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Abstract. Asymptotic properties of solutions of TV-body classical equations of motion
are studied.

1. Introduction

A system of N classical particles interacting with pair potentials can be described
with a Hamiltonian of the form

N N
H = Σ 2^. £ + Σ v*fri - χj) α υ

i=2 ι i>j=l

defined on the phase space X x X', where X = R3N and X' is its conjugate space.
Following Agmon [A] it has become almost standard in the mathematically oriented
literature to replace (1.1) with an essentially more general class of Hamiltonians,
sometimes called generalized iV-body Hamiltonians. They are functions on X x X'
of the form

\ e Σ a(xa), (1.2)

where X is a Euclidean space, {Xa:a G ,/&} is a family of subspaces closed wrt
the algebraic sum and containing {0}, and xa denotes the orthogonal projection of x
onto Xa. It is easy to see that after a change of coordinates any Hamiltonian of the
form (1.1) belongs to the class (1.2).

Typical assumptions imposed in the literature on the potential are

\daVa(xa)\ < ca(xa)-μ~W i (1.3)

where μ > 0. If μ > 1 then we say that the potentials are short range, otherwise
they are long range. Note that (1.2) has an obvious quantum analog, which is the
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self-adjoint operator on the Hubert space L2(X) obtained from (1.2) by replacing ξ2

with - Λ
In the two-body case (which for Hamiltonians of the form (1.2) means that the

set ^ consists of just two elements) scattering theory is well understood both for
classical [Sim, RS, vol. Ill, He] and quantum systems (see e.g. [Ho, vol. II and IV,
De2, Sig, IKi, Pe] and references therein). It is also known that there is a deep analogy
between these two cases. We will see that in TV-body systems in some aspects this
analogy persists, whereas in other aspects quantum systems seem to be better behaved
than classical ones.

As far as we know in the literature there are very few rigorous results on the scat-
tering theory of classical TV-body systems. One of these results belongs to Hunziker
[Hu]. The property that he proved gives a fairly detailed description of the asymp-
totic motion of classical TV-body systems and it is a reasonable candidate for the name
"asymptotic completeness" in the classical case; unfortunately, in his proof he had to
assume that all the potentials Va have a compact support in Xa.

On the other hand, scattering theory for quantum Λf-body systems has been the
subject of quite successful research in recent years. One of the first considerable
achievements in this area was the proof of the asymptotic completeness of 3-body
systems for μ > \/3 — 1 due to Enss [El,2]. Note that Λ/3 — 1 < 1, hence Enss's
proof applies to short range potentials and to a large subclass of long range potentials.
Another breakthrough was the proof of the asymptotic completeness in the short range
case for any number of particles [SigSofl]. Then a number of papers appeared that
clarified various aspects of the propagation of observables in TV-body quantum systems
[SigSof2,3, Dell, 2]. A very elegant proof of the asymptotic completeness in the N-
body short range case was given by Graf [Graf]. The asymptotic completeness of
4-body long range systems with μ = 1 was first proven in [SigSof4]. Finally, the
asymptotic completeness in the long range case with μ > Λ/3 — 1 for an arbitrary
number of particles was proven in [De3].

This paper is devoted to certain questions about the classical TV-body scattering
which are closely related to the concept of the asymptotic completeness. The author
tries to take methods developed in the quantum case and to apply them in the classical
case. It turns out that sometimes analogous results can be shown, almost with no
change. In fact, in the classical case some details can be simplified and proofs become
less technical. On the other hand, there are statements which can be shown in the
quantum setting, whereas we doubt it if one can show their quantum analogs.

Our first result, which is directly inspired by its quantum analog, is the existence
of the limit

lim Γιx(t), (1.4)
t->oo

where x(t) is a solution of the equation of motion of an TV-body system. In the
quantum case this fact follows easily by the methods of [Graf] and was first explicitly
stated and proved in [De2] (see also [De3]).

The existence of the limit (1.4) enables us to classify the set of all trajectories into
natural disjoint categories labelled with elements of J&. Namely, if Xa denotes the
orthogonal complement of Xa then a solution x(t) of the equation of motion of an
iV-body system will be called an α-solution if and only if

lim t-ιx(t)eXa\ II Xb. (1.5)
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An α-solution for large time feels mainly the influence of the cluster Hamiltonian

XbDXa

which is simpler than H\ the remaining part of interaction Ia = H — Ha acts as a
time dependent perturbation which decays with time. The cluster Hamiltonian Ha has
the form \ ξl + Ha, where Ha does not depend on the "sub-α" variables. Hence in
the case of the motion generated by this Hamiltonian "sup-α" and "super-α" variables
evolve independently. It is of course no longer true in the case of the full Hamiltonian,
nevertheless it is natural to look at these two coordinates of α-solutions separately.
(Recall that "super-α" coordinates describe the intracluster motion and the "sub-α"
coordinates describe the intercluster motion.)

Our second result gives an estimate on the "super-α" coordinates of an α-solution.
It says that

\xa(t)\ < c t 2 ( 2 ^ r l . (1.6)

Note that a priori we just know that

lim Γιxa(t) = 0. (1.7)

Thus (1.6) is an improvement of (1.7). This estimate is directly inspired by the proof
of the asymptotic completeness for the long range TV-body quantum problem [De3].

Note that (1.6) cannot be in general improved, as one can easily convince oneself
considering a two body Hamiltonian with V(x) = — \x\~μ.

One should note one important difference between classical and quantum systems.
In quantum systems two types of states appear: bound states and states from the
continuous spectrum. In the classical case if we restrict ourselves to positive time it
is natural to distinguish 3 types of solutions:
1) bounded solutions,
2) "almost-bounded solutions," that is unbounded solutions that satisfy

lim Γιx(t) = 0, (1.8)
t—>oo

3) "scattering solutions," that is solutions for which

lim Γιx(t)φ0. (1.9)
t—>oo

Note also, that (1.6) gives an upper bound on "almost-bounded solutions.")
So far classical results (the existence of (1.4) and the bound (1.6)) were close

analogs of their quantum counterparts. Note that both of them describe properties
of the evolution generated by the full Hamiltonian without reference to some other
evolution. When one wants to compare two evolutions, which is the standard ap-
proach in the scattering theory, then the analogy between the classical and quantum
case becomes much weaker. It is even not clear what property should be called the
asymptotic completeness in the classical case. Let us list three candidates to this name.

Property I. Ifx(t) is an a-solution then there exists a function R 3 t \—» ya(t) £ Xa

such that ya(t) is a solution of the equations of motion generated by

ιa -— j £α "K := -z ί\ +
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and
lim xa(t) - ya(t) = 0.

t->oo

Property II. We assume additionally that there exists a function R3 t \-> ya(t) e Xa

such that ya(t) is a solution of the equation of motion generated by Ha,

lim (xa(t) - ya(t)) = 0
ί->00

and
lim f V ( ί ) = 0. (1.10)

Property III. As Property II except that ya{t) is bounded.

Note that Property I is probably too weak to deserve the name of "asymptotic
completeness." On the other hand we will show that it is true if μ > \fi> — 1-essentially
for the same class of systems for which the asymptotic completeness is known to be
true in the quantum case. Note also that in the case of short range systems (μ > 1)
we can replace ha with \ ξl in the definition of Property I.

We will prove Property II for systems with potentials that decay faster than any ex-
ponential. This property seems to be quite close to our intuition of what the asymptotic
completeless should mean. Unfortunately, in the general TV-body case we do not know
if Property II is true if we relax significantly the assumption of the superexponential
decay of the potentials.

Anyway, it is Property III which is probably closest to the intuition of the asymp-
totic completeless. Unfortunately, it is seldom true due to the presence of almost-
bounded trajectories. It is possible to show it if potentials are of compact support
[Hu].

2. Notation

In this section we fix notation used in this article. X will denote a Euclidean space. It
will have the meaning of the configuration space of an TV-body system. {Xa :a G ,/&}
is a certain family of subspaces of X closed wrt the intersection. We will assume
that Xamin •= X belongs to this family. We will write αj C α2 iff Xaχ D Xai

 a n d
b = d\ Ua2 iff Xb = Xaι ^Xa2 We will write α m a x := (J α Note that most authors

aε./4
assume that xamax = {0}; it will not be necessary to make this assumption. If α G J&
then #α denotes the maximal number of distinct α̂  such that α — αn C C α\ =
m̂ax We set N := max{#α:α G ~4}. Note that #α m i n = N and #α m a x = 1.

The orthogonal complement of Xα in X is denoted Xα. πα and πα will stand for
the orthogonal projections of X onto Xα and Xα respectively. We will often write
xα and xα instead of παx and παx.

There will also be special symbols for the sets

Zα' =Xα\ U Xb (2.1)

and

Yα := X\ ( J Xb . (2.2)
\b<£α
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The Euclidean norm of a vector x will be denoted \x\. Moreover, (x) := \Jx2 + 1. If
ε > 0 then Xε

a will denote {x:dist(x,Xα) < ε). We will write that / G & iff / is
a function on X and for any a G Λ there exists ε > 0 such that / depends in Xε

just on xa. χ(P(x)) will denote the characteristic function of the set defined by the
condition P(x).

The phase space of an TV-body system is X x X'. An element of this space will
be usually denoted (x, ξ).

We will study the motion described by a Hamiltonian of the form H = \ ξ2+V(x).
Such a motion is described by a solution of the equation

x(t) = -VV(x{t)). (2.3)

We will call (2.3) the equation of motion generated by the Hamiltonian H (the e.m.g.
by H).

We assume that for every α G . i we are given a function Va G Cι(Xa) such that
lim Va(xa) = 0. We set

V(x) :=

and

We define H:=±ξ2 + V(x) and i7α := ι

Ίξ
2 + K(^) Clearly, Jϊ = i7α m a x. Note

that Ha = \i2

a + i ί α , where i J α := i (ξα) 2 + Va(x). We define eα := infVa(xa), and

E α := lim inf Va(xa) = minje^: b ^ a} .

We set Ia:=V- Va. We also define ha \=\ξ2

a + Ia(xa).

3. Main Results

Our first result says that every trajectory of an N-boάy system possesses an asymptotic
velocity. Note that this result has a quantum analog [De2,3] and is inspired by [Graf].

Theorem 3.1. Assume that for every a G ̂ & and some μ > 0,

\Wa(xa)\ <c(xa)~ι-μ. (3.1)

Let x(t) be a solution of the e.m.g. by H. Then there exists

lim Γιx(t). (3.2)

If this limit belongs to Za then it equals

lim xa(t). (3.3)
£—•00

Denote 3.2 by p+ and set E := H(x(t), ξ(t)). (Clearly, E does not depend on t.) Then
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The configuration space X is the disjoint union of sets Za. Hence the condition

lim Γιx(t) e Za (3.4)

separates the set of all trajectories into distinct categories labelled with elements of
J&. Clearly, for a solution satisfying (3.4),

lim Γιxa(t) = 0. (3.5)
ΐ—XX)

It turns out that (3.5) can be improved, which is the subject of our next result. Also
this result has a quantum analog, which is an important step in the proof of the
asymptotic completeness of quantum TV-body long range systems [De3].

Theorem 3.2. Let x(t) be a solution of the e.m.g. by H such that (3.4) holds. Let p+
and E be defined as in Theorem 3.1. If

then xa(t) is bounded. Otherwise the following estimates are true.
a) If for any be ^4 \VVb(xb)\ < cι(xb)-μ

} then

\xa(t)\ < ct2(2+μ)~l . (3.6)

b) If for anybe^ there exists θ>0 such that \VVb(xb)\ < σe~θ^χb\ then

\xa(t)\ <c(l+lnt). (3.7)

c) If for any b £ Λ? Vb is compactly supported, then xa(t) is bounded.

The above theorem gives some information on the behavior of "internal" coordi-
nates of a trajectory. It turns out that one can say a lot more about the "external"
coordinates. We will show that they are close to a solution of the e.m.g. by the
Hamiltonian ha.

Note that in the following theorem two borderline values of μ appear: y/3 — 1 and
1. In the quantum case the first one is the borderline for the validity of the proof of the
asymptotic completeness given in [De3] and μ = 1 is the borderline for the existence
of usual wave operators. Statements about classical systems given in Theorem 3.3 are
however much more modest.

Theorem 3.3. Suppose that x(t) is a solution of the e.m.g. by H that satisfies (3.4).
Letp^ and E be defined as in Theorem 3.1. Suppose that for any b G */& \daVb(xb)\ <
c(xb)-W-μ for \a\ = 1,2.
a) Ifya is any solution of the e.m.g. by ha such that lim ya{t) — pt t n e n w e have:

t—>oo

Xait) ~ ya(t) = 0(^(0,-^+2(2+^)-'} _ ( 3 i 8 )

b) Suppose that a = αm i n or E < \ (p+)2 + Ea or μ > \/3 - 1. Then there exists a
unique solution ya(t) of the e.m.g. by ha such that

lim(xβ(ί)-»α(ί)) = 0. (3.9)
t->00

d
Moreover, lim — ya(t) = p~ϊ.

t-^oo at
c) Let μ > 1. Then there exists a unique y+ G Xa such that

}ϊm{xa(t)-yl~tpt) = O. (3.10)
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In the case of quantum JV-body systems the theorem on the asymptotic complete-
ness [SigSofl,4, Graf, De3] gives a fairly deep description of scattering states. In the
classical case it is even not clear what should be the definition of the notion to be
called the asymptotic completeness. Our next theorem proposes such a definition and
states that it is satisfied if potentials decay faster than any exponential.

Theorem 3.4. Suppose that for every fe G ^ V2Vb(xb) is bounded and for every
Θ > 0 there exists σ such that \Wa(xa)\ < σ e " ^ α l . Then the following statement
are true.
a) For any solution y(t) of the e.m.g. by Ha such that

lim t~ιy(t) e Za (3.11)

there exists a unique solution x(t) of the e.m.g. by H such that for any θ > 0

Urn eθt(x(t) - y(t)) = 0 (3.12)

and

lim t(x(t) - y(t)) = 0. (3.13)
t—KX)

b) For any solution x(t) of the e.m.g. by H such that

lim Γιx(t)eZa, (3.14)

there exists a unique solution y(t) of the e.m.g. by Ha such that for any θ > 0,

Urn eθt(x(t) - y(t)) = 0 (3.15)

and

lim t(x(t) - y(t)) = 0. (3.16)
t—>oo

Note that all the solutions of e.m.g. by Ha are of the form y(t) = ya(t) + ya
where ya(t) is a solution of the e.m.g. by Ha. If y(t) satisfies (3.11) then ya(t) is a
bounded or almost-bounded solution. If potentials are compactly suported then there
are no almost-bounded solutions, as follows from Theorem 3.2c. Thus in this case all
the trajectories can be asymptotically decomposed into a bounded intracluster motion
and a free intercluster motion - which is probably the most intuitive candidate for the
definition of the asymptotic completeness. Hence for compactly supported potentials
Theorem 3.4 reduces to the result proved by Hunziker [Hu].

4. Special Observables

In this section we describe the construction of certain special observables. Actually,
one could work here with the observables from [De3], which were used there in the
quantum case. But in the classical case we do not need them to be differentiable,
which makes their construction easier. (Because of their nondifferentiability we will
have to deal with derivatives in the distributional sense, which causes no additional
problems.)
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Let £1, . . . , QN > 0 be a sequence of positive numbers. We define

l i f χ2a + p # α > *% + ρ#b f o r a 1 1 b ^ α ' //. n

0 otherwise.

() {£max{a£ + ̂ # α : a e ^} (4.2)

\ x). (4.3)

The following proposition describes some properties of R.

Proposition 4.1. R is a continuous convex function. Moreover:
a) \ (x2 + c\) < R(x) < \ (x2 + C2)/or 56>m̂  ci, C2 > 0,

b ) Vfl(x) = Σ ^αOαW,

c) V2i?(x) > Σ πaQa(x),

d) for any ξ eX*

ξV2R(x)ξ - 2VR(x)ξ + 2Λ(a?) > ^ OαW lία - ^α|2 , (4.4)

e) i/w^ choose appropriately ρ\, . . . , £w f̂  g i/^' "= εM"-7 /<9r /αr^ enough M)
then Re^.

For the proof of this proposition we refer the reader to [De3]. In fact, it is straight-
forward, maybe except for e). Note also that this proposition is closely related to the
construction of [Graf].

Next we define r(x) := Λ/2R(X); (see [Ya] for a similar construction).

Proposition 4.2. r(x) is a continuous convex function.

Proof (See also [De3]). The positivity of the left-hand side of (4.4) implies the
following inequality:

V2R(x)2R(x) - VR(x)VR(x) > 0.

This implies immediately
Ψr(x) > 0. QED

Now suppose that a function R + 3 t»—>• wit) G M+ has been fixed. We set

(4.5)
Mt)J

and

rt(x):=w(t)r(^). (4.6)

We also define

f + ί )
at ax J t

w(t)j y wit),

T. W
(4.7)

w(
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and

(4.8)) + m ( r ( ) V r (
w(t)J WV \w(t)J w(t) \w{t)

The observables and rt(x) are approximately convex along the trajectories

(modulo terms which decay with time). This remarkable property is expressed by the
following identities:

dt * dx dξj t

4+e£w(a4
dt dx dξ

2R
V \w(t)J w(t) \w(t)

where

w(t)

x

2

Note that the second term on the right-hand side of (4.9) is O(t~ιw(t)w(t)) and the
last term is O(t~ι sup{\VVa(xa)):\xa\ > cw(t)}) for some c> 0. If w(t) = tδ and
the potentials satisfy (3.1) then these terms are O(t~3+2δ) and O(t~ι~δμ) respectively.

Here are analogous identities for rt:

-J+£-^-W(z)-^ rt= (l+ξ-f-WW^
dt dx dξj \dt dx dξ

Mt)J'
where

w(t)J w{t) \wit),

(4.11)

Ct=lξ-m)zkj) v Z r ( ^ ) >° (4 1 2 )72r( — ) > 0 .
Vw(ί)/ ~
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Note that the second term on the right-hand side of (4.11) is O(ϊύ(t)) and the last term
is O(sup{|VF°(xα)| :\xa\ > cw(t)}) for some c > 0. If w{t) = tδ and the potentials
satisfy (3.1) then these terms are O(t~2+δ) and O(t~δ{ι+μ)) respectively.

5. Existence of Asymptotic Velocity

This section is devoted to the proof of Theorem 3.1 Essentially all the arguments used
in this proof are parallel to the ones used in the proof of its quantum analog [Graf,
De2,3]. At some points the commutativity of observables in the classical mechanics
allows for some simplification.

In what follows x(t) is an arbitrary solution of the e.m.g. by H and ξ(t) = x(t).
We start with a simple lemma about the boundedness of the velocity.

Lemma 5.1. There exists c such that \ξ(t)\ < c and \x(t)\ < c(l + t).

Proof. V is bounded and H is constant on a trajectory. Hence \ ζ2(t) = H(x(t),
ξ(t)) — V(x(t)) is bounded. Moreover

Hence x2 < c ( l + ί ) 2 . QED

The next two propositions are analogs of basic propagation estimates of the Graf
approach [Graf, De2,3].

Proposition 5.2. Let a e Λ>, 1 > 6 > 0 and ε > 0. Then

oo 2

t~ιχ(x : for every b £ a \xb\ > εtδ) ( °^- - ξa(t)j dt < oo. (5.1)/
J
1

Proof. Consider the observable Bt(x1ξ) constructed in Sect. 4, where we set w(t) :=
tδ. Let B(t) := Bt(x(t),ξ(t)) Note that B(t) is uniformly bounded. Now

c> —B(t)dt

*2

(5.2)

Now the second integral on the right-hand side of (5.2) is uniformly bounded, and
if we choose the parameters ρ\, ... , QN appropriately then the first integral will
dominate the integral in (5.1). QED

Proposition 5.3. Let a e S and ε > 0. Then

oo

/
ί χ{x : for every b (jL a \x | > εί) - ξα(Q dt<oo. (5.3)
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Proof. We may suppose that \x(t)\ < c$t. Choose J e
Ya and J = 1 on

513

that supp J C

Consider

{x : for every b (£ a \xb\ > ε5 \x\ < CQ} .

, SoKt(x,ξ):=J[-

and K(t) := Kt(x(t),ξ(t)). Clearly, K(t) is uniformly bounded. Now

d

It

τ
J

t ^ 7 \ t J t
/^)\ι^(ί)_ -1

\
xa(t)

. (5.4)

Next note that we can find a family of continuous functions {% b C a} such that
0 < jb < 1, Σ ife — 1 o n suppVJ, suppjί, C Yb and J depends just on x^ on

supp jb. Hence the second term on the right-hand side of (5.4) equals

- ξa(t)

This is integrable by previous proposition. The third term is Oit ι μ) and hence is
integrable. Consequently

~ ξa(t) dt < oo. QED

Proof of Theorem 3.1. Consider first J e C^(X)C\^. Then

where 0 < j a < 1, ^ j α = 1, supp j α c Yα and J depends just on xα on suppjα.

This is integrable by Proposition 5.3. Hence

lim J (5.5)

exists. If J G Co(X) is arbitrary, it can be approximated by functions from CQ°(X)Π
3F. Hence the limit (5.5) exists also for such functions.
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) = ^

for t > to. Now

t \ t J t \ V t )) t

The second part of the above expression is zero and the first is convergent by the above
arguments. This proves the existence of the limit (3.2). The proof of the remaining
statements of Theorem 3.1 is easy and is left to the reader. QED

6. Intracluster Motion

In this section we prove Theorem 3.2 which describes an upper bound on the growth of
intracluster coordinates. Throughout this section we will use quite general assumptions
on the potentials. Namely, we will suppose that

oo

/
g(s)ds < oo,

o

where
g(s) := sup{| W 6 ( a : 6 ) | : b e ^4, \xb\ > s} .

We set

G(s)

oo

:= /

Note that there exists a unique solution M+ 3 t »-• w(t) G R+ of the equation

wit) = - g{w(t)) (6.1)

such that w(0) = 0 and

lim = 0. (6.2)
t-xx> t

In fact, (6.1) is the e.m.g. by the Hamiltonian ^ w2 — G(w) and condition (6.2) implies
I,that this solution satisfies \ w2(t) — G(w(t)) = 0. Let us give some examples.

1) g(w) = w~ι-». Then

2) g(w) = e~θw. Then

3) Suppose that suppg = [0, sol- Then there exists to such that for t > to we have
w(t) = s0.

The following theorem is a kind of generalization of Theorem 3.2.



Large Time Behavior of Classical TV-body Systems 515

Theorem 6.1. Suppose that x(t) is a solution of the e.m.g. by H such that

lunψeZa.
t->oo t

Then there exists c such that

\xa(t)\<c(w(t) + l). (6.3)

Proof. Replace X with Xa throughout Sect. 4. Construct a function r(xa). By a
scaling argument we can always assume that r(xa) depends just on xb on {xa: \xb\ <
1} for b C a.

( xa

w(t)
and w(t) is the solution of (6.1) described at the beginning of this section. Now

W α ( z α ) < c2g(w(t)).

Moreover, by Theorem 3.1

\VIa(x(t))\ < c3g(cot).

By (4.11) and (4.12) we obtain:

d2

-^ r(t) > - ci \w(t)\ ~ c2g(w(t)) - cf

3g(cot). (6.4)

We know that w(t) < 0 and g(w(t)) = — w(t). Moreover, for large enough time
w(t) < cot. Hence for t > to

d2

— (r(t) - (ci + c2 + J3)w{t)) > 0. (6.5)

We also know that

lim Γι(r(t) - (a + c2 + cf

3)w(t)) = 0. (6.6)
t—>oo

Now (6.5) and (6.6) imply

^ (r(t) - (Cl + c2 + cf

3)w(t)) < 0. (6.7)
at

Hence

r(t) - (ci + c2 + 4 ) ^ 0 ) < c4 . (6.8)

This clearly implies (6.3). QED

7. Asymptotics of Intercluster Motion

In this section we prove Theorem 3.3 which describes the asymptotics of the "sub-α"
coordinate of an α-solution of the e.m.g. by H.
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We start with the proof of a) which describes the most rough asymptotics valid for
all μ. Let 0 < t < T. Then the equation of motion satisfied by x(t) and ya(t) imply
the following integral equations:

Xa(t) = Xa(0) + Xa(T)t + ί / S + t ί J VαJα(z(s))ds (7.1)

^ 0 t '

and

ya(t) = ya(0) + ya(T)t + [ J s + t J ) Vala(ya(s))ds. (7.2)
^ 0 t '

We subtract these two equations and let T —• oo. We obtain

, t OOv

ya(t) - Xa(t) = J/α(0) - XaΦ) + ί / 3 + t J J
^ 0 t '

X (Vα/αteαOO) " Vβ/α(ίΓ(s)))dβ . (7.3)

We set za(t) := 2/α(0 - i f l(*) Note that

(7.4)

We insert (7.4) into (7.3) and obtain

, t OOv

\Za(f)\ < X(ί)^x(0,-μ+2(2+μ)-l) + / Γ ^ + ^ M

We know a priori that
kα(0| < C(t) .

We insert this into (7.5) and obtain

\za(t)\ < c(

After a sufficient number of iterations we get

Now let us prove b). For simplicity we shall consider only the case μ > y/3 — 1.
Other cases are similar and simpler. Let ya(t) be any solution of the e.m.g. by ha

such that lim ya(t) = p+ (as in a)). If 0 < t < T then the following identities are
true:

T

xa(t) = xa(T) + / VaIa(x(s))ds

t

and
T
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We subtract one from the other and let T —> oo. Thus
oo

ϊ/a(f) - xa(t) = ί (Vα/α(yα(5)) - VaIa(x(s))ds. (7.6)

t

Equation 7.4 and the boundedness of \xa(f) — ya(t)\ obtained in a) implies:

oo

\i'ι ί+\ /y (+\\ <? n I /oN-^^M+^+A 4)" rla <? n/+\ l~M+2(2+μ)~ (Ί Ί\
\ya\τ) ~ xa\τ)\ -^ c I \s/ a s -^ CW \l l)

t

Now if μ > Λ/3 - 1 then - μ + 2(2 + μ)" 1 < 0. Hence in this case the right-hand
side of (7.7) is integrable. Consequently there exists

lim (ya(t) - xa(f)) =: y+ .
t—>oo

Arguments that belong to the standard 2-body classical long range theory show that
there exists another unique solution ya(t) of the e.m.g. by ha such that

Um(yα(*)-ί/α(*)) = 2/ί

and
d d

lim — ya(t) = lim — ya(t).
t-̂ oo at t-xx> at

ya(t) is the solution we have been looking for. This proves b).
Standard 2-body classical short range scattering theory says that if μ > 1 then

there exists a unique y+ e Xa such that

This proves c). QED.

8. Asymptotic Completeness

In this section we prove Theorem 3.4. One can, somewhat loosely, describe it as
a theorem about the existence of "classical wave operators" and their "asymptotic
completeness." Unfortunately, the conditions that we have to impose on potentials
to prove this theorem are very restrictive, namely, we have to assume that all the
potentials decay faster than any exponential.

Note that the proof of Theorem 8.1 has actually little to do with the structure
of AT-body systems. The most important ingredients of this proof are Theorem 3.1
and the following general fact about the stability of solutions of Newton's equation
perturbed with a force that decays exponentially in time.

Theorem 8.1. Suppose that θ > 0 and θ2 > K > 0. Let

R + 3 ^ G(t) e X

and
l + x l 3 (ί, z) ^ F(t, z)eX

satisfy
\G(t)\ < σe~θt, F(t,0) = 0 and \VzF(t,z)\<κ.
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Then there exists a unique solution z(t) of the equation

(8.1)

such that
lim eθtz(t) = 0 (8.2)

and
lim tz(t) = 0. (8.3)

Proof Let 0 < t < T. Then

T

Z{t) = z(T) - z(T) (T-t)+ ί(s-t) (G(s) + F(β, *(*)))ώ. (8.4)

t

If we let T -^ oo, use (8.2) and (8.3), then we obtain

oo

z(t) = I (s-t) (G(s) + F(s, z(s))) ds . (8.5)

t

Introduce the Banach space

Z := ίz e C(R+,X): lim eθtz(t) = θ\ ,

equipped with the norm \\z\\ := sup \eθtz(t)\. We denote
t>o

ZΊ:={zeZ:\\z\\<Ί}.

Equation (8.5) can be rewritten as

z = Pz, (8.6)

where
oo

Pz(t) := (s- t) (G(s) + F(s, z(s)))ds . (8.7)

t

Our theorem will follow immediately from the following lemma.

Lemma 8.2. Let 7 > — . Then P maps and ZΊ into itself and is a contradiction.

u — K/

Proof Note that \F(t,z(t))\ < κ\z(t)\ and

00ί

Thus

\Pz(t)\ < (σ

This shows that P maps ZΊ into itself.
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Now
oo

\Pzx{t)-Pz2(t)\ < f (s-QisxφlVFiSizWlzds)- Z2(s)\ds

t
oo

< I (s-t)κe-Θa\\zι -Z2\\ds = κθ-2e-θs\\zι -z2\\.

t

Hence
\\PZ1 - PZ2\\ < Kθ-2\\zι - Z2\\ .

This shows that P is a contraction. QED

The following corollary of Theorem 8.1 describes how one can compare solutions
of two Newton's equations.

Corollary 8.3. Suppose that we are given functions

R+ 3 t .-> xx{t) α , I 3 X H Fι(x) G X ,

and

I 3 Ϊ H F2(x) E X.

Suppose that θ > 0, θ2 > K,

IVF2(x)\ < K , \F2(x\(t)) - Fι(xι(f))\ < σe~θt

and

xι(f) = Fι(xι(t)).

Then there exists a unique solution R+ H^ x2(t) of the equation

x2(t) = F2(x2{t))

such that

lim eθt(xι(t) - x2(t)) = 0
and

lim t(±ι(t) - ±2(t)) = 0.
t->00

Proof We set z(t) := x 2 (0 — ̂ i(Q and obtain the following equation:

where

and

F(t, z) :=

Then we apply Theorem 8.1. QED

Proof of Theorem 3.4. Equation (3.11) implies that

\y\t)\>εt-c (8.8)

for any b (JL a and some ε > 0. Hence it is clear that for any θ > 0 there exists σ
such that

\VIa(y(t))\<σe-θt.



520 J. Dereziήski

Analogously, (3.14) implies

\xb(t)\ >εt-c (8.9)

for any b (jL a and some ε > 0. Consequently, also VIa(x(t)) decays faster than any

exponential.

We will apply Corollary 8.3 twice. First we set x\(t) := y(t), x2(t) := x(t),

Fλ(χ) := -VVα(x) and F2(x) := -VV(x). Note that Fx(x) - F2(x) = V/α(x).

Corollary 8.3 implies a).

Next we interchange 1 and 2. Another application of Corollary 8.3 yields

b). QED
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