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Abstract. The solutions to Burgers equation, in the limit of vanishing viscosity, are
investigated when the initial velocity is a Brownian motion (or fractional Brownian
motion) function, i.e. a Gaussian process with scaling exponent 0 < h < 1 (type
A) or the derivative thereof, with scaling exponent — 1 < h < 0 (type B). Large-
size numerical experiments are performed, helped by the fact that the solution is
essentially obtained by performing a Legendre transform. The main result is obtained
for type A and concerns the Lagrangian function x(a) which gives the location at
time t = 1 of the fluid particle which started at the location a. It is found to be a
complete Devil's staircase. The cumulative probability of Lagrangian shock intervals
Δa (also the distribution of shock amplitudes) follows a (Δa)~h law for small Δa.
The remaining (regular) Lagrangian locations form a Cantor set of dimension h. In
Eulerian coordinates, the shock locations are everywhere dense. The scaling properties
of various statistical quantities are also found. Heuristic interpretations are provided
for some of these results. Rigorous results for the case of Brownian motion are
established in a companion paper by Ya. Sinai. For type B initial velocities (e.g. white
noise), there are very few small shocks and shock locations appear to be isolated.
Finally, it is shown that there are universality classes of random but smooth (non-
scaling) initial velocities such that the long-time large-scale behavior is, after rescaling,
the same as for type A or B.

1. Introduction

Burgers' equation
dtu + udxu = vd2

xxu, (1)

was introduced in the twenties as a model of turbulence [1, 2]. The discovery of its
integrability in the early fifties by Hopf [3] and Cole [4] has led to a rather complete
understanding of the properties of individual solutions, particularly in the inviscid
limit (y —> 0) and also to the realization that... it is not a good model of turbulence,
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because it does not display any chaos, even when a force is added to the right-hand
side.

More recently it has been discovered that Burgers equation arises naturally
in a number of different problems. ZeΓdovich [5] has proposed to use the multi-
dimensional Burgers equation to study the formation of large-scale structures in the
Universe. Kardar, Parisi, and Zhang [6] have shown that Burgers' equation can be
used for studying the dynamics of interfaces, particularly when a random force is
added. Kuramoto [7] has shown that the phase diffusion equation

θtψ = ad2

xxψ + β(dxψ)2 (2)

describes long wavelength phase modulations in a medium with travelling periodic
waves (when parity-invariance holds). Observe that (2) is equivalent to Burgers'
equation as long as a > 0, after x-differentiation and suitable rescaling. Among the
many applications of phase diffusion, let us mention here the transmission of neural
signals along giant axons of squid [8].

Thanks to the Hopf-Cole solution, there is a fairly good understanding of the
properties of the solution to Burgers' equation in the inviscid limit when the initial
velocity UQ{X) is smooth. Typically, after some time, the solution u{x,t) displays
isolated discontinuities (shocks), separated by smooth regions, which for long times
become ramps of slope \/t. When the initial velocity is smooth and random (e.g.,
Gaussian with a spatially decreasing correlation function) there are few rigorous re-
sults, but various asymptotic laws have been proposed, based on partially heuristic
arguments. They concern mostly the k~2 behavior of the energy spectrum at high
wavenumbers k and the law of decay of the mean energy ([2, 9-11] and references
therein).

It is our purpose here to investigate the behavior of solutions to the unforced
Burgers' equation with random non-smooth initial velocities having no characteristic
scale. The prototypes are the Brownian motion function and the white noise distribu-
tion, but we shall consider two broader classes (type A and B) of which the former
are instances. All our initial conditions can be characterized by a scaling exponent h
between —1 and +1 (h = 1/2 for Brownian motion and h = —1/2 for white noise;
see Sect. 3 for precise definitions).

Such initial conditions arise naturally in at least two of the above mentioned
problems. In extending ZeΓdovich's work on the formation of "pancake structures"
in the Universe, Gurbatov et al. [12] were led to use the (multi-dimensional) Burgers'
equation in the inviscid limit with Gaussian initial conditions having a power-law
spectrum with adjustable spectral exponent (see also [13-15] and the book [16]). In
the neural signal transmission experiment of Musha et al. [8], the initial condition
for the quantity which satisfies Burgers' equation is essentially white noise (at those
scales where the phase diffusion equation applies).

Burgers' equation with an initial random velocity having scaling properties is an
interesting problem in itself. For example one expects a conflict between the initially
imposed scaling and the scaling which is dynamically generated through the formation
of shocks. Finally, we discovered the existence of universality classes of random but
smooth initial velocities such that the long-time large-scale behavior of the solutions
(suitably rescaled) to Burgers' equation is the same as that arising after a finite time
for the non-smooth initial conditions considered in this paper (see Sect. 7).

The present investigation is a coordinated effort with Ya. Sinai, who has been
able to rigorously establish some of our conjectures. These conjectures w(ere based
on qualitative features of numerical solutions of Burgers' equation with an initial
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velocity field which is the Brownian motion function. Ya. Sinai obtained further rig-
orous quantitative results which we have numerically verified with high accuracy.
The results by Ya. Sinai are presented in a separate paper in the same issue, hereafter
referred to as the "companion paper" [17]. In the present paper, our approach will be
a mixture of heuristic theory and of numerical experiments. The paper is organized as
follows. In Sect. 2, we briefly recall the Hopf-Cole solution of Burgers' equation and
define our notation. In Sect. 3, we introduce two types of Gaussian initial conditions
with scaling properties. Type A has scaling exponents 0 < h < 1, and contains as
a special case the Brownian motion for which exact results are established in the
companion paper. Type B has scaling exponents — 1 < h < 0, and contains as a
special case the white noise. We then establish some elementary scaling properties
of the solution. The numerical strategy used for this study and related problems are
presented in Sect. 4. In Sect. 5, we present qualitative aspects of the solutions together
with heuristic interpretations. Section 6 is devoted to quantitative results such as the
accurate determination of scaling exponents for various statistical quantities; some
conjectures are made for initial conditions other than the Brownian motion. In the
concluding Sect. 7, we summarize key results and make various remarks.

2. Hopf-Cole in a Nutshell

Burgers' equation (1) may be rewritten as

\vd2

xxu. (3)

Let us introduce a potential function ψ, denned by u = —dxφ. Using the Hopf-Cole
transformation [4, 3] ψ = 2v In θ, we obtain a heat equation for θ:

dtθ = vd2

xxθ. (4)

In the absence of boundaries, the solution of (4), for t > 0, is

oo
1 ί (*-α)2

θ(χ, t) = — / e -&r θo(a)da, (5)
V4πvt J

—oo

where

θo(a) = exp U ^
and ψo(a) is the initial potential function such that uo(a) = —daψo(a).

In the inviscid limit {y —• 0), the solution found by a steepest descent argument
reads

γ[ χ a γ
Ψo(a) wi— , for z/ ^ 0. (6)

It \
We denote by a(x, t) the location where the maximum in (6) is achieved (when it
is unique). The function a(x,t) will be called here the inverse Lagrangian function.
As we shall see below, its inverse x(a, t), is the usual Lagrangian function, i.e. the
location at time t of the fluid particle initially at a. Both functions, x(a) and a(x),
will be central objects of interest in our study. In what follows, we shall define the
solution of the inviscid Burgers equation by (6). The finiteness of the maximum is
guaranteed as long as ψoia) increases less rapidly than a2 for a —•> oo.
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We now show [2] that, for fixed t, the inverse Lagrangian function a(x) is a
non-decreasing function of x. Indeed, let α* and a'* denote one of the maximizing
locations corresponding to x and xf, respectively. We then have, by definition of the
maximum,

(x- α*)2 (x-af
> ψo(ά) — — , Vα, (7)> ψo(ά)

and

(χf _ of Ϋ (rJ _ a\2

VΌ(4) - 2t* > Φo(a) - K

 2t ' , Vα. (8)
We substitute a — α* into (7) and a = a* into (8), we add the resulting inequalities
and multiply by 2t. After simplifications, we obtain

a'*)>0. (9)

This proves the result.
The maximizing condition in (6) can also be expressed as

X Ύ Cl
Φ(x,t)+ — =max\φo(a)+—\, fαri/->0, (10)

2t a l t ]

a2

where φo(ά) = ψo(ά) — —. Hence, the solution to Burgers' equation can be expressed

in terms of a Legendre transform of φo(a). This gives a direct geometrical method for
the construction of the solution. The key observation is that the Legendre transform
of a function coincides with the Legendre transform of its convex envelop. When the
initial condition has bounded velocity gradients, φo(a) is convex in α, for sufficiently
short times [because a2/2t is large and convex, and ψo(a) has bounded second deriva-
tives]. For such times the Legendre transformation is smooth, and the maximum in
(6) is obtained at the single Lagrangian location a at which the derivative with respect
to a of the bracketed quantity vanishes. This gives

x = a + tuo(a). (11)

Hence, x is the location at time t of a fluid particle starting at location a and moving
with velocity uo(ά). Thus, it is justified to call x and α, Eulerian and Lagrangian
coordinates, respectively. By taking the x-derivative of (6), one easily finds that

u(x,t) = uo(a). (12)

After some time, singularities may develop, corresponding to those α's where the
convex hull of φo(a) departs from the function itself. For some values of x there
may be two values α~ < α + where the maximum is achieved. For such values of x,
the (Eulerian) velocity is discontinuous. From (11), its left and right limits are given
respectively by

u- = (x-a-)/t, (13)

u+ = (x-a+)/t. (14)

Thus, the amplitude of the velocity discontinuity (shock) u~ — u+ is proportional to
the length of the Lagrangian interval α + — a~ which gets absorbed into the shock:

vΓ - u+ = (α+ - a-)/t = Δa/t. (15)
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Points within shock intervals such as [a~,a+] will be called Lagrangian shock
points. The corresponding x's will be called Eulerian shock points.

Note that the quantity Δa = a+ — a~ may also be viewed as the mass of the fluid
absorbed into the shock (assuming an initially uniform mass density).

Finally, we define Lagrangian regular points to be points α* such that they
have not participated in a shock for any time 0 < t' < t. This is equivalent to
the geometrical statement that there exists a couple (x*,C*) such that the parabola
a \-+ (α — x*)2/(2t) + C* touches the graph of α H ψo(a) at the single point
(α*,/0o(α*)) The point £* is said to be an Eulerian regular point.

Concerning regular points, there are several interesting possibilities, (i) If the func-
tion ψo(a) is differentiable once, the tangent at α* is unique and this implies the
uniqueness of the parabola, (ii) If the function ψo(a) is twice differentiable, there may
be an entire interval of regular points near α*. (iii) If, however, the function ψo(a)
is not differentiable at all, the parabolas may not be unique and generally there will
be a whole range of x*'s for a given α*. Case (ii) is standard for very smooth initial
data. Case (i) and (iii) will be relevant for the type A and type B non-smooth initial
velocities which are considered here.

3. Self-Similar Initial Conditions
and Elementary Scaling Properties of the Solution

We now specify the different types of initial conditions chosen for our investigation.
In all cases, the initial velocity UQ(O) is a Gaussian random function with zero mean
value. The velocity increments are homogeneous and self-similar. The former means
that the statistical properties of increments are invariant under translations. The latter
means that there is a scaling exponent h such that

uo{a! + λα) - uo(a') λ= λh(u0(a' + α) - u0{o!)) Vλ > 0, Vα, Vα', (16)

where = refers to equality "in law," meaning that the l.h.s. and r.h.s. have the same
probability distribution.

The simplest instance is the Brownian motion function 6(α), a Gaussian random
function satisfying b(0) = 0 and (b(a)b(af)} = inf (α, a'). It is easily checked that for
Brownian motion h = 1/2. More generally, we will consider the class of fractional
Brownian motions with 1 > h > 0. We call these initial data type A initial conditions.

Our second class of initial conditions, type B, are just the derivatives of the former.
In other words, it is now the initial potential function ψo(a) which is of type A. Type
B initial conditions for the velocity are not random functions but random distributions.
They have scaling exponents — 1 < h < 0. The simplest instance, corresponding to
h = —1/2, is the white noise which is the derivative of the Brownian motion.

Both type A and B initial conditions can be characterized by their energy spectrum,
which is easily seen to be a power-law:

E(k) <x \k\-χ-2h , (17)

where k is the wavenumber.
The self-similarity of the initial conditions has an important consequence for the

solutions to Burgers' equation, given by (6). To derive this relation, we start from
(16) and specialize to a' = 0. We then integrate once to obtain a relation for the initial
potential function:

l™ ι + h ( 1 8 )
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Straightforward manipulations of (6), using (18) lead to:

ψ(\x, Xl~ht) l= \ι+hψ(x, t) Vλ > 0. (19)

In particular,

ψ(x, t) l= tτ^ψ(xt~τh, l). (20)

Similarly, for the velocity, we obtain:

u(x,t) l= ίάw(ifά,l). (21)

Such scaling relations allow us to express the (single-time) statistical properties of the
solution at any time t > 0 in terms of the solution at t = 1. Hereafter, we shall set
t = 1. Note that for smooth (non-scaling) initial conditions, the statistical properties
of the solution at two different times cannot in general be related. This is consistent
with the observation that, for smooth initial conditions, it takes some time for shocks
to be formed (typically the inverse of the largest initial negative velocity gradient). In
contrast, for our non-smooth initial conditions, shocks are formed after an arbitrarily
short time.

Note that the restriction on scaling exponents (e.g. h < 1) guarantees that the
solution given by (6) is almost surely finite. Indeed, for large α's the initial potential
ψo(a) grows as \a\ι+h which is bounded by a2 for h < 1. Thus, the subtraction of the
parabolic term (x — a)2/2t guarantees almost surely a bounded maximum achieved
at one or several Lagrangian locations α.

4. Discrete Numerical Analysis

Explicit numerical realization of our non-smooth initial data requires discretization.
That is, we have to introduce a smallest length Ax (mesh size) , and the solution of
(6) should be studied at scales ^> Ax. In order to verify that the numerical solutions
reported hereafter are representative of the continuous limit (Ax —> 0), we have
performed computations with different mesh sizes.

We have used two methods for generating initial data: a random walk method and
a Fourier transform method. It is well known that a random walk with zero-mean and
finite variance steps (and otherwise arbitrary distributions) converges, after rescaling,
to the Brownian motion function at scales larger compared to the step size. Thus, we
can generate a discrete Brownian motion function (of step size Ax) by sums of the
form:

M

b(MAx) = Σωi, (22)
2 = 1

where the αVs are randomly and independently chosen with, e.g. a Gaussian prob-
ability distribution function, zero-mean and variance σ2. We impose σ2 = O(Ax)
to ensure that b(x) converges to the Brownian motion function as Ax —> 0. The
corresponding discrete initial velocity we use is

uf(MAx) = b(MAx), (23)
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where the superscript (b) refers to "Brownian motion." For the initial potential func-
tion, we must integrate once. Given the lack of smoothness, no accuracy is lost by
simply taking Riemann sums. Thus,

M

$ \ ( 2 4 )

For the case where the initial velocity is white noise, we work directly with the
potential, which is then the Brownian motion. We thus take:

<ψ(™\MΔx) = b(MΔx), (25)

where the superscript (w) refers to "white noise."
The random walk method for generating initial conditions works only because

Brownian motion is a Markov process. This is not the case for fractional Brownian
motion which must be generated differently. Approximations to fractional Brownian
motion with a finite large period L can be generated as a Fourier series

(n = 0 , ± l , ± 2 , . . . ) , (26)

where the Uk's are complex Gaussian random variables with variance (\uk\2) oc
|£|-i-2/i^ ^osen independently except for the Hermitian symmetry Uk — u^k. The
velocity generated in this way is self-similar with exponent h (at scales large com-
pared to the mesh and small compared to L). The potential function can be similarly
synthesized from its Fourier series. In practice, we generate directly the initial po-
tential function with similarity exponent 1 + h, and use it to obtain the solution by
solving (6).

Solving (6) with t = 1 is done by searching for those o's which maximize the right-
hand side of (6). Given ψo(a) at N discrete points, determining ψ(x,t) at all N points
apparently requires O(N2) operations, since searching for maximums for each point x
needs O(N) operations. Actually, using the monotonicity of the Lagrangian function
x(a) [or its inverse a(x)] from (9), the total number of operations can be reduced to
O(NlogN) operations as we now show. Consider TV discrete points xi9 with i =
1, . . . , N, and denote the corresponding maximizing α's by α ,̂ i = 1, . . . , N. First,
we determine a aNj2 by searching through x\ to XN [this requires O(N) operations].
The next step is to determine a^μ and a^N/4^ f° r which the search needs to be
performed only in the subinterval [x\,aN/2] and [α/v/2)#jv] Thus, a total of O(N)
operations can determine two values of a. The third O(N) operations gives then four
maximizing α's, and so on. This greatly reduces the computational work for problems
having large TV's as is the case in the present study.

The numerical strategy discussed above gives a discrete version of the original
continuous problem that we study. Thus, it is important in the numerical solution to
be able to identify those features which are not an artefact of the discretization. In the
discrete problem, there is generically only one point a which maximizes the r.h.s. of
(6). Thus the inverse Lagrangian function a(x) obtained from the discrete problem is
single-valued instead of being multi-valued at shocks, as happens in the continuous
limit. The discrete analog of a shock is a change in a occurring over one mesh size
Δx, that is, a(xi+\) > a(xi). Actually, we must require the stronger condition that

afri+ύ ~ cb(x%) > Δx , (27)
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so as to have a finite change in a when the mesh Ax is very small. Observe that,
because the Burgers dynamics corresponds to an infinitely compressible fluid, La-
grangian intervals are infinitely compressed during the formation of shocks. It follows
from (15) that, when (27) holds, the velocity displays a finite negative discontinuity.
We shall call such points shock points. The amplitude of the jump, Aa = ai+\ — α*,
correspond physically to a Lagrangian interval [α ,̂ α̂  + Aa] which, at time t, is
absorbed (compressed) into the shock.

Now, consider the opposite situation, where

a(xi+m) = a(xi), m > 1. (28)

This corresponds to an initial point a being stretched out infinitely to an (Eulerian)
interval [xiy X{ + mAx]. This is how we identify regular points.

5. Qualitative Features of the Solutions and Interpretation

To gain a first insight into the property of the solutions, let us consider graphs of
the velocity u(x, 1) and the inverse Lagrangian function a(x, 1). We recall that it is
enough to study the property for a particular time, here t = 1 (see Sect. 3). Figures 1

Fig. 1. a Inverse Lagrangian function a(x) correspond-
ing to the solution to the inviscid Burgers equation
at t = 1 with the Brownian motion function as ini-
tial velocity (type A). Note the hierarchy of plateaus
and jumps, b, c Show successive zooming, displaying
smaller and smaller structures, d Shows the (inverse of
the) standard Devil's staircase constructed on the stan-
dard Cantor set, and e shows one of its randomized ver-
sions
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Fig. 2. a Eulerian velocity u(x), solution to the inviscid
Burgers equation at t = 1 with the Brownian motion
function as initial velocity (type A), b, c Show succes-
sive small-scale zooming, as in Fig. 1. Note the hierar-
chy of ramp-like structures with slope 1 and the prolif-
eration of small shocks

and 2 illustrate such solutions, computed numerically from (6) with N = 100,000
and Ax — 0.002. Brownian motion is assumed for the initial velocity. Successive
zooming has been set to display smaller and smaller structures. Let us first describe
the inverse Lagrangian function a(x). It displays a number of jumps which correspond
to Lagrangian shock intervals. There are also a number of intervals where the function
is seemingly flat (constant). However, when inspected more closely (after zooming),
these intervals reveal smaller jumps inside. This scenario continues, until zooming
reaches scales comparable to the mesh size.

The graph for a(x) looks impressively like a Devil's staircase (in inverted coordi-
nates). For comparison, in Fig. l(d), we plot the graph of (the inverse of) the standard
Devil's staircase function constructed on the Cantor set (by the 2/3 rule). In Fig. l(e),
we plot also the graph of (the inverse of) a randomized version of the standard Devil's
staircase. (Randomizing means that we shift randomly the position of jumps.) Ob-
serve that Fig. l(a) and Fig. l(e) have similar features. This observation has led us to
conjecture that the Lagrangian function a(x) for the solution to the Burgers equation
with Brownian motion initial velocity is a Devil's staircase.

Now we turn to the velocity u(x) (evaluated as always at t = 1). u{x) is related to
a(x) by (12)—(15). As shown in Fig. 2, it displays a hierarchy of saw-tooth structures.
There is an appearance of ramps with slope 1, associated with (nearly) flat regions of
a(x). (The slope would be \/t at a time t φ 1.) However, when zooming into these
ramps, it is found that they actually contain many tiny shocks. This suggests that (in
the continuous limit) for Brownian motion initial velocity, the total number of shocks
per unit length is infinite and the Eulerian shock points are dense.

Let us now consider a particular type B initial velocity, the white noise (h =
— 1/2). In Figs. 3 and 4, we show the graphs of the inverse Lagrangian function a(x)
and of the Eulerian velocity u(x), displayed in the same way as in Figs. 1 and 2.
Here, we again see a hierarchy of shocks, but this time there are very few small
shocks. Inspection of the largest magnifications (Figs. 3c and 4c) suggests that (in
the continuous limit) for white noise initial velocity, both Euclidean shock points and
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Lagrangίan regular points are isolated. In particular, the total number of shocks per
unit length is now finite.

The two most conspicuous features for type A initial data are (i) the presence of
ramp-like structures with slope \/t (which holds also for type B)\ (ii) the denseness
of shocks. The corresponding rigorous statements and their proofs are found in the

Fig. 3. a Inverse Lagrangian function a(x) correspond-
ing to the solution to the inviscid Burgers equation
at t = 1 with white noise initial velocity (type B).
b, c Show successive zooming, displaying smaller and
smaller structures. Note the sparseness of small scale
structures, compared to Fig. la-c

Fig. 4. a Solution u(x), solution to the inviscid Burgers
equation at t = 1 with white noise initial velocity (type
B). b, c Show successive small-scale zooming. Note the
hierarchy of ramp-like structures with slope 1 and the
isolated character of shock points
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companion paper for the special case of Brownian motion initial velocity [17]. Here,
we present some simple heuristic explanations.

We begin with the \/t ramps. They are associated with Lagrangian regular points.
At such points the solution of the inviscid Burgers equation may be written implicitly
as

(29)

where
x = a + ΐuo(α). (30)

Let us now pretend that the same relation holds also for points x' close to x. Let a1

denote the initial position associated with x'. From (30) we then have

x - x1 = a - a + t[uo(a) - ^o(α')]. (31)

Let us first consider type A (fractional Brownian motion) initial conditions. We then
have for small \a — a'\,

K(α) - uo(a')\ ~ \a - a'\h , 0 < h< 1. (32)

It follows that, for small \a — a'\, the first term on the r.h.s. of (31) is negligible
compared to the second. The derivation is completed by using (29), which implies

u{x,t)-u(x',t) 1
: - T ( 3 3 )

x — x' t
For type B initial data, the derivation is the same, except for the fact that h is now
negative, so that on the r.h.s. of (31) the second term dominates even more.

The same heuristic argument can be used to show that the inverse Lagrangian
function a(x) for type A initial velocity (0 < h < 1) has typically a vanishing
derivative. Indeed, using (31) and (32), we have, for small \a — a'\,

a-a!\ - \x-x'\ι/h . (34)

The latter is o(\x—x'\) since \/h> 1, thereby implying the vanishing of the derivative
da/dx. Actually, it is proven in the companion paper that for h = 1/2 the derivative
vanishes almost everywhere.

6. Quantitative Features of the Solutions

In order to obtain a more precise picture of how dense shocks are, and in particular to
quantitatively verify the conjecture that the inverse Lagrangian function a(x) forms a
Devil's staircase, we have performed a much larger simulation with iV = 1,600,00 and
with 300 realizations. This permits accurate statistical measurements. In the following,
we present the results for both the type A initial data (the first three subsections) and
type B initial data (the last subsection).

6.1. Probability Distribution of Shock Amplitudes

Let us begin with the distribution of Lagrangian shock intervals Δa, that is jumps
in the inverse Lagrangian function a(x). By (15), this is also the distribution of the
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Log1 0 Δa

Fig. 5. Cumulative probability of shock amplitudes obtained (from the corresponding Lagrangian
shock intervals Δa) by octave-binning {2~k < Δa < 2~k+ι). Brownian motion is taken for the
initial velocity (h = 1/2). The straight line is a least square fit which has exponent -1/2

shock amplitudes. We first consider the case of the Brownian motion as the initial
velocity. To facilitate comparisons with analytical results presented in the companion
paper, we have calculated the cumulative probability P(Δa) to find Δa in an octave
interval [ak,ak+ι[, where ak = 2~k (k = 0,1,2,...). In Fig.5, logP is plotted
against log Δa. We observe that for small Lagrangian shock intervals (Δa —> 0), the
probability follows a power law:

P(Δά) oc (Δa)s
(35)

The exponent s determined by a least square fit is s = -0.5 ± 0.005 which agrees
within one percent with the value obtained in the companion paper. Several other
runs have been performed with decreasing mesh-size Δx, ensuring that the result is
representative of the continuous limit Δx —> 0.

A similar analysis for the case type A fractional Brownian initial velocity with
scaling exponent h Φ 1/2 shows that cumulative probability of Lagrangian shock
intervals also follows the power-law (35). The exponent is now given by s = — h
(with high accuracy again). Thus, in all type A cases, the total number of shocks per
unit length diverges due to the proliferation of small shocks.

6.2. Multifractal Analysis for Lagrangian Regular Points

As shown in the companion paper, the (Δa)~1/2 law for the cumulative probability
of Lagrangian shock intervals is connected with another (rigorous) result: the set
of Lagrangian regular points has Hausdorff dimension 1/2. Heuristically, this is the
dimension one would expect if intervals are removed with a cumulative probability
oc (zAα)"1/2. More detailed information about the set of regular points can be obtained
by performing a multifractal analysis of a positive measure concentrated on this set.

dx
Such is obviously the case of the measure —-da whose density is the derivative (in

the sense of distributions) of the Lagrangian function x(a). Indeed, we know that the
non-decreasing function x(a) is constant over shock intervals, so that its derivative is
non-negative and concentrated on the regular points.
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Log1 0 1

Fig. 6. Moments M^(l) = ((x(a +1) - x(a))q) for Brownian initial velocity (h = 1/2). The straight

lines are least square fits over the range of scales where there is power-law behavior: M^{ΐ) oc lτ<i

The multifractal analysis involves the following steps ([18, 19]). First, one com-
putes the moments

(36)

The superscript "L" stands for "Lagrangian." In the simulations, the averages are
computed by a combination of space and ensemble averaging (over typically 100
realizations of 106 space points). In Fig. 6, we show the /-dependence of the moments
Mq(l) for several g's for the case of Brownian initial velocity. It is seen that over
two decades in /, all moments behave as power laws:

OC Γ* . (37)

The exponents r^ plotted in Fig. 7a, can be well fitted empirically by the law r^ ~
0.5 + 0.5q. This suggests that there is a single fractal dimension present, namely

Fig. 7a, b. Dependence of the scaling exponents r^ (a) and τ^L (b) on the order q (see Fig. 6) for
Brownian initial velocity (h — 1/2). Note that in case a the linear dependence on q indicates the
existence of a single fractal dimension (D = h). For case b the presence of a different slope for
small and large g's reflects a bifractality
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D = 1/2. (Recall that the distribution of scaling exponents is the Legendre transform
of τq\ cf. [19].) We have thus obtained additional evidence, for the Brownian initial
condition, that the set of regular points forms a fractal set of Hausdorff dimension
1/2.

For type A fractional Brownian motion with scaling exponent h ̂  1/2, analogous
simulations (not shown) give the empirical law τ\ ~ 1 — h + hq. This suggests the
following

Conjecture. For initial conditions which are fractional Brownian motion with scaling
exponent 0 < h < 1, the set of (Lagrangian) regular points has Hausdorff dimension
h.

6.3. Multifractal Analysis for (Eulerian) Shock Points

Eulerian information such as the characterization of the set of shock points [where
there is a jump in a(x)] can be obtained by applying the same multifractal analysis
as in the preceding section, but now to the inverse Lagrangian function a(x) rather

than to x(a). Indeed, the measure —dx is concentrated on shocks. We are thus led
ox

to calculate the following set of moments

x+l

K^ = ( ( / ̂ z,dχ> I ) = da(χ + o - a(χ»q) (38)

Here, the superscript "IL" stands for "inverse Lagrangian." Again we find that the
moments Mι^(ϊ) scale with I over a suitable range:

MlL(l) oc lτ^ . (39)

However, now the range of scales where the power law behavior is observed is
different for q > 1 and for q < 1. Specially, for the case of Brownian initial velocity,
we obtain the following behavior (see Fig. 7b)

aq 0<q<q*<l ( 4 Q )

with a « 1.33. A similar numerical experiment, performed with fractional Brownian
initial velocity (h = 0.7), gives a « 1.30. In both cases, g* ~ 0.5. We do not attach
too much significance to this value, because the crossover from one to the other
scaling regime was not studied in a great detail.

The result above suggests that we have a bifracial structure as discussed in [20]:
singularities of exponent zero on a set of dimension zero and singularities of exponent
a [see (40)] on a set of dimension one. The former could be the contributions of strong
isolated shocks. The latter can be obtained by a heuristic argument based on (31). If
we assume that a and a' are close, we have

u0(a)-u0(af) = O(\a-af\h). (41)

Neglecting the first term compared to the second in the r.h.s. of (31), and inverting
(if legitimate), we obtain

a-a' = 0(\x-x'\l/h). (42)
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The substantial discrepancy between l/h and the measured value a may be due to a
slow convergence of small-g moments towards their true asymptotic value.

A bifractality similar to the one observed here exists in the standard Devils stair-
caise for the Cantor set. If one takes away a fraction σ at every step (σ being \ in
the middle third Cantor set) it is easy to see by explicit computation that

= 1 + (q — I)DQ (Cantor staircase),

r* = < Do > (Cantor staircase),
1 " 9>A>J

where Do is the Hausdorff dimension (here — log 2/ log σ) of the set. For simple
generalizations, such as asymmetric bisection ratios, the function r^ depends on the
details of the construction procedure [19]. The analog of the measure dx/da, con-
centrated on Lagrangian regular points, is then multifractal. It can be shown that the
low-g branch (q < Do) of τ*L is related to the high-g branch (q > 0) of r^ through

rf = 1 - q', q=l-τ^,. (44)

Finally, we mention that we have also measured standard Eulerian statistical prop-
erties of the velocity field, such as the structure functions

((u(x + Z) - u(x)Y) (45)

for p > 1. These calculations were done only for the case of Brownian initial velocity
(h = 1/2). We found that, for large Γs the structure functions scale just as the initial
conditions, namely oc /P//2, whereas, for small Γs they scale just as the structure
functions of Burgers' equation with smooth initial conditions [20], namely oc I1 for
all p > 1. The former is probably due to the fact that the large-scale properties of
the solution for t = 1 are deducible [by (21)] from the properties for short times of
the solution for scales order one. The latter is explained by observing that there is
a dominant contribution to structure functions of order p > 1 coming from strong
shocks, which are well separated. Further studies of structure functions for h φ 1/2
will be reported elsewhere.

6.4. Initial Conditions of Type B

We have repeated all of the above described analysis for initial conditions of type B
for which — 1 < h < 0. It is now the initial potential function, rather than the velocity,
which is a fractional Brownian motion. For the case of the white noise (h = —1/2),
Fig. 8 indicates that the cumulative probability of Lagrangian shock intervals is still
approximately given, as for type A, by a power law:

P(Δa) oc (Δa)s . (46)

A least square fit indicates s ~ 0.5. A comparison between Fig. 8 and Fig. 5 (type
A; h — 1/2) shows that the scaling is not as clean as before. Still, the fact that the
exponent s is now clearly positive shows that there is only a finite number (per unit
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Δa
Fig. 8. Cumulative probability of shock amplitudes obtained (from corresponding Lagrangian shock
intervals Δa) by octave-binning (2~k < Δa < 2~k+ι). White noise is taken for the initial velocity
(h = —1/2). The straight line is a least square fit which has exponent 1/2
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Fig. 9a, b. Scaling exponents r^ (a) and τ*L (b) obtained as in Fig. 7 but with initial velocity of
type B. h = -1/2: circles; h = -1/4: triangles

length) of small Lagrangian shock intervals. Thus, no Cantor-like set can be obtained
by removing such intervals, i.e. for the Lagrangian regular points.

We now turn to the multifractal analysis for the solution of type B initial conditions.
We again find that there is scaling for both the moments M^(l) and Mι^(l). The scaling
exponents r^ and τ^L, shown in Fig. 9a and 9b (for ft, = —1/2 and h — —1/4), are
not straight lines: they both display curvature. This could be taken to suggest that

the measure -^—da and the measure τr-dx have both non-trivial multifractal behavior
da ox

for type B initial conditions. It is likely, however, that such weak multifractality is
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a numerical artefact. Actually, for the white noise initial condition (h = —1/2), the
large-*/ behavior of both τ^ and τ^L suggests a straight line with slope zero. (The
vertical scales are very much stretched, especially for Fig. 9b.) This is consistent with
our previous conjecture that both Eulerian shock points and Lagrangian regular points
are isolated.

7. Conclusion

We begin by summarizing our main quantitative results. They concern (i) the cumu-
lative probability P(Δa) of Lagrangian shock intervals Δa, (ii) the moments M^(ΐ)
of increments of the Lagrangian function x(a) over a distance /, (iii) the moments
M*L(0 of increments of the inverse Lagrangian function a(x). (These increments are
equal to the integrals of the mass density when the latter is initially assumed uniform.)
We have found that P(Δd) behaves for small Δa as (Δa)~h. This result holds for
type A (0 < ft < 1) with very good accuracy, and also for type B (— 1 < ft < 0),
but not so accurately. For type A, the multifractal analysis indicates the following:
the measure dx/da, concentrated on Lagrangian regular points, is monofractal with a
dimension equal to the scaling exponent ft; the measure da/dx (the mass density) is
consistent with a bifractal description involving dimensions 0 and 1 with respective
scaling exponents 0 and I/ft. (Precisely the same result holds for Cantor-like con-
structions, as explained in Sect. 6.3.) For type B, our multifractal numerical results
may not be fully reliable. The indications are that both the Eulerian shock points and
the Lagrangian regular points are isolated.

We now turn to a different matter. As we shall briefly show, the results established
in this paper, for rather special non-smooth initial conditions of Brownian type, have
actually implications for a large class of smooth random initial conditions, provided
very large times and very large scales are considered. Let us explain this for the
white noise (a particular type B) initial condition. Consider the universality class of
initial conditions having all of the following properties, which are expressed in terms
of the initial velocity: UQ{X) is random homogeneous and smooth (infinitely many
derivatives), has zero mean value and finite variance, is mixing (correlations decrease
with separation) and has a correlation function Γ(x — x') = (uo(x)uo(xf)) such that
+OO

/ Γ(x)dx = D > 0.1 These assumptions imply by a central limit argument that
—oo

JL

l ίv\ l Ϋ

ε M ? ) = ~ ε / Uo(yf)dyf (47)

o
tends for ε —> 0 to the Brownian motion function (scaled by a factor D1/2). Con-
sider now the solution to Burgers equations given by (6). Simple rescaling gives the
following relation:

I ,(x t\ Γl fy\ (x-y)2]

~ψ[ "2'T = m a x H M h — ^ — ( 4 8 )

ε \ε 2 ε5 J y [ε \ε2J It J
It thus follows that, for ε —> 0, the rescaled solution tends to the solution corre-
sponding to an initial velocity which is the (negative) derivative of the Brownian

Other more technical assumptions may be needed for a rigorous proof
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motion function, namely white noise. Thus, the long-time large-scale behavior can

be obtained from the solution of Burgers' equation with non-smooth initial velocity

of type B (with h = —1/2). Burgers himself was probably aware of this, since in

his book he uses diffusion techniques to study the long-time behavior of the solu-

tion to his equation for random initial conditions having D ^ O (see Sect. 9 of [2]).

We observe that similar universality classes are associated to any type A or type B

solutions. It is easily seen that the universality class to which a given smooth initial

random velocity field belongs depends only on the behavior of the energy spectrum

Eo(k) of the initial velocity at small wavenumbers. If Eo(k) oc |&|~1~2'1 as k —+ 0,

the long-time large-scale behavior will be as for type A or type B solutions having

scaling exponent h.

Let us finally mention that the present study can be extended to the multi-

dimensional Burgers equation,-which reads, in terms of the potential function ^(r, t):

dtφ = I|VVf + vV2ψ . (49)

The Hopf-Cole transformation and the Legendre transformation method (for v —> 0)

are readily extended, but the theoretical analysis and the numerical experiments be-

come considerably more involved. Early results from high resolution two-dimensional

simulations indicate that scaling properties similar to those of the one-dimensional

case are found [21].
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