake of simplicity. Let δ,n,κ\,κ2 G C.
Then

7f = (7t 1 ) e i . - (7t p ) e p , e = {εr, 1 < r < p} , ε r = ± 1 ,
p,ε,I

I = {l < ix < i2 < . . . < ip < n } , 0 < p < k,

Ίi(zj) = Zj + 2δδij , 1 < i, j < n, (A.I 1)

mεj(p = k) = Y[ ((zirεr + κx) (zirεr + κ2) (zirεr + δ)~ι(zirεr)~ι

X I I ί (v • <r _i_ -y. c _J_ O ur\ (V. c _ l _ τ . c _J_ 0 fe _4_ OΛ^

0<s<r

x (zirεr - Zj)~ι(zirεr + Zj)'1}).

If either κi = 6 or κ,2 — δ, then (conjecturally) mf = 0 when p = k— 1. The formulas
for raf ,p < fe — 1 seem rather complicated.

We mention that L2 from (A.9) is expected to be radical part of the Laplace operator
on the ^-symmetric space (GLn(ΈL)/On(ΈL))q for a certain choice of ξ. As for Lγ, the
corresponding statement was checked by Noumi. The trigonometric counterparts of
operators (A.I 1) should coincide with the invariant ^-operators of BC-type for suitable
values of the parameters and be connected with a recent Koornwinder construction
[K]. The same conjectures can be put forward for arbitrary (/-symmetric spaces.

We will conclude this appendix with the following formula for the "quasi-classical"

limit of LI = L2 — 2L\ + n. Let ξ = exp(ft), q — exp(hκ). Then

n

lim(h2L') = J2

where di —

and the constant term cn is equal to 2 ί ~ ) k2.
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