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Abstract. We analyze the holomorphic Pfaffian line bundle defined over an infinite
dimensional isotropic Grassmannian manifold. Using the infinite dimensional
relative Pfaffian, we produce a Fock space structure on the space of holomorphic
sections of the dual of this bundle. On this Fock space, an explicit and rigorous
construction of the spin representations of the loop groups L0n is given. We also
discuss and prove some facts about the connection between the Pfaffian line bundle
over the Grassmannian and the Pfaffian line bundle of a Dirac operator.

1. Introduction

In this paper, we study the Pfaffian line bundle PF over the isotropic Grassman-
nian manifold of a Hubert space. This line bundle, which was first defined in [21], is
a unique holomorphic square root of the determinant line bundle over the
Grassmannian. Here we will use the theory of the infinite dimensional relative
Pfaffian developed in [13] and [16] to construct a Hubert space J^ out of the space
of holomorphic sections of the dual bundle of PF. If we use the space of square -
integrable wave functions on the circle for the underlying Hubert space, then J^ is
interpreted as the Fock space of a Majorana fermion on the circle (with half the
degrees of freedom of the Dirac Fock space, which arises from the corresponding
construction for the determinant line bundle). The physical interpretation of this
Pfaffian line bundle Fock space construction was speculated on in [26], and it
serves as an example of the Fock space functor described in [24].

The Fock space 2F is isomorphic to the completion of an exterior algebra, but
the Pfaffian line bundle approach reveals extra structure. The isotropic Grassman-
nian Gr/(Jf7) is a homogeneous space of the restricted orthogonal group Ores(Jf)
associated to a real structure on the Hubert space J f. We show that 2F carries
a project!ve unitary representation of Ores(^f), which is an analytic generalization
of the representations described algebraically in [14]. In analogy to the Borel-Weil
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theorem in finite dimensions, this representation is seen to come from an action of
Oτes(^f) on holomorphic sections of PF' which covers its action on Gΐj(j^f). By
embedding the loop groups L0n in 0res( J f), we obtain the spin representations of
L0n for all n. These representations were pointed out in [21]. We show here how to
construct them explicitly using the relative Pfaffian as an analytic tool.

By applying the Pfaffian line bundle construction to the space Jf7 0 Jf", where
Jtf" is the dual of 3?, we can obtain by a pullback the determinant line bundle for
Jf. The determinant line bundle construction gives rise to representations of LUn,
which were described in detail in [21]. Obtaining the determinant line bundle by
pulling back the Pfaffian line bundle corresponds, in terms of representations, to
the embedding LUnc^ L02n <+ Ores(^f). The representations of LUn arising from
this embedding are exactly those obtained from the determinant line bundle
directly.

Freed [12] has shown how to define a Pfaffian line bundle JΓ over the moduli
space of compact Riemann surfaces with spin structure. This Jf is a holomorphic
square root of the Quillen determinant line bundle over moduli space [22, 7, 8],
a structure which has been extremely important in string theory and conformal
field theory (see [1,11], for example). The moduli space of Riemann surfaces was
connected to soliton theory by Krichever [18], a relation which was applied to
string theory in [19]. A version of the Krichever map linking the moduli space to
the Grassmannian and its determinant line bundle, which is the type of map we will
consider here, appeared in [23, 25], and has also had applications to physics. In
particular, this connection has been used to connect Virasoro algebras with the
geometry of Riemann surfaces [5, 6, 17], which leads to the unification of the
geometric and algebraic approaches to conformal field theory [2, 3,15]. In our
case, we would like use the Krichever map to think of the isotropic Grassmannian
manifold as universal moduli space for once-punctured Riemann surfaces with spin
structure. We show that the line bundles Jf and PF are related by a pullback by the
Krichever map. Jf comes with a canonical hermitian structure and holomorphic
section, which are relevant to the physical interpretation [1, 11]. One would like to
relate these to PF, which has its own canonical hermitian structure. It is fairly clear
how to choose a section on PF which gives rise to the canonical section of JΓ under
the pullback. Unfortunately, the canonical metrics on PF and Jf do not coincide,
and we show that it is not possible to choose a metric on PF which pulls back
correctly.

The basic objects of our discussion, the Grassmannian manifolds and the
corresponding restricted unitary and orthogonal groups, are defined using the
Hubert-Schmidt norm, following [21]. One might ask if the Hubert-Schmidt
restriction could be relaxed to some other Schatten ideal Ip, or to the case of
compact operators (which was the definition used in [23, 25]). This is a significant
question if we want to consider higher dimensions, because for the group
Map(X, G), where X is some d-dimensional manifold, the relevant operators lie in
the class Id+l (see [10,20,21]). Unfortunately, not much along the lines of the
construction of this paper can be done for the class Ip, where p > 2. In [20], it was
shown how to modify the definition of the determinant line bundle to extend to the
p > 2 cases in such a way that DET has a hermitian structure which depends on
regularized determinants. Because the transition functions for PF given below in
Sect. 4 involve only finite dimensional matrices, it is trivial to do the same for the
Pfaffian line bundle. The hermitian structure for the Pfaffian cases is just a positive
square root of the hermitian structure given by [20], so that no extra analysis is
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required. Our construction here relies, however, on an inner product, or at least
some metric structure, on the space of holomorphic sections of the line bundle.
Because the regularized determinants do not satisfy multiplicative relations, one
cannot use the methods presented here to obtain such structures. Furthermore, it is
shown in [20] that the groups Map(Jf, G) admit only trivial cyclic extensions for
d > 1, so that these cases would inherently behave very differently from the d = 1
case considered here.

This paper is organized as follows. In Sect. 2 we briefly review the definition of
the Grassmannian manifold over a Hubert space. In Sect. 3 we describe the
construction of the determinant line bundle, and the formation of a Hubert space
out of the space of holomorphic sections. Section 4 contains the analogous
constructions in the Pfaffian case. We define the line bundle PF by giving a trivial-
ization such that the transition functions are Pfaffians of finite-dimensional ma-
trices. In particular, this shows that the Pfaffian line bundle is holomorphic over
the restricted Grassmannian. In Sect. 5 we describe in detail the Fock space arising
from the space of holomorphic sections, and give an alternative definition of PF.
We discuss the construction of the spin representation in finite dimensions in Sect.
6, as a prelude to the infinite dimensional case. In Sect. 7 we deal with the infinite
dimensional case in detail, discussing the action of the restricted orthogonal group
on PF, and the corresponding representations on the Fock space. We briefly
describe some of the applications of these representations to loop groups in Sect. 8.
In Sect. 9 we discuss the relations between the Pfaffian line bundle over the
Grassmannian and the Pfaffian line bundle over moduli space and present some
results connecting the two.

2. The Grassmannian Manifold

We start with a separable, polarized infinite dimensional Hubert space, Jtf*. By
polarized, we mean simply that tf comes with a decomposition into closed, infinite
dimensional subspaces,

3e = #e_®3e+. (2.1)
This Hubert space is to be thought of as a one-particle Hubert space, with
subspaces consisting of negative and positive energy states, respectively. For the
Pfaffian case, we will interpret ffl as the space of states for a single fermion moving
on a circle, which we identify with the half-densities on the circle, subject to
antiperiodic boundary conditions.

We define a subgroup of the unitary group of 3tf for whose elements the
off-diagonal parts are restricted to be Hubert-Schmidt,

Ures(^):={geU(3ί?):P-gP+,P+gP-eI2(^)}, (2.2)

where P± are the orthogonal projections onto $f± . Note that this restriction on
the off-diagonal parts of an element g implies that the diagonal parts, P+gP+
and P_#P_, must be Fredholm, through the condition that g is invertible. The
Grassmannian manifold is a homogeneous space of the restricted unitary group.

Gτ(JV):= {W^Jf: W=g^- for some #el/

s I7reβ(jf )/ l/( jT_)x l/(JT+) . (2.3)
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Gr(J-f) breaks up into connected components indexed by the index oϊ the
Fredholm operator P-gP- on Jf_. lϊ jf_ and JV+ are taken to have finite
dimensions m and n, respectively, the definition of the Grassmannian reduces
simply to Grm(Cw+/ί). One can form a nested set of finite dimensional submanifolds
Gr( fc)(^)ofGr(^f), with

2k -1

Grwpf)s U Grm(C2*), (2.4)
m = l

and the union of these submanifolds is dense [21].
This definition of the Grassmannian of a Hubert space is essentially that of

[21]. As noted in the introduction, works relating the Grassmannian and determi-
nant bundle to dynamical systems [23, 25] have used a broader definition, restrict-
ing off-diagonal terms to be compact operators where we have required
Hubert-Schmidt. The determinant and Pfaffian line bundles are still well-defined
and holomorphic in the compact case, but they are not homogeneous, and one
cannot introduce a Hubert space structure on the space of holomorphic sections of
the dual bundle in the manner described below.

To show that Gr( J f) has the structure of a complex manifold [21], we define
a set of coordinate charts as follows. Choose an orthonormal basis {ek}™=ι for
Jf+, and a basis {ek}k=-^ for Jf _. In our example of half-densities on the circle,
we will take e±k = exp{± i(k — 2)θ}. Think of this as a canonical basis fixed by
our parametrization of the circle. For S a subset of the non-zero integers, let Ws be
the subset of 3? given by the span of {ek}keS. We have WseGτ(^f) if and only if
S E jtf, where

s/ := [S c: Z\{0}: card(SnZ + ) < oo, card(Z_\S) < 00} . (2.5)

It is straightforward to check that any element of Gr(Jf) can in fact be written as
the graph of some operator AeI2( Ws, W^\ and conversely the graph of any such
operator is an element of Gr(^f). Thus we have an open cover of Gr( Jf) by sets

Us :={WeGr(df): W= graph(^L), for AeI2(Ws, W^)} , (2.6)

each of which is isomorphic to I 2 ( j j ? + , 3?-}. Moreover, the change of coordinate
maps determined by these isomorphisms involve only determinants of finite dimen-
sional submatrices. They are thus clearly holomorphic, which gives Gτ(^) the
structure of a complex manifold. We will generally identify the set of subspaces Us

with the set of maps I2(WS> W$\ with no distinction of notation.

3. The Determinant Line Bundle

Over the finite dimensional Grassmannians, the determinant line bundle can be
defined by taking the bundle whose fiber over a subspace is the top exterior power
of that subspace. In the infinite dimensional case, we will think of a trivialization of
DET as given formally by the maps

A ι-> Λ (1 + A)eh , (3.1)
keS

where AeI2(Ws, Wς). This would be a proper definition in finite dimensions,
but the infinite wedge product is unfortunately ill-defined. However, suppose
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Us n UR is given by graph(A) in Us, and by graph(£) in UR. The sets R and
S can differ only by a finite number of elements, and on the subspace WR^S the
maps A and B must agree. Furthermore, if we write W = gJJf- , then

index(P_#P_) - card(Sn Z> 0) - card(Z<0\S)

- card(# n Z> 0) - card(Z<0\#) , (3.2)

which implies that card^XK) = carά(R\S). Thus the formal expression (3.1) can
be interpreted as giving rise to the well-defined transition functions,

. Λ.gRS(A):=- - - - — = det {(eJ9Aeky}. (3.3)
/\keR\s(l + A)ek jεR\S

keS\R

As a function of A, this determinant is non-zero precisely when A corresponds to an
element of UsnUR. Because they involve only determinants of finite-dimensional
submatrices, the functions (3.3) are clearly holomorphic. The properties needed to
define transition functions, namely that gRSgsκ = 1 and gRs9sτ9τR = 1> follow
immediately from the expression of gRS as a ratio of wedge products. Therefore we
can take the set of gRS's as the definition of a holomorphic line bundle DET over
Gr(j>f ). This definition does depend on the choice of basis for jΊf. As we mentioned
earlier, in the case of half densities on the circle, we think of the elements
exp{ + i(k — i)θ} as a canonical choice of basis determined by the parametrization
of the circle.

Let ΓD be the space of holomorphic sections the dual bundle DET' (the bundle
DET itself has no non-zero holomorphic sections). We will create a Hubert space
out of Γ'D, the topological dual of this space. We start by defining a map,
β: DET x DET -> C. For p, geDET, let β(p, q) unless p, q both lie in ΌEΊ\Us for
some 5, and in this case set

β ( p 9 q ) = λpλqdet(l+A*Aq). (3.4)
ws

The notation here is that p corresponds to (Ap9 λp) under ΌEΎ\Us ^ Us x C, and
similarly for q. The determinant over Ws is a Fredholm determinant, which is
well-defined because Ap and Aq are Hubert-Schmidt.

Proposition 3.1. β defines a map DET x DET -» C, which is holomorphic in the
second variable, antiholomorphic in the first, and linear and antilίnear on the
respective fibers.

Proof. We first need to show that β is well-defined under the transition maps of the
bundle DET. To see this, suppose we have points p,qe DET which lie above AR

and BR, respectively, in UR, and also above As and Bs in Us. We want to show that

det (1 + AJBS) = gSR(AR)gSR(BR) det (1 + A^BR) . (3.5)
ws WR

The fact that graph (As) = graph (AR), and that graph (Bs) = graph (BR\ leads to
some simple identities for various submatrices of the ,4's and B's. These can be used
to prove the following fact,

Aί BSPS) = (PSr,R - Psr,RA*RPs\RA$PR\s + PS\RA$PR\S)

x(l + ARBRPR)(PsnR — PR\sBsPs\RBRPRns

+ PR\SBSPS\R) , (3.6)
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where all these expressions are considered as operators on the full space 2tf. The
proof is easy, but somewhat tedious. Each factor in (3.6) is of the form 1 + (trace
class), so we can use the product rule when taking the determinant of each side. The
determinant of the left-hand side just gives the determinant over Ws in the
expression above, and the second term on the right-hand side gives the correspond-
ing determinant over WR. That leaves two determinants of expressions which differ
from the identity only by operators of finite rank. It is easy to see that they reduce
to the finite dimensional determinants which appear in the transition functions

QSR(BR) and gSR(AR).
This shows that β satisfies the correct transition law. The remaining step is to

prove holomorphicity. Note first that β satisfies a hermitian property,

), (3.7)

so that we really need only prove holomorphicity in the second variable. The
linearity on the fibers is obvious. Fix a point p e DET, which lies over some open set
Us. It suffices for us to prove that on each open set URί the function

= β ( p , ( B 9 l ) R ) (3.8)

is holomorphic, where (B, l)ReUR x <C refers to a point in
Clearly, if UR and Us lie in different connected components of Gr( Jf ), then /

is identically zero, so we can assume that the two sets lie in the same component.
Over UsπUR, we have

f ( B ) = λpgSR(B) det (1 + A*PBS) , (3.9)
ws

where Bs is the point in Us corresponding to B. The gSR appears when we transform
the point (B, l)eURx C. We can rewrite this expression as follows,

f ( B ) = λp det {<(! -I- Ap)ej9(l + Bs)eky} det {<*„***>}
j,keS jeS\R

keR\S

= I, det {<(! + Λp)ej9(l + B)eky} . (3.10)
jεS
kεR

We now observe that this last expression in fact gives a well-defined, explicit
formula for / on all of UR. It is holomorphic in B because of the absolute
convergence of the expansion for the Fredholm determinant. D

Now that we have the map β, we can easily define a hermitian structure on
DET. Given smooth sections of DET, τl9 τ2, we simply take

<τl9τ2y(W):=β(τl(W)9τ2(W)). (3.11)

We have already remarked that β satisfies a hermitian law. The smoothness of the
hermitian structure follows immediately from the holomorphicity of β.

The map β provides more than a hermitian structure, however. With it, we also
obtain an inner product on the space Γ'D. This is done as follows. An element of ΓD

can be thought of simply as a holomorphic map DET -» <CLwhich is linear_on each
fiber. Clearly, we can regard β as being an element of ΓD ® ΓD, wher ΓD is the
natural complex conjugate space to ΓD. Given two elements η, ξ e Γ'D, we define the
pairing

<η,ξ>β =(η®ξ) β (3.12)
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By ή we mean the element of Γ'D which is the conjugate of η, so that (ή ® ξ)e
Γ'D ® Γ'D. The pairing (3.12) is continuous, by the continuity of the evaluation map,
and it is hermitian by the hermitian property of β.

It is also, in fact, positive definite. Given an index set S, we write ps for the point
(A = 0, λ = l)s in ΌEΎUs. We can define an element γsεΓ'D by evaluation at ps,

ys(σ):=σ(ps), (3.13)

because σeΓD is just a map DET -> C. Note that such elements of Γ'D form an
orthonormal set,

<7s, yR>β = β(ps, PR) = °RS . (3.14)

We can also use β to define elements χs e ΓD by

χs(p) =β(Ps,p) (3.15)

For a general ξεΓ'D, we see easily that

<ys,ξ>β = ξ(χs). (3.16)
Proposition 10.1.5 of [21] showed that the algebraic span of the χs is dense in ΓD.
Therefore, if <ys, ξyβ = 0 for every Sejtf, then ξ = 0. This implies that the
algebraic span of the y5's is dense in Γ'D. The pairing is thus positive definite, and
the ys's form an orthonormal basis.

Definition 3.2. 3FD is the completion of Γ'D in the inner product < • , • > / ? •

This Hubert space gives the fundamental representation of Urcs(Jί?) [21]. We
will define the corresponding Hubert space for the Pfaffian line bundle in the next
section.

4. The Pfaffian Line Bundle

The space of half-densities on the circle has a natural complex conjugation, which
maps JfV to ^_ and vice- versa. When ffl has such a real structure, we can define
a submanifold of Gr( 3?) over which the determinant line bundle has a holomor-
phic square root.

In general, by a real structure we mean a complex anti-linear map J on Jf such

that J2 = 1 and < Jx9 Jy> = <x, y>. In addition, for a polarized Hubert space we
will assume that J : 3Ί?± -> J^+ . In the case of half-densities, J is the natural
complex conjugation, which takes ek to e-k. We shall always assume that we have
chosen our basis to behave this way under J. With such a complex structure, we
can define a symmetric bilinear form on ffl ,

(x,y):=<Jx,j;>. (4.1)

Using this form, we define the isotropic Grassmannian by

Grj(^f):= {WeGr(Jf): JW = WL] . (4.2)

The condition that JW — WL implies that Gr/(^f ) is a submanifold of the zero
index component of Gΐ(JJf). The spaces Ws lie in Gr/(Jf ) if and only if Se «*//,
where

: JS = Sc} . (4.3)
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We also note that graph (,4) lies in Gr/(JT), for AeI2(Ws, W$\ S e j t f j 9 if and
only if

(x9Ay)=-(Ax9y) (4.4)

for all x,yeW. In other words, if A = — JA* J. Such an operator is called skew,
and we denote by Ia

2(Ws, W$} the space of skew Hubert-Schmidt operators from
Ws to W$. We thus have a cover of Gr/(^) by open sets Vs ^ Ia

2( Ws, W^\ It is
easy to check that Gr/(Jf) falls into two connected components, depending on
whether card(S n TL + ) is odd or even.

The finite dimensional analog of the isotropic Grassmannian is easily described.
For a 2rc-dimensional complex vector space with real structure, the space of
n-dimensional isotropic subspaces is just the homogeneous space 02n/Un, which
consists of two simply connected copies of S02n/Un. These finite-dimensional
manifolds can be successively embedded to form a nested set of submanifolds of
Gr/(jf ) whose union is dense. The existence of a topological square root of the
determinant line bundle over S02n/Un follows from the fact that the Chern class of
this line bundle is even. We can see this as follows. First of all, for n = 2,
S04/U2 ^ CP1. By writing out the transition functions, one sees immediately that
the determinant line bundle in this case is just L (x) L, where L is the tautological
bundle over CP 1. Thus the Chern class is even in this case (and the square root is
obvious). Now consider the inclusion CP 1 -> S02n/Un. Because CP x and S02n/Un

are connected and simply connected, this inclusion induces an isomorphism in H 2 .
Therefore, by naturality, the Chern class of the determinant line bundle over
S02n/Un is always even.

To show the existence of a holomorphic square root, in the infinite dimensional
case, we turn to the transition functions. Over Gr^Jf), with the open cover we
have just described, the restriction of the determinant line bundle is defined by the
same transition functions gRS as before, with S and R restricted to j//. Note,
however, that because of the condition that JW = WL , we have keS\R if and only
if — keR\S. Thus we can write,

gRS(A)= det {<e, ,ek>}
JeR\S
keS\R

= det {(e-j9Aeky}
j,keS\R

= det {(ej9Aek)}9 (4.5)
j,keS\R

where ( , •) is the bilinear form given by (4.1). This is the determinant of a skew-
symmetric matrix. Because the determinant is non-zero when VR intersects Vs, the
skew matrices must be even dimensional in this case. These transition functions
therefore have holomorphic square roots, given by the Pfaffian.

Hence we will define a line bundle PF over Gr/(J f ) which has transition
functions given by

hSR(A):= Pf {(eJ9Aek)}. (4.6)
j,keS\R

For the moment, we allow an arbitrary choice of orientation for the Pfaίfians in
these functions. We must check that the cocycle conditions, hRShsτhTR = 1, are
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satisfied. Because the Pfaffian is the square root of the determinant, we know these
identities are satisfied up to sign. To check the sign, we note that the Pfaffian of
a matrix and the Pfaffian of its inverse appear in these expressions with opposite
orientations, where by opposite orientation we mean etί Λ . . . Λ et2n replaced by
et2n Λ . . . Λ etl. This involves a change of sign of (—1)". It is a simple fact about
Pfaffians that when A is an invertible 2rc-dimensional matrix,

1 ) = (-l)n, (4.7)

so that these signs always work out correctly.

Theorem 4.1. As defined by the transition functions (4.6), PF is a holomorphίc line
bundle over the isotropic Grassmannian. Furthermore, PF is a square-root of the
determinant line bundle in the sense that

PF(χ)PF^DET|G r / p r ). (4.8)

Proof. The preceding discussion demonstrated the consistency of the transition
functions. Because they involve only finitely many variables and the finite dimen-
sional Pfaffian function is holomorphic, they are clearly holomorphic functions on
the sets Vs. Because the square of the Pfaffian function is the determinant, the
second property follows from comparing the transition functions (4.6) to the
restrictions of the transition functions of DET to Gr/( $? ) (4.5). D

We still have not specified the orientation with which the Pfaffians in the
transition functions are to be defined, but we will show now that the condition (4.8)
determines PF up to a holomorphic isomorphism, so that any consistent choice of
orientation for the transition functions will give us an equivalent line bundle. Later,
we will fix a particular choice of orientations for convenience.

Theorem 4.2. PF is a unique holomorphic square-root ofDEΎ over Gr/(Jf ).

Proof. We will show in general that holomorphic square roots of line bundles over
Gr/(jf ) are unique topologically and holomorphically. Because Grj(Jf ) has
a collection of finite dimensional submanifolds whose union is dense, as we
mentioned above, a holomorphic line bundle on Gr/( 3ίf) is specified completely by
its restrictions to these submanifolds. Thus it suffices to prove that holomorphic
square roots of holomorphic line bundles are unique on O2n/Un for each n,
or rather S02n/Un, since 02n/Un consists of two copies of S02n/Un. Smooth
complex line bundles on S02n/Un are classified completely by Chern classes in
H2(SO2n/Un, TL\ which one can easily check to be isomorphic to Z for all n using
the fibration Un -> SO2n -» S02n/0n. This means at least that square roots are
unique up to smooth isomorphism. Holomorphic line bundles are classified by
elements oϊHl(S02n/Un, &*), where (9* is the sheaf of non- vanishing holomorphic
functions. The short exact sequence of sheaves,

O^Z->0^0*-»0, (4.9)

where G is the sheaf of holomorphic functions, gives us the cohomology sequence

n, (9) ̂ Hl(S02n/Vn, 0*) -> H2(S02n/Un, Z) -> H2(S02n/Un, G) .
(4.10)
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Because S02n/Un is a simply-connected Kahler manifold, we can apply the results
of [9] to see that H1(S02n/Un, (9) = H2(S02n/Un, (9) = 0. Thus we have the
isomorphism H1(S02n/Un, 0*) ̂  H2(S02n/Un, TL\ We conclude that the holo-
morphic square root of a line bundle is unique. D

We note briefly that the determinant line bundle can be obtained directly from
the Pfaffian line bundle construction. Suppose we are given a polarized Hubert
space 3P without any particular complex structure. Define a new Hubert space
9C = je@je'. We give this space the polarization #"_ = tf- ® jf '+, #V =
<#?+ 0 $f '-. 2£ has a natural complex conjugation which is compatible with this
polarization, given by the canonical anti-linear map from a Hubert space to its dual
(i.e., x ι-» <x, ». There is a natural embedding of Gr(J^) into Gr/(^), and the
bundle DET over Gr(^f) is just given by the pullback of PF by this embedding.

Let ΓP be the space of holomorphic sections of PF'. We construct an inner
product on this space just as we did in the determinant case. We will define a map
α : PF x PF -> C, which is in some sense the square root of the map β we used
earlier. First, note that for BeΓ2( Ws, W$\ the map (1 - PS)BPS on the full space
ffl lies mla

2(^f\ where Ps is the orthogonal projection on to the subspace Ws. This
is easy to check,

J((l - Ps)BPs)*J = JPSB*(1 - PS) J

= (l-Ps)JB*JPs

= -(l-Ps)BPs. (4.11)

The relative Pfaffian is defined for operators in I\(ffl\ and is a holomorphic square
root of the relative Fredholm determinant [13]. For the rest of this paper we will
use the notation

Pf (A, B) := Pί(PsA(ί - Ps)9 (1 - PS)BPS) , (4.12)
ws

where AeIa

2(W$9 Ws) and BeIa

2(Ws, W$). Note that

Pϊ(JAJ,B)2 = det(l + PSA*BPS)
ws #

= det(l + A*B), (4.13)
ws

which is the expression which appears in the definition of β. It is clear that we
should define the map α as follows. We set α(p, q) = 0 unless /?, q are both in PF |^s

for some S, and in this case

* ( p 9 q ) = λqPf(JApJ,Aq). (4.14)
ws

Proposition 4.3. α defines a map PF x PF -> <C, which is holomorphic in the second
variable, antiholomorphic in the first, and linear and antilinear on the respective
fibers.

Proof. The proof follows almost entirely from the corresponding result for β proven
in Proposition 3.1. The one point to check is the following. By taking the square
root of the corresponding equation for β, we know that

Pf (JAS J, Bs) = ± hRS(As)hRS(Bs) Pf (JAR J, BR) , (4.15)
W* WR
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where As e Vs corresponds to AR e VR, and likewise for the £'s. We must check that
the sign is positive. To fix the sign, we let A = B. Then we have

Pt(JAs J, As) = ± \hRS(As)\2 PΪ(JAR J, AR) . (4.16)
Ws WR

The Pfaffians are both positive by continuity, since Pf(0, 0) = 1, and
Pΐ(JAJ, A)2 = det(l + A* A) ^ 1. Thus the overall sign in Eq. (4.15) is ( + ), as
desired. D

This proposition tells us that αe/^ (x) ΓP, and we can use it to define an inner
product < , >α on Γp, exactly as in the determinant case.

Definition 4.4. 3FP is the completion of Γ'P in the inner product < , )α.

We obtain an orthonormal basis {γs} for J*>, indexed by Sej//, in the same
way as for ^D.

5. The Fock Space

Define the positive energy Fock space ^+ as the completion of the full exterior
algebra of jjf+ ,

in the inner product

. . . Λ X ^ ^ Λ . . . Λj> m >:=<5 n m det{<Xi, }>,•>} . (5.1)

It is clear that the elements of the form esι Λ . . . ΛeS n, for all sets of positive
integers, form an orthonormal basis for ^+ . An element S of j// is completely
specified by the subset S n Z + . If we denote the elements of Sr\7L+ by
{s1? . . . , sn}, then we have the obvious isomorphism p : 3FP -> J^+ given by

p(ys)'=eSlΛ ... ΛβSn, (5.2)

where {ys} is the orthonormal basis for Jv This isomorphism is singled out by our
choice of basis. There is no canonical way to relate the ys under change of basis
ofJP.

Since an element of PF corresponds to an element of 2FP by the evaluation
map, we can ask how the isomorphism acts on the elements of PF. For example,
suppose we take a point (A, λ)s in PF|j/ s. Considering the point (A9 λ)s as an
element of J*>, we can expand

(A9λ)s= Σ
Re^!

= X <x ( p R , ( A , λ ) s ) y R
J

λhRS(A)jR. (5.3)
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Here and elsewhere, we will use the same notation ( A, λ)s to refer to a point of PF
and a point in 2FP via the evaluation map. We also adopt the convention that

= 0 if VR n Vs is empty. Equation (5.3) implies that

p((A,λ)s) = λ Σ hRS(A)p(γR)
RES?!

= λ Σ hRS(A)erιΛ...Λern. (5.4)

Let S0 denote the index set TL- e <£//, and for convenience let VQ denote VSo. We
can define a map φ from V0 ^ /^J f-, 3tf+) to the completion of Λ2Jjf+ by

Σ (e.^-jteΛ^. (5.5)
Z i J e Z +

This map is well-defined, because

je+=\\A\\2. (5.6)

Because the space ̂ + has an exterior algebra structure, we can take the exponen-
tial of an element. It in fact follows from the definition of the finite dimensional
Pfaffian that

eΦ(A}= ^ pf {(e_Vi9Ae-Vj)}eVίΛ...ΛeVn. (5.7)
v c Έ+ 1 ̂  ij ^n

Hence, if we orient the transition functions so that

hRSo(A)= Pf {(e-ri,Ae-rj)}9 (5.8)
1^ ij^n

then the map p has a particularly nice form

p((A,λ)So) = λe+<A>. (5.9)

Because p is a Hubert space isomorphism, this expression implies

Pf (JAJ, B) = (eφ(A\ eφ(B)y . (5.10)
jf_

This result, which is quite simple to prove directly, was first pointed out in [21].
We can develop a formula similar to (5.9) for points lying over an arbitrary

subspace Vs, provided we choose the appropriate orientations for transition
functions. First we introduce the action of a Clifford algebra on J*+ . Because of the
exterior algebra structure, we can let an element of J^+ act on ^+ by exterior
multiplication, or by interior multiplication. For) > 0, let χ7 be the operator which
acts as the sum of exterior multiplication by βj plus interior multiplication by βj.
Thus, if ω is a form such that e 3 Λ ω φ 0, then we have

ω. (5.11)

The χ's are clearly self-adjoint, and they satisfy the anticommutation relations,

{*;,**} = V (5.12)

Thus they form an infinite dimensional Clifford algebra which act^ unitarily
on ̂ +.
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Let σ'j be the element of Uτes(34?) whose sole effect is to interchange the basis
elements βj and e_ 7 . As above, we identify the index sets Ses/j with sets of integers
{ s ! , . . . , 5k} = S π Z5 arranged in increasing order. For Ae K0, we define a new
map As: Ws^ W^ by

As:=(σSl...σSk)A(σsl...σSk). (5.13)

This map As lies in Vs. In fact, the pairing of A to As gives an isomorphism
between VQ and Vs. Now we can make the following proposition.

Proposition 5.1. We can choose orientations for the transition functions hRS so that
for AeV0, we have

(5.14)

where (As, λ)s represents a point in 2FP by the evaluation map.

Proof. We have already noted that p has the general form

p((As, λ)s) = λ £ hRS(As)en Λ . . . Λ ern . (5.15)
R

The function hRS(As) can be reduced as follows,

hRS(As)=± Pf {(ei9A
sek)}

i,jeS\R

= ± Pf {(ei9 (σsι . . . σSk)A(σsl . . . σsk)ek)}
iJeS\R

= ± Pf {(ei9Aek)}9 (5.16)
i,jeS0\T

where T = (σsι . . . σSk)R (the σ's act on <$tfI by interchanging j and —7). This last
expression is just the transition function hTSo(A), so that

p((As, λ)s) = ±λΣ hTSo(A)erί Λ . . . Λ ern . (5.17)
T

The sign of course depends on the orientations we choose for the Pfaffians. Now we
simply observe that T — (σsι . . . σSk),R implies that

erι Λ . . . Λ ern = ± χsι . . . χSk(etl Λ . . . Λ etm) . (5.18)

Thus we have
S, λ)s) = ± χsι . . . χsk ^ hTSo(A)(eti Λ . . . Λβ t m )

= ± χ,, - χ*e*(X) (5.19)
We can fix the orientation so that the sign is positive as follows. Suppose that
S\R = {ql9 . . . , qm}, with the ^f's in increasing order, q{ < . . . < qm. Define
εRS= ±1 by the equation,

XSί - - Xsk(etί Λ . . . Λ etm) - εRSen Λ . . . Λ eYn . (5.20)

The transition function hRS involves a Pfaffian over the vector space which is the
span of {eqί9 . . . ,eqm}. We now specify the orientation on this vector space by the
top form,

. Λβqι , (5.21)
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where εRS is determined from Eq. (5.20). It is straightforward to check that these
choices of orientation imply the condition (5.14). D

The composition of the evaluation map PF -> 2FP with the map p : J*> -> J^+
gives us a map from PF to J^+ . The fiber of PF over any point of Gr/( jtf*) maps to
a ray in ^+ . Thus we obtain a map τ from Gr/( J f ) to the project! ve space P(J^+ ),
given by

τ(As):=LχSί...χSke<"A^. (5.22)

As a project! ve space, P(^+ ) has a tautological holomorphic line bundle JS?, whose
fiber over a ray is the ray itself.

Proposition 5.2. PF is the pullback by the map τ of the tautological line bundle
& over

Proof. It is simple to check that the trivialization with which we have defined PF is
recovered from the maps ηs: Vs -* <& given by

η,: (As, λ)s H* (τ(Asl p((As, λ)s)) , (5.23)

where p was given by (5.14). D
This proposition connects the definition of PF in Sect. 4 with the definition used

in [21].

6. The Representation in Finite Dimensions

Because the discussion of the restricted orthogonal group and its representations
on sections of PF' in the following section is somewhat dense with analytical
details, we give here a brief discussion of the situation in finite dimensions. See [21]
for a more thorough treatment of the finite dimensional case.

The basic philosophy of the construction of irreducible representations on the
space of holomorphic sections of a homogeneous line bundle comes from the
Borel-Weil theorem [9]. As an example of this theorem, let X = (C", and consider
the irreducible representation of Un on the /cth exterior power AkX'. The ray
defined by the vector Ω:— α x Λ . . . Λ α f c e Λ k X f , where {α,} is a basis for X', is
invariant under the subgroup Uk x Un-k of Un. By considering complexifications,
we see that the orbit of Ω defines a holomorphic map Un/Uk x Un-k -> P( /\kX'\
Associated to such a map is a complex line bundle L and a map /\kX -> Γ(L'). This
line bundle L is just the determinant line bundle over Gΐk(X), and the map
ΛkX -> Γ(L') is an isomorphism.

In Sect. 7, we essentially give the analog of this Borel-Weil construction for
a generalization of the infinite dimensional wedge representations which were
described algebraically in [14]. In finite dimensions this amounts to a construction
of the spin representation of S02n- Let X be a finite 2n-dimensional complex vector
space, with real structure J and decomposed into X- Θ^+ Let PF^ be the
Pfaffian line bundle over the even component of Gr/(X). We will sketch the
construction of the spin representation on F, the even degree subspace of the full
exterior algebra /\ X+. Then we will show that the action on F9 which is isomor-
phic to the space of holomorphic sections of PF^, comes from a holomorphic
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action on PF^. The extension of the representation to both components of the
Pfaffian line bundle is simple and will be done for the infinite dimensional case in
the next section.

Given geS02n, let

c d

with respect to the decomposition X _ φ X + , i.e. a is a map from X- -+X-, etc.
Let Ug be the subset of F0 consisting of the skew maps A: X_ -» X + for which
(a + bA) is invertible. Ug is just the subset of K0 whose image under the action of
g on Gΐj(X) still lies in F0. This action takes Ae Ug to

Λ'^ίc + dΛMfl + M)-1 . (6.2)

We will see in Sect. 7 that the elements of F of the form eφ(A\ where AeUg, span F.
Since we want the action of g on F to cover the action on Gr/(Jf), by Proposition
5.1 we would like to set

g e+w = μβ(A)e*W, (6.3)

where μg is a numerical factor which depends holomorphically on A. For the
representation to be unitary, we see from the form (5.10) of the inner product on
F that we need to have

μβ(A)2 = det(a + bA) . (6.4)

This requirement is the key to the difference between the spin representation in
finite and infinite dimensions. For, in the finite dimensional case, Eq. (6.4) has two
solutions,

μg(A)2 = ± [detα]1/2?^-1^) . (6.5)

It is not possible to make a global choice of sign here for all of SΌ2n, because
πι(S02n) = %2 We can, however, define a projective representation which comes
from an honest unitary representation of Spin2n, the simply connected double
cover of S02n. The difference in infinite dimensions is that the square root of the
determinant of a becomes ill-defined. We have to define the numerical factor μ in
a more involved way, resulting in a cyclic extension of the group rather than
a double cover. The fundamental group of the infinite dimensional group
S0res(^f ), which will be defined in the next section, is no longer Z2.

To continue the finite dimensional discussion, define the group Spin2n to consist
of pairs (g, μg\ such that g e S02n

 and μg '• Ug-+<£ satisfies Eq. (6.4). We have seen
that Spin2n acts on F, but have not yet shown that this comes from an action on
PFX. Let i : P¥x -» F be the inclusion, as described at the end of Sect. 5, consisting
of the composition of the evaluation map and p. We need to see that the action
preserves the image of i, and, moreover, that the resulting action on P¥x is
holomorphic. Let ξ = (g, μg\ and for index sets R, T, let Ufτ be the set of all BE VR

such that g maps the subspace graph(£) into Vτ. All that we need do is find
a holomorphic function fξonUfτ such that the action (6.3) corresponds under i to

ξ (B,l)R = (g B , f ξ ( B ) ) T 9 (6.6)
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where BeUfτ. Suppose that B corresponds to a point C e Ug. Then one can easily
check from (6.3) and the definition of i that we would have

ξ (B9 1)R = (g B,μg(C)hTSo(C9)hSoR(B)) . (6.7)

Thus we will be finished if we can extend the holomorphic function,

f ( B ) = μg(C)hTSo(Cβ)hSoR(B) (6.8)

(C depends holomorphically on B\ from UfτπUg to all of Ufτ. Since the
complement of Ug is defined by the vanishing of a holomorphic function, namely
det(α + bA\ in finite dimensions we can simply apply the Riemann extension
theorem.

7. The Restricted Orthogonal Group

We were able to realize the manifold Gr(J^) as a homogeneous space for the
restricted unitary group, given by (2.2). We can do the same for the submanifold
Gr/(J f ), using the restricted orthogonal group. By definition, any element of
Gr(^f ) has the form gjjf- , for some g E l/res(«^). To define an element of Gr/( tf \
we require further that an operator g preserve the bilinear form on ffl , i.e. that
g commute with the conjugation operator J. We thus define

l/reβ( Jf) : Jg = gJ} . (7.1)

To write Gr/(^) as a homogeneous space, we need to know when two different
elements of Ores(jf) act on J-f_ to give the same subspace. It is clear that

gjjf_ = ghJtf- toτheU(Jf-)xU(Jί?+)9 since such an h preserves H- and jf + . The
combination gh will be an element of Ores( J f ), however, only if [ J, Λ] =0. This
condition is satisfied only if h is of the form ( w, JuJ\ for u e U ( 3? _ ). Therefore we
can write

Gr/(jr) = O r e 8(jr)/t/(Jf.), (7.2)

where U (3?-) acts on the right by its embedding u ι-> (M, JwJ).
The group 0res( J f ) splits into two connected components. For any g e Ores( 3tf\

index (£P-gP-) = 0. The components are determined by whether the kernel and
cokernel of P_ gP- have even or odd dimension. The identity component forms
a group, which we will label 5Όres(J f ). Because G ΐ j ( ^ f ) is a homogeneous space
with respect to the orthogonal group, we would expect to have at least a projective
action of 50res(^f ) on the line bundle. We will define this projective action by

taking a central extension, S0res(jf ), of SOres(J^). We will show that there is
a unitary representation of SOres( Jtf ) on the space J^+ , which comes from an action
on PF. At the end of this section we will show how to apply these results to the full
group, Oreβ(Jf ).

The first step is to understand the action of S0res(3f) on Gr/(J-f ). Suppose
a point of Gr/(jf) is represented by AeVs. We want to find the point which
corresponds to #(graph(,4)), for 0eSOres(Jf ). If we assume that this point lies in
VR, then for some BεVR and some isomorphism q : Ws -> WR, we must have
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Take S = R = S0, where, as before, S0 is the set of all negative integers. If we let

«-(: ί)
with respect to the decomposition Jjf- 0 J^+, then we see from Eq. (7.3) that
q = (a + bA\ and that B = (c + dA)(a + bA)~1. Let Ug be the set of all Ae V0

such that (a + bA) is invertible. For Ae Ug9 define

A9:=(c + dA)(a + bA)-1 , (7.5)

as in Sect. 6.
Because 5Όres(^f ) preserves the two connected components of Gr/(^f), it will

also preserve the decomposition of J% into the subspaces of even and odd degree.
We will first consider the action on the space of even degree, which we will denote
by J^Γ".

Lemma 7.1. For any open set U c K0, the elements of the form eφ(A) for AeU span
even

Proof. We can assume that U is a neighborhood of A — 0, because we can always
translate. That is, suppose U is a neighborhood of the point A0, and we want to
expand x. If we can expand

eφ(Ao>x = ΣλAeφ(A}, (7-6)
A

with sum over A's lying in a neighborhood of A = 0, then we will have

(7.7)

with A + AO lying in a neighborhood of A0.
Given a basis element en Λ . . . Λ ̂ k of ̂  7en

5 with k even, we can always find
an A e KO so that

φ(A) = κ(erι Λ er2 + + e r k_ t Λ erj , (7.8)

and with K sufficiently small we can find such a point in any neighborhood of the
identity. Exponentiating gives

eΦ(A) _ κ(βrί Λ . . . Λ erk) + lower degree terms .

Thus we can recover all of the basis elements, and hence span all of 2F e+ en Π

Because of this lemma, we can define the action for each g by specifying it on
elements of J^+ven of the form eφ(A}iorallAGUg. The action will preserve the inner
product, so that it will automatically extend to all of ̂ " 7en If the action is to cover

the action of S0res(34f) on Gr/(J f ), then we will have to have

g e+<A> = μβ(A)e+M, (7.9)

where μg is some numerical factor depending holomorphically on A. The inner
product which the action must preserve is
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If we transform A and B by g, then the inner product becomes

(eφ(A'\eφ(Bβ)y = Pϊ(JAgJ,B9). (7.11)
tf-

Recall that A9 was defined so that

1

We can thus evaluate

detd

det(α + bB)(a + bA)* '

This means we would like to choose the factor μg(A) so that

(μβ(Λ)μβ(B))2 = det(α + 6B)(α + bA)* . (7.14)

In the finite dimensional discussion of Sect. 6, this amounted to choosing one of
two square roots. In infinite dimensions it is not possible to choose any square root.
We are thus led to a more complicated procedure, which ends up giving a central
extension of SOres(Jf ), as follows.

The reason (7.14) has no solution is because there is no infinite dimensional
Pfaffian analogous to the Fredholm determinant. We have only the relative
Pfaffian. It turns out that we should define the numerical factor as a function of two
variables,

μg(A,B):= Pf (A -B9(a + bA)~lb) . (7.15)
jf+

This relative Pfaffian is well-defined because both arguments are skew Hubert-
Schmidt operators. This is obvious for the first argument, A — B. The second
argument is Hubert-Schmidt because b is Hubert-Schmidt, and we see that it is
skew as follows. The fact that gjg* J = 1 implies that bJA*J is skew, and the
fact that A is skew implies that bAJB*J is also skew. The difference of these two
terms is

b(Ja* J - AJb*J) = bJ(a + bA)*J , (7.16)

so that b J(a + bA)* J is skew,

bJ(a + bA)* J = - (a + bA) Jb*J . (7.17)

By applying (α + bA)'1 on the left and (α + bA)*~l on the right, we get

(a + bAΓ^b = - Jb*(a + bA)*~l J , (7.18)

so that (α + bA)~lb is skew.
With μ depending on two variables, we will now try to replace the relation (7.9)

with something like

. (7.19)
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Here B is an extra parameter, the choice of which will need to be included in our
extension of S0res(3f ). We will also need to revise Eq. (7.14). Taking the square of
μg gives

μg(A, B)2 = det(l -(A- B)(a + bA)~lb)

= det(l - b(A - B)(a + bA)'1) , (7.20)

(we can switch the order of b and (A — B)(a + bA}~1 because both are Hubert-
Schmidt). We can simplify

- B)(a + bA)'1 = (a + bB)(a

so that

μβ(A, B)2 = det(α + bB)(a + bA)'1 . (7.21)

We cannot extract the determinant of (a + bB) from this expression, but the
combination (a + bB1)(a + bB2}* does have a determinant. Therefore, we can
revise Eq. (7.14) by a constant factor which depends on the extra parameter,

(7.22)

We will take care of the extra factor (the denominator) through the following
extension of SOτes(Jjf).

Definition 7.2. S0res(^f) is the group whose elements consist of triples

(g, A, λ)€ S0res(^f) x I 2( Jtf_, JT+) x C x , (7.23)

such that AeUg and

μ|2 = v/det(α + M)*(α + M). (7.24)

We identify two triples (g, A, λ) and (g, B, λ') when

λ' = λμg(B, A). (7.25)

The multiplication is given by

(g1,Aί,λ1) (g2,A2,λ2) = (g3,A3,λ3), (7.26)

where g3 — g^g2, A3 G U93 n U92 is chosen so that Afe U9ί, and

(7.27)

This extension is referred to as Spinc(J>f) in [21]. Because its definition is
somewhat involved, so we will explain where the various parts come from. The
requirement on the \λ\ given by Eq. (7.24) appears so that the denominator of Eq.
(7.22) will be cancelled off. The identification (7.25) simply equates two elements of
the group which for an action of the form (7.19) should be identical. The multiplica-
tion laws (7.26) and (7.27) also follows directly from the action (7.19).

We can easily see that SO res(^) is a cyclic extension of SOres(J^f). Suppose we
are given two elements lying over g, which are represented by triples (g, A, λ} and
(g, B, λ'). The equivalence relation (7.25) tells us that

( g 9 B 9 λ ' ) = ( g , A , λ ' μ β ( A 9 B ) ) . (7.28)
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Using Eqs. (7.22) and (7.24), we see that the scalar factor relating the two elements
lies on the unit circle,

= 1 , (7.29)

so that our extension is cyclic. We will compute the Lie algebra cocyle correspond-
ing to this extension in the next section.

Theorem 7.3. For an element ξ = (g, A, λ)G^SOτes(^f), and for BεUg, let

1)eφ(B9} . (7.30)

This action extends linearly to define a unitary action of S0res(^f) on ̂ e+en.

Proof. First we check that Eq. (7.30) is compatible with the multiplication laws

(7.26) and (7.27). For 7 = 1,2,3, let ξj = (gJ9AJ9λj)e's&τes(J>r)9 such that
£1^2 = £3- Given B e Uβ2 such that B92εUgι, we have

( μβί(Al9B >)μ.2(A29B)\
3\μβl(Al9Aίf)μi2(A29A3)) ' l ' '

We need to show that the factor is parentheses is equal to μg3(A3, B). The square of
the numerator is given by

xdet(α2 + b2B)(a2 + b2A2)~1 . (7.32)

Now, since

(a1 + b1B
92)(a2 + b2B) = a1(a2 + b2B) + foι(c2 + d2B)

= a3 + b3B, (7.33)

we can write Eq. (7.32) as

(μβl(Al9B'*)μβ2(A29 B))2 = det(α3 + b3B)(a2 + b2A2)^(a^ + ̂ iΓ1 . (7.34)

Similarly, we can write

(μg^A^A^μg^A^A^))2 = det(α3 + b3A^)(a2 + b2A2)~1(a1 + b 1 A 1 ) ~ 1 .
(7.35)

Taking the ratio of Eqs. (7.34) and (7.35), we have

. 2

t + b3A3)(a3 + /73^3)~1 , (7.36)



Pfaffian Line Bundle 483

so that

^£^ fr **•'*•'>• (7 37>μgι(A1,Af)μg2(A2,A3)

To fix the sign, we simply let B = A3, and see that both sides are equal to 1. This
proves that

ξ1 ( ξ 2 e*^) = ξ3 e*^. (7.38)

The next step is to check that the action preserves the inner product. For
ξ = (g, A, A), we have

\e^Bβ^y. (7.39)

As usual we first work with the square,

By the definition of B9, we have

/ 1 \
a + bBΓ1 , (7.41)

, V ) \B

so that we get

9\

det(l + B%B2)

Φ(B2)\2

' (7.42)
+ bBί)*(a + bB2} '

Putting this together with Eqs. (7.22) and (7.24), we find that

If Bl is set equal to J52, we see that the sign is positive.
We have now checked the behavior of the action (7.30) for elements of the form

eφ(B\ where B lies in an open set of V0. Lemma 7.1 tells us, however, that these
elements span all of &r*+*n. Since the action on these elements preserves the inner
product, it clearly extends to all of ^e7en. D

The initial form of the action of 5Ores(Jf ) on ^^Qn was defined so as to

correspond to an action of SOres(JΊf ) on PFeven, the Pfaffian line bundle restricted
to the even component of Gr/(jf). We will now show how SOres(J^) acts on PFeven

holomorphically. Given ξ = (#, A, λ\ let Ufτ denote the set of all BeVR such that
g ( graph (B)) lies in Vτ. For each R and T, we need to find a holomorphic function
fξ on Ufτ such that

ξ (B,l)R = ( B ' , f ξ ( B ) ) τ , (7.44)
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where B' e Vτ is the point g(graph(£)). From Theorem 7.3 we know already that
such a function exists when R = T = S0, and is given by λμg(A, B) in this case.

Lemma 7.4. Given R and T9 and for a fixed ξ = (g,A,λ)e!ϊffns(J'ίf)9 there is
a holomorphic function fξ on Ufτ such that

ξ (B9l)R = ξ ( B ' 9 f ξ ( B ) ) T 9 (7.45)

forBεUfτ.

Proof. Suppose that BeUfτ corresponds to a point C^Ug. Using Eq. (7.30) and
the transition functions for PF, we have

= (B'9 λμg(A, C)hTSo(C*)hSoR(B))So) . (7.46)

The lemma will be proven if we can find an extension to all of U fτ of the function

MB) = λμg(A, C)hTSo(C9)hSoR(B))So) , (7.47)

which is well-defined and holomorphic on Ufτ n Ug. For, if such an extension
exists, it is unique, and by continuity the action of ξ on elements of PF must obey
the formula (7.45).

The extension of fQ can in fact be written out explicitly. Let

(7.48)
\ CRT dRT J

with respect to the decomposition WR 0 WR -» Wτ © W ̂ , e.g. aRT maps
WR -> WT9 etc. Choose some DGUfτ, and let

f ( B ) = κPί(D- B,(aRT + bRTDΓlbRT] . (7.49)
WR

Because the set Ufτ is defined precisely by the condition that (aRT + bRTD) be
invertible, this function is holomorphic on all of Ufτ. For the moment, K and D are
arbitrary.

Because ξ preserves the inner product of <Fe+en, we know that

( }

By manipulations similar to those done to obtain Eq. (7.22) for μg9 we have

Γ tet*(a*τ + bRTB)(aRT

The arguments used in Eq. (7.42) can be repeated to give

det (aRT + bRTB)(aRT + bRTB)* = . (7.52)
WR rl
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Combining Eqs. (7.51) and (7.52), we have

2

l ' ;*bRTD)(aRT + bRTD)

Because there are no non-constant holomorphic functions on Gr/( Jf ), if the norms
of two holomorphic functions differ by a constant, the functions themselves differ
only by a constant. Thus, by choosing K appropriately, we have f = fo on
UfτπUg. D

Theorem 7.5. 5Όres( Jf ) acts on the even component o/PF. The action is holomorphic
and linear on each fiber.

Proof. The form of the action is given by (7.45). Lemma 7.4 tells us that the
functions fξ and holomorphic, so the action is holomorphic. D

We have now worked out the results for the even components of Ores( J f ) and
PF. We can apply them to the full spaces by means of a simple trick. We enlarge the
Hubert space Ztf slightly, and embed PF in the even component of the Pfaffian line
bundle for the new Hubert space. Let

<2 , (7.54)

which we decompose as J^± = Jf7+ ® C. We define the complex structure J for

J(x,λ) :=(Jx,λ), (7.55)

for (x, λ) e 2tf± © C. Starting with the pair $, J, we construct a line bundle PF and
the corresponding Fock space 2FP = ̂ +.

Let y denote the representation of Ores(^f) on C2 given by

1, if g lies in the identity component of Ores(J^);

o n h . ("6)

j , otherwise .

This gives us a homomorphism

O ( 'ϊ&?\ .— C/~) ( ι&)\ CΊ ^H\
res^<^T ) (->• ijL/j.gg^e^'ί ^ , { / . J / J

which maps

gi *-+0:=(g,γ(g)) . (7.58)

Using this map we make the following definition.

Definition 7.6. The extension Oτes(J^) is the pullback to 0res(J^) of the extension

by the map (7.58).

This map (7.58) also defines an embedding of Gr/(^f) in the even component of
i, by

g^ ̂  g$ . (7.59)
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There is a corresponding map of index sets S i—> S,

- ί (5, +), if dim(S n Z + ) is even;

' Z + ) is odd, l ' J

where the + and — refer to a basis {ζ+ } for C2. We can use this to describe the
embedding of PF in PFeven very simply.

(A, λ)s H-> (A, λ)s , (7.61)

where the map A is extended from Ws to W$ by zero. Recall that the elements of PF
can be identified with elements^ the Hubert space J^+. The embedding (7.61) leads
to the following map J*+ -»^+ven,

^even ' * ̂ even ?

ω
odd •—> C+

 Λ ω
odd (7.62)

This map is a Hubert space isomorphism.

Theorem 7.7. The action o/Ores(J f) on Gr/(J f) is covered by a holomorphic action
of Ores(Jf7) on PF, and ίnzs gπ es rise ίo a unitary representation o/O r e s(Jf) on
ί̂  ^ /-x^ ί̂  \^+1 = ^pi-

Proof. Given the embeddings and isomorphisms defined above, this is a straight-
forward generalization of Theorem 7.3 and Theorem 7.5. D

8. Loop Groups

Let iff (n} be the space tf ® C", where 2tf is the Hubert space of square-integrable
half-densities on S1. An element of Jf3 ( M ) can be thought of as a vector valued
function

(8.1)

such that f ( θ + 2π) = —f(θ). This space has a natural basis given by ek

±j with
/c = 1, . . . , n and 7*eZ + , where ej corresponds to the function for which
fι(θ) = διkexp{ ± i(j — %)θ} 3?(n} has its natural complex conjugation

J f ( θ ) : = f ( θ ) . (8.2)

We can construct an isomorphism J f (n) ^ Jf7 by mapping ek

±j i— >• e±(n(j-1)+k},
which clearly preserves the action of J on the two spaces.

The group L0n of smooth loops in On acts naturally on Jf ( n ). For ye
("), we set

(8 3)j
Because y is real- valued, we clearly have JyJ = γ.

Proposition 8.1. Equation (8.3) defines an embedding L0n q: (^(J^ ( M )) (and hence
in O

Proo/ We have already noted that Jy J = y. For the remainder of the proof, the
corresponding result for unitary matrices done in [21] applies directly.1 D
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The pullback through this embedding of the extension Ores(^f ) gives us cyclic

extensions L0n of L0n. To determine what these extensions are we first compute
the Lie algebra cocycle of the extension Ores(Jf ). The Lie algebra ores(Jf ) of

is given by

ores(^f) = {ηG^(je): η* = - η, Jη J = η,P+ηP-

and P-ηP+ are Hubert-Schmidt} .

It is easy to verify that an element of ores( J f ) must have the form

v w \

Jυj)9

with respect to the decomposition J f_0Jf+, where v* = — v, and we

To compute the Lie algebra cocycle, we need to find a cross section of the
extension Ores(^f ) over a neighborhood of the identity. For our neighborhood, we
will use the set U consisting of all 0eOres(^f ) for which a is invertible, when g is
written in the usual form (7.4). The cross section U -» Ores(^f ) is

1 / 4 ) . (8.4)

We are looking for as map c : U x U -> C such that

0102 = c ( g ί 9 g 2 ) § 3 , (8.5)

when 0!02 = 03- This map is given by

x p / ,
'01,02 = - H t * Pf -c 2α 2- 1,αΓ 1&ι . (8.6)|_ detαfα 3 J ^+

Given such a map c, the general formula for the Lie algebra cocyle of the
extension is

Gφ/i, η2) = DιD2c(ηl9η2) - DlD2c(η2, η,) , (8.7)

where D1D2c: oτes(^f) x ores( J f ) -> C is the mixed second partial derivative of c at
the identity. We compute that for ηly f/2eo r e s(Jf ),

= exp< - - T r w f w ! >exp< - T r ( w f W i + w f w 2 ) >+ - •

= 1 + -Tr(wfw 2 - w j w j + (8.8)

Thus we read off that

1
*w2 — w * W i ) . (8.9)
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We can think of this cocycle as being the Chern class of the unit circle bundle in PF,
which is identified with Ores(Jf )/l/(jf_) [21].

The extensions L0n will be completely determined by their Lie algebra

cocycles, which we can now specify.

Proposition 8.2. The extension L0n given by the pullback ofδres(^f) corresponds to

the Lie algebra cocycle

S(α, /?) = -?- 7 <α(0), β'(θ)ysθndθ , (8.10)
4π J

Q

where α, βeLson, and <Jf, Γ>SOn = — tr XY.

Proof. Let the Fourier decompositions of α and β be

α(0) = Σ α ( kVk θ ,
fceZ

We simply compute the induced cocycle

fc,w> 0

k> o

dθ. Π

Theorem 8.3. 77ze ίoop groups, L0n act on J*> by irreducible projective unitary
representations, corresponding to the cyclic extensions defined above.

Proof. The only aspect of this theorem which has does not follow immediately
from our previous results is the irreducibility of the representations. The proof or
irreducibility can be taken virtually unchanged from the corresponding proof for
LUn in [21], so we will not repeat the arguments here. D

We mentioned in Sect. 4 that the determinant line bundle can be pulled back
from the Pfaffian line bundle defined over a larger Hubert space 9C = 2tf ® W .
The embedding of the two line bundles corresponds to an embedding of U^s(^f) in

). The subgroup LUn of l/res(Jf ) maps to L02n under this embedding,
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precisely by the canonical map Un ^02n. Thus, we see that if we apply the above
results for L02n to LUn via the embedding Un c» 02n, we obtain the same extensions
and projective representations which were obtained in [21] using the determinant
line bundle construction.

9. The Pfaffian Line Bundle Over Moduli Space

The determinant line bundle of Quillen [22], which involves the determinant lines
of Dirac operators, has been studied extensively. Its differential geometry [7] and
holomorphic structure [8] have been worked out. As mentioned in the introduc-
tion, the construction has proven extremely useful in string theory and conformal
field theory. Freed has also given a construction of a Pfaffian line bundle which is
a square root of the Quillen determinant line bundle [12]. We will attempt here to
relate his Pfaffian line bundle to our construction. We start by outlining his
construction briefly.

Let Mg be the moduli space of Riemann surfaces of genus g together with
a choice of spin structure. An element of Jtg is thus a pair (Σ, S), with S a holomor-
phic line bundle on Σ such that

S2^T*Σlt0. (9.1)

Given such a pair, we define the Dirac operator D to be the d operator acting on
sections of S,

D:=ds:Ω°>Q(S)^Ω°>l(S). (9.2)

Note that because of the relation (9.1), we have a natural bilinear pairing

β0 0(S)(8)00 1 (S)->C, (9.3)

given by integration over Σ. This pairing will play the role of the bilinear form ( , )
on Jjf, and its existence is the reason for requiring S to be a spin bundle. The papers
dealing with the determinant line bundle and the Krichever map use a more
general moduli space, involving an arbitrary line bundle [2, 5, 6, 15, 25].

It is a special case of the results of [8] that the complex (9.2) varies holomorphi-
cally over Mg. Given a point meJΊg, we can choose a finite-dimension subspace
Voϊ the bundle Ω°'°(S) which varies holomorphically and for which Ker D a Fat
the point m. Then V necessarily contains Ker D in some neighborhood U of m.
Over this neighborhood, we define the holomorphic line bundle

where Λ designates the highest exterior power.
These locally defined line bundles can be patched together as follows. Suppose

that Vl d V2 are finite dimensional subbundles of Ω°'°(S) defined on open sets
UlcιU2. Let X = F2/ FΊ. By construction, D has no kernel when restricted to X.
Via the pairing (9.3), we see that D corresponds to an element of ωDeXf ® X',
given by

β) = $a®Dβ. (9.4)
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We see through integration by parts that ωD is skew, and so belongs to s\2Xf. Let

ΩD:=-ω'D9 (9.5)
r l

where 2r = rank X (we know that the rank of X is even because D: X -> X' is both
invertible and skew-symmetric). ΩD gives us an isomorphism

jru^tfϋ,, (9.6)

defined over I7l5 which is

s h-> s Λ ΩD . (9.7)

Because the complex (9.2) varies holomorphically, the form Ω varies holomorphi-
cally over Uι. Thus the patching maps defined by (9.7) are holomorphic, and the
result is a holomorphic line bundle Ctf. A canonical holomorphic section, which
vanishes where D has a kernel, is easily obtained. We can define ΩD e Λ V for any
subbundle F, just as above, and we define the section locally by this form. The line
bundle tf and its canonical section are the square roots of the determinant line
bundle and its holomorphic section.

To make contact with the Pfaffian over a Grassmannian manifold, we must
enlarge the moduli space to specify a coordinate patch and describe a variant of the
Krichever map [18]. Krichever's original map was from a moduli space to the
space of solutions to the KdV equations. The equivalent map to the Grassmannian,
which we use, was introduced in [23, 25]. Let Jtg be the space consisting of a pair
(Σ9S)eJίg together with a local coordinate patch z on Σ. By local coordinate patch
we mean an invertible holomorphic map from an open set of Σ to an open
neighborhood of the unit disk in (C. Jtg can be given the structure of an infinite
dimensional complex manifold [4]. Denote by π the natural projection Jlg -> Jtg.

Let 3? be the Hubert space we have mentioned previously, the space of
square-integrable function on S1 with anti-symmetric boundary conditions. For
each point (Σ9 5, z) e Jlg> we can define a map from Ω°'°(S) -> ffl, as follows. In our

coordinate patch, ^fdz gives a trivialization of 8. For and ωeΩ°'°(S) we can find
a function /on an open neighborhood of the unit disk in C so that locally ω has the
form

ω =/Vdz . (9.8)

We define the map Ω° °(S) -» tf to be

ω^φω(θ)=f(eiθ)ew'2. (9.9)

Note that for v, ωeΩ°'°(5), the product v(χ)ω can be regarded as a form in
Ωl °(Σ), so that δ"(v <g> ω) is a volume form on Σ. Let 0 be the disk \z\ < 1. By
Stokes' theorem we have

J δ ( v ® ω ) = I φv(θ)φω(θ)dθ
Σ-O dO

= (Φ,, Φω)* (9.10)

(recall that (x, y)#> = (Jx,
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Proposition 9.1. For m = (Σ, S, z)tJlQ, let W^ be the subspace of 2tf which is the
closure of the set,

{/ e Jf : / = φω for some ωeΓ(S\Σ_0)} , (9.1 1)

where Γ(S\Σ-o) is the space of holomorphic sections of S over Σ — O. Then the
assignment m h-> W^ defines a map

fciU^c GΓ/pf), (9.12)

which is injective and holomorphic.

Proof. The fact that fe defines an injective map to the Grassmannian was proven in
[25] (in greater generality), and the holomorphicity of this map has been discussed
in [5, 15]. Therefore we will only demonstrate that the image of k lies in Gr/( Jf ) for
our particular moduli space. Fix m and let W= W^. We will show that the
projection P_: W^> ffl- has index zero, and that W is isotropic with respect to

( , ).
To prove the first, let Σ0 be the patch where the coordinate z is defined, and let

Σ^ denote the set Σ\{z = 0}. For any Riemann surface we have an exact sequence,

ΣJ^Hl(Σ9S)^09 (9.13)

where Γ denotes the space of holomorphic sections, and H*(Σ, S) is the cohomo-
logy of Σ with values in the sheaf of holomorphic sections of S. From the Dolbeault
theorem, we have

(9.14)

It is also clear that

= ^ a n> (9.15)

where the superscript an refers to the subspaces of analytic functions. The map

->.ran, (9.16)

appearing in the exact sequence above takes (/, 0) ι— »/— g. Its kernel is
KerP_: P7an -> 2? a_n, which is just KerP_, since all functions in this kernel are
analytic. Similarly, the cokernel of the map (9.16) is just CokP_. From the
sequence (9.13) we thus obtain the exact sequence

0-»KerD-» W-+ tf- -> CokD ̂ 0 . (9.17)

From this exact sequence, we read off that P_ is Fredholm with index zero, since
the Dirac operator D has index zero. We note that the arguments which show that
the complex (9.2) varies holomorphically over Jίg can be applied to see that (9.17)
varies holomorphically over Jtg.

To prove the isotropy of W, we use integration by parts and Stokes' theorem.
Suppose that f9geW, and let /= φV9 g = φω. We have already noted that

( / , f l f ) = j 3 ( v ® ω ) . (9.18)
Σ-O

Since v and ω are holomorphic, this is equal to 0. Hence, W is isotropic. D
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This type of Krichever map is essential to the Fock space functor construction
of [24]. We use it to give the relationship between the two Pfaffian line bundles in
the following theorem. The corresponding result for the determinant line bundle is
well known [5, 15].

Theorem 9.2. With π the projection Jίg -> Mg^ ana k the map defined in Proposition
9.1, we have the holomorphic isomorphism

π * J f ^ / c * P F ' . (9.19)

Proof. The proof is easy if we use a slightly different definition of the Pfaffian line
bundle. Given a point ^eGr^J-f ), we can choose a finite dimensional subspace
V <= W such that Ker P_ c V in a neighborhood U of W. Then we define PF
locally by

PFί,:= Ux/\V . (9.20)

These definitions are patched together using the bilinear form ( , •) and the map
P- , which is skew with respect to the pairing, in exactly the same way we patched
Jf using the pairing (9.3) and the Dirac operator. It is easy to check that this
definition is equivalent to the one given in Sect. 4. The parallel to the construction
of Jf is obvious. All that is needed to complete the isomorphism is the exact
sequence (9.17), which varies holomorphically over Mg. D

This theorem relates the two bundles PF and Jf . The latter bundle has
a canonical holomorphic section, which is thought of as the Pfaffian of the Dirac
operator. Its defining property is that it vanishes precisely when the Dirac operator
has zero eigenvalues, and the order of vanishing is equal to half the number of zero
modes (the zero modes come in pairs because D is always skew symmetric). It is
easy to pick out the section of PF' which has this property when pulled back by /c,
because zero modes of D correspond to elements of Wr\3tf+. The holomorphic
section ySo of PF', in the notation of the first few sections, pulls back to the
canonical section of jf . This is very natural, because in the Fock space interpreta-
tion of the space of holomorphic sections of PF', ySo corresponds to the vacuum
state.

Unfortunately, the situation with regard to metrics is not so clear. It would be
nice to be able to relate the metrics on the line bundles Jf over the moduli spaces
for different genera to a single metric coming from PF, but this is impossible. The
metric on Jf is independent of any local coordinate patches. By choosing an
arbitrarily small coordinate patch on a higher genus surface, we can bring the
corresponding point in Gr/(Jf) arbitrarily close to the point Jf_, which corres-
ponds to the sphere. Thus no smooth hermitian structure on PF can be pulled back
to give the canonical metrics on JΓ over moduli spaces for different genera.
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