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Abstract. The heat kernel K(x, x\ t) of the iterated Dirac operator on an N-
dimensional simply connected maximally symmetric Riemannian manifold is cal-
culated. On the odd-dimensional hyperbolic spaces K is a Minakshisundaram-
DeWitt expansion which terminates to the coefficient a{N-1)/2 and is exact. On the
odd spheres the heat kernel may be written as an image sum of WKB kernels, each
term corresponding to a classical path (geodesic). In the even dimensional case the
WKB approximation is not exact, but a closed form of K is derived both in terms of
(spherical) eigenfunctions and of a "sum over classical paths." The spinor Plan-
cherel measure μ(λ) and ζ function in the hyperbolic case are also calculated.
A simple relation between the analytic structure of μ on HN and the degeneracies of
the Dirac operator on SN is found.

1. Introduction

A maximally symmetric Riemannian manifold M of dimension N has an isometry
group of maximum dimension N(N + l)/2. M is also a constant curvature space,
i.e., the Riemann tensor takes the form

Rated = KQadGbc ~ QacQbd) , (LI)

where k is a constant. The Ricci tensor and curvature scalar are given by
Rad = k(N — l)gad, and R = kN(N - 1). Moreover, M is necessarily isometric to
one of the following spaces: a) Euclidean space RN (k = 0); b) the sphere SN of
radius a (k = I/a2); c) the real projective space PN(R) = SN/ ~ , where ~ is the
antipodal points identification (k is the same as for SN); d) the real hyperbolic space
HN(R) of radius a (k = - I/a2) (see ref. [24], vol. 1, p. 308). These spaces are all
simply connected except for PN{R), which is doubly connected.

In the pseudo-Riemannian Lorentzian case [signature ( — , + , . . . , + ) ]
we have, similarly, that the maximally symmetric spacetimes are Minkowski
spacetime MN (zero curvature), de Sitter spacetime (dS)N (positive curvature), and
anti-de Sitter spacetime (AdS)N (negative curvature). In the Euclidean approach to
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quantum field theory in curved spacetime [28], time is Wick-rotated to imaginary
time to make the path integral convergent, and the metric becomes a positive
definite (Riemannian) metric. It has been pointed out by several authors [11, 13, 1,
16, 9] that SN and HN are the Euclidean sections appropriate to (dS)^ and (AdS)^,
respectively. Therefore, the one-loop functional determinant on these spacetimes
can be obtained from the ζ function on their Euclidean sections.

In ref. [2] Allen and Jacobson calculated the general form of the vector
two-point function in maximally symmetric spaces (the scalar case is also discussed
there). In this paper we would like to extend their results to the spinor case. In four
dimensions the spinor two-point function has been calculated by Allen and Lύtken
[3]. Here we shall concentrate on the heat kernel K rather than the propagator.
The heat equation for the iterated Dirac operator will be solved exactly on SN and
HN. The two-point function and the zeta function can then be calculated from K via
integral transforms in t (see Sects. 5 and 6).

There are two main steps in the construction of the heat kernel. The first is to
identify and separate out the dependence on the spinor indices. To this end one
considers the parallel spinor propagator U9 a matrix in the spinor indices which
parallel transports a spinor along a geodesic connecting two given points. By
making the ansatz K = Uf9 where / is a scalar function of the geodesic distance
only, one can derive an equation for/ The second step is the use of the intertwining
method (developed in ref. [5]) to reduce the problem from SN to SN~2 (or
HN -> HN~2). The induction procedure can be easily iterated, and one finds that the
spinor heat kernel on HN (or SN\ N odd, is obtained by applying a differential
operator to the ordinary (scalar) heat kernel on the line (or on the circle with
appropriate boundary conditions). This explains the exactness of the WKB ap-
proximation in the odd dimensional case. For N even one can similarly relate by
a differential operator the heat kernels on SN and S2. The equation on S2 can then
be solved exactly in terms of spinor spherical functions φn. By writing φn as
a Mehler-Dirichlet integral one can relate the solutions on S2 and S1 by a pseudo-
differential (fractional) operator and obtain a geometric representation of K, in
analogy with the scalar case [5, 7].

The asymptotic form of the spherical eigenfunctions in the hyperbolic case
allows one to obtain the spinor Plancherel measure μ(λ). This is the noncompact
analogue of the spinor degeneracies on the iV-sphere, i.e., it gives the spectral
distribution of the eigenvalues of ψ1 on HN. For N odd μ(λ) is analytic in the
A-plane. For N even it is a meromorphic function with simple poles on the
imaginary axis. The residues at these poles turn out to be proportional to the
spinor degeneracies on SN. This is a generalization of a result obtained recently for
scalar fields [7, 21].

The plan of this paper is as follows. In Sect. 2 we write down the heat equation
and an ansatz for its solution in terms of the parallel spinor propagator and a scalar
function/ The equation satisfied by/is obtained. In Sect. 3 we solve this equation
for N odd using the intertwining method. The even dimensional case is considered
in Sect. 4. In Sect. 5 we obtain the spinor Plancherel measure and zeta function on
the hyperbolic spaces. The two-point function is calculated in Sect. 6. In the
appendix we construct a parallel vielbein on SN using projective coordinates, and
we calculate the covariant derivative of the parallel spinor propagator in geometric
form.
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2. The Heat Kernel and the Parallel Spinor Propagator

We begin by reviewing some basic facts about spinors (see, e.g., ref. [14], Appendix
D). Let M be an JV-dimensional orientable Riemannian manifold with vanishing
second Stiefel-Whitney class. Then M admits a spinor structure and spinors can be
defined globally on M. The Clifford algebra associated with the metric g on
M [signature ( + , + , . . . , + )] is generated by N matrices Γfl, a = 1, . . . , JV,
satisfying the anticommutation relations

{Γa,Γb} = 2δab . (2.1)

m-[fl
The dimension of these matrices is 2 , where I ̂ - I = JV/2 for N even,
ΓΛΠ

— \ = (N - l)/2 for N odd. The ̂ N(N - 1) matrices

satisfy the SO(N) commutation rules

[Σab, Σcd~\ = δbcΣad - δacΣbd - δbdΣac + δadΣbc, (2.3)

and generate Spin(ΛΓ), the double covering oϊSO(N). The commutator of Σab and Γc

is then

\_Σab, Γ c ] = δbcΓa - δacΓb . (2.4)

Spinors are associated with orthonormal frames (vielbeins) of g. Under a local
frame rotation Λ(x) = Λa

b(x)eSO(N) a spinor transforms according to
φ -• \jj' = S{A)\jj, where S(yl)eSpin(ΛΓ) is determined by

S(Λy1ΓaS(Λ) = Λa

bΓ
b . (2.5)

The covariant derivative of a spinor may be written, in a vielbein Xα, as

Vaψ = Xaψ-^ωabcΣ
bcψ, (2.6)

where ωabc = ωab

 dδcd = — ωacb are the (Levi-Civita) connection coefficients in the
frame Xα. These are given by

ωabc = ~j(Cabc ~~ Cacb — Cbca) (2.7)

in terms of the anolonomy coefficients,

[XΩ,Xb] = C f l b

cX c, (2.8)

the last index in Cab being lowered with the vielbein metric. The covariant
derivative (2.6) can be generalized to higher order spinors and to tensor-spinors. It
follows from (2.4) that the Γ matrices are covariantly constant, i.e.

VaΓ
b = ωjΓ - X-ωacdlΣ

cd, Γ*] = 0 . (2.9)
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The commutation rule for the covariant derivatives [15]

IVa, Vb-]φ= ~^RcdabΣ
cdψ (2.10)

implies the well known relation between the iterated Dirac operator, the spinor
Laplacian, and the curvature scalar [15]

(γ)2 = (ΓaVa)
2 = δabVaVb-*. (2.11)

Suppose now that M is a (nonflat) simply connected maximally symmetric
space, i.e., M = SN or HN. From (1.1) we have

RcdabΣ
cd= -2kΣab (2.12)

(all indices are lowered or raised with the vielbein metric), and Eq. (2.10) becomes

ίVa,Vb-]ψ = kΣabφ. (2.13)

The spinor heat kernel with one point at the origin, K(y, t) = K(yo,y, t\
satisfies

) = 0 . (2.14)
\ vι /

with the initial condition

lim K(y,t) = ίδN(y). (2.15)
ί->0

Here t is the time parameter in the heat equation and we are suppressing all spinor

[f] Γf]
indices. K and 1 are actually 2 x 2 matrices, and δN is the invariant delta

function on M. For the solution of (2.14) consider the following ansatz:

K(y,t)=U(y)f(σ9t), (2.16)

where U is a matrix in the spinor indices and/is a scalar function of t and of the
geodesic distance σ = d(y0, y). Plugging (2.16) in (2.14) and using (2.11) gives

- l / | + U(WaUf) + 2(naVaU)^ + (V VaU)f- *Uf\ = 0 , (2.17)

where we used

VJ={Vaσ)ίf = na!f. (2.18)

The vector field na= Vaσ at the point y is the unit tangent vector to the shortest
geodesic y(t) between the origin y0 and y. In Riemann normal coordinates {ya}
based at y0 we simply have na(y) = yα/||y||, where ||y|| = (yaya)

1/2 is th^ length of
γ and equals d(yo,y).
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The Laplacian acting on / can be replaced by its radial part DN given by

(dσ = d/dσ)

V"VJ= ΠNf= (d2

σ + (N- l)Bdσ)f, (2.19)

^cothW H».
a \aj

We now observe that the terms containing the first order derivatives of/and
U in (2.17) cancel out if U satisfies the parallel transport equation

I*™'?- (2.2.)
[U(y0) = 1 .

This is the so-called parallel propagator. Given a spinor \j/Q at y0, U(y)ιj/0 is
a spinor at the point y obtained by parallel transport of φ0 along γ(t). By taking
y(0) = yOi y(l) = y9 and tangent vector γ(t) = γa(t)Xa\γ{t), we can rewrite Eq. (2.21)
for U(ή = U(γ(ή) as

(2.22)

i.e. explicitly

(2.23)

ωabc{t)Σnt). (2.24)

The formal solution to this equation is

\ (2.25)
o

where SP is the path-ordering operator

&lQ(ti)Q(t2) β(ίn)] = QitjJQihi) - - QitjJ > (2-26)

with th > tj2 > . . . > tjn. Thus, we have the series expansion

t γt t

U(t) = 1 + \Q{τ)dτ + - j J ^ K K T j f i f o ) ] ^ ^ + . . . (2.27)
o 2 0 o

+ i f . . . f nf l ίτO β(τΛ)]dτ! . . . dτn + . . . . (2.28)
w ! o o

The path-ordering operator is needed because in general the commutator
•)> βί^)] + 0 for ί Φ t'. A simple calculation gives

}(£')] = y f l(ί)yd(ί/)ωα b

c(ί)ωd c e(ί/)I'b e. (2.29)
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For special manifolds like S3 ~ SI/(2) and Lie groups we can use a left-invariant
vielbein with constant connection coefficients and with ya(t) = ya = constant. It is
then easy to show that the commutator (2.29) vanishes, so that 3? in (2.25) can be
omitted and the integration carried out explicitly. The results for S3 and for
a general Lie group are given in Eqs. (3.38) and (7.1) below.

On SN (or HN), N φ 3, it is not possible to find a vielbein where ωabc is constant.
However, it is always possible to choose Xa such that U takes a very simple form.

Given any orthonormal basis {Ύa} in the tangent space at yθ9 let {Xα} be the
vielbein obtained (at the point y) by parallel transport of {Ύa} along y(t) (the
shortest geodesic between y0 and y). Then V^t)Xb = 0, i.e. ωabc(t)ya(t) = 0 and
Q(ή = 0 (see (2.24)). Therefore in a parallel vielbein equation (2.23) has (locally) the
trivial solution U(t) = 1 Vί. From the global point of view a complication arises
in the compact case of SN

9 due to the fact that y0 and y may be conjugate points,
e.g. y0 is the north pole and y the south pole. Then the statement U(y) = 1 will not
be true at the south pole, where both U and the parallel vielbein are undefined.
In the appendix a parallel vielbein will be constructed on SN by using projective
coordinates.

Let us now derive the equation satisfied by the scalar function/in (2.16). With
U satisfying (2.21) Eq. (2.17) becomes (dt = d/dt)

- dt + D N - * + U-1(VaVaU))f= 0 , (2.30)

with the initial condition

lim/(σ, ί) = δN(σ), (2.31)
ί->0

where δN(σ) is the radial invariant delta function on M [7]. We now need to
calculate the spinor Laplacian acting on U. Define the matrix Va by

VaU= VaU , (2.32)

i.e., Va = {VaΌ)Ό~ι. Using (2.13) gives the following integrability condition on Va\

VaVb - VbVa - [Kβ, Vh~\ = kΣab . (2.33)

ί ίk
As observed in ref. [11], the simplest solution to this equation is Va =^r-Γa,

which, however, does not satisfy the parallel propagator equation (2.21). Thus, we
look for a solution of (2.33) of the form

Va = AΣabn
b, (2.34)

where A is a scalar function of the geodesic distance to be determined. Notice that
the parallel propagator equation is identically satisfied by (2.34). Using (2.19) it is
easy to show that [2]

Vanb = B(gab - nanb) . (2.35)

lg (2.35) gives the folk

A2 - 2AB - k = 0 ,

Inserting (2.34) in (2.33) and using (2.35) gives the following system of equations for
the function A:

( 2 3 6 )
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where A' = δA/dσ. There are two solutions of (2.36). On SN

-- tan(σ/2α),

A = { " (2.37)

-cot(σ/2α) .
a

OnHN

-tanh(σ/2α),

A = { " (2.38)

-coth((τ/2α) .
a

The only acceptable solutions are those that are regular at the origin (where they
vanish). Therefore we take

A =

--tan(σ/2α), SN ,

\ (2.39)

-tanh(σ/2α), HN .
a

With this solution for A (2.34) solves both the integrability condition (2.33) and the
parallel transport equation (2.21). An alternative proof of Eqs. (2.34) and (2.39) is
given in the appendix.

The Laplacian acting on U is found to be

VaVaU = - ^A2(N - \)U , (2.40)

and it is easy to check that (2.11) is equivalent to the following differential equation
for A

A + (N - V)AB - -(N - Ί)A2 + , R ^ = 0 , (2.41)
2 2(N - 1)

which is satisfied by (2.39). From (2.30) and (2.40) we obtain the following equation
for the scalar function /:

(-dt + LN)f=09 (2.42)

LN = D N - ^ - ^(N - \)A2 . (2.43)

We shall now solve this equation by using the intertwining operator method.

3. The Intertwining Method

The basic idea is to develop an induction procedure which reduces the problem on
the Λf-sphere to a problem on the (N — 2)-sphere (or HN -• HN~2), and then iterate
this from SN to S1, for N odd, and to S2, for N even. Some insight is provided by the



290 R. Camporesi

scalar case, discussed in ref. [5]. The heat operator is then simply ( — dt + ΠN)9 and

one shows that e.g. on SN the operator 0 = . dθ, θ = σ/a, satisfies
sin θ

p\ (3.1)

i.e., intertwines the radial Laplacian on SN with the radial Laplacian on SN~2 plus

a constant. Similarly, the operator -——dX9 x = σ/a, intertwines the radial

Laplacians on HN and HN~2 with constant I — — J. Let us, for simplicity,

normalize the radius a of the space to 1, so that θ and x represent the geodesic
distance (from the origin) on SN and HN, respectively. Written explicitly, the
operator LN on SN takes the form

LN = % + (N - Dootwa. - ( ^ ) - £^-2 , (3.2)

with an analogous relation on HN. We look for an operator D such that

LND = DLN,2, (3.3)

and we make the ansatz (on SN)

where g is a function of θ to be determined and b is a constant. When this is
substituted in (3.3) and the terms of like derivatives are equated, there result the
following two equations for g:

lU^Y (3.5)

- 3)cot(0)

2cos 2 - 4cos 2 -
θ I s inθcosθV* 2 t a Π 2

(3.6)

where g' = dθg. The unique solution to these equations is

0(0)=φan^. (3.7)

Requiring that D relate the delta functions on SN and SN~2 fixes b — — l/(2π).
Thus, we find that the operator

1 / 1 θ\ 1 θ d ( ΘY1

D= ~ 0 . J g » + - t a n - U — c o s - - - c o s - 3.8)
2πsin#\ 2 2 / 2π 2δcos0 V 2/
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satisfies (3.3) and relates/^ tofN-2- A simpler way of showing this is to rewrite LN in
(3.2) as

^ ^ ^ 0 ~ 1 , (3.9)

where D(^b) is the differential operator for the Jacobi polynomials P^'b)(x), given in
Eq. (4.19) below. From (3.9) and the relation [19]

D%'b)dx = S^D?- 1 ' *- 1 * + a + b) (3.10)

it follows immediately that D oc cos-δ c o s θ ( cos- I satisfies Eq. (3.3).

In the hyperbolic case we find similarly

1 / 1 xΛ 1 x d / x λ " 1

D= - - — — — ^ - - t a n h - ) = - — c o s h - - —° cosh- . (3.11)
2πsinhx\ 2 2) 2π 2dcoshx \ 2) y }

Iteration of (3.3) gives

LNDK^1 = DKτλLu Nodd, (3.12)

LN D^ = TΓ^L2, N even . (3.13)

The odd-dimensional case is elementary, since the operator — dt + Lγ

= — dt + dl (or — dt + dl) can be inverted at once. On HN the solution ϊoτfN, Eq.
(2.42), is obtained by applying the differential operator D(N~1)/2 to the heat kernel
of ( — dt + dl) on the line. Thus, we obtain the following result:

Theorem 3.1. The heat kernel of the iterated Dίrac operator on HN, N odd, is given by

~χ2/4t

( 3,4)

where U (y) is the parallel spinor propagator from the origin y0 to the point y, and x is
the geodesic distance between y0 and y.

In the compact case/jv is given by an "image sum" over "indirect" geodesies on
the sphere and the operator j){Ή~1)l2 should be applied to either the periodic or
antiperiodic propagator K[±] on the circle,

Ki^φ, t) = (4πί)~ 1 / 2 Σ ( ± l)ne-(θ + 2πn)2/*t. (3.15)
— 00

To find the appropriate boundary conditions on 5 1 we shall solve (2.42) in
terms of eigenfunctions. We define the spinor spherical functions φn as the eigen-
functions of LN that are regular at the origin where they are normalized to one,

LNφn= -tiΦn, < M O ) = 1 . (3.16)

From Eq. (3.9) and the differential equation for the Jacobi polynomials [19],

D(a, b) pia, b ) ( χ ) = _ φ + Q + b + 1 ) p ( α , b) ( χ ) ? ^ ^
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JV
we obtain λn = n + — and

^^ ( f)\~1 Γ/ N\ Ί
(3.18)

, n = 0,1, . . . . (3.19)

£±i / /jv + 1\
Here volίS^) = 2π /Γ ( — - — J is the volume of the iV-sphere and dn are the

[f]
degeneracies of ψ2 on SN (without the spin factor 2 ). They can be obtained from

the relation

JI (/>„(#) 12 (sin θ ) ^ " 1 dθ = jy—^—, (3.20)

which gives

2(n + JV - IV
— 1)!

in agreement with ref. [12]. [Equations (3.21) and (3.19) are valid also for N even,
see Sect. 4.] The eigenfunction expansion of fN is now

fN{θ,t) = —Lκί dnΦnWe-'* . (3.22)
VOl^ύ )

Notice that the spherical functions (and fN) are antiperiodic,
φj(θ + 2πή) = ( — l)nφj(θ), and vanish at θ = π (the south pole). Thus, although the
parallel propagator U is undefined at the south pole, the heat kernel K = UfN is
well defined and vanishes there. The antiperiodicity of the φn

9s is then required in
order for the heat kernel to be regular everywhere.

Using (3.18) and (3.8) we can rewrite (3.22) as

jv-i i °° Γ/ N\ Ί
fN(θ, t) = D-- Σ cos in + -Jθ \e~tλ» . (3.23)

(N \
The sum over n can now be taken to run from cos(^θ) rather than cos I -rθ\.

Indeed it is easy to see that the two series differ by terms that give identically zero
when acted upon by the operator x)^*1)/2. Using the Poisson summation formula
we find

£fN(θ, t) = D^1- £ cosΓ(^ + ̂ V « " + 1/2>2 = D^K\-\Θ, t) , (3.24)
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where X(

1~
l) was defined in (3.15). Thus, the scalar part of K is obtained by applying

the differential operator DiN~1)/2 [where D is given in (3.8)] to the antiperiodic
propagator on the circle. We have obtained.

Theorem 3.2.

The heat kernel of the iterated Dirac operator on SN, N odd, is given by

KN(y, t) = Uiy) +f ( - ITMΘ + 2πn9 t), (3.25)
n = — oo

where U is the parallel spinor propagator (2.25), θ is the geodesic distance from the
given point y to the origin y0 (the north pole), and the "direct-path" n = 0 term is

0/1 δ W / ΘY1 e~θ2/4t

Thus, KN is given in terms of intrinsic geometric objects. From (3.25) we see that
(the scalar part of) the spinor heat kernel on SN, N odd, is an image sum of WKB
kernels, each term in the sum over n corresponding to a classical path (geodesic).
The direct path term is a Minakshisundaram expansion [26] which terminates to
the coefficient a{N-1)/2

) 2 e~^'(l+ Σ amή (3-27)) ί£θ) ( Σ
(4πί) 2 \ s m V̂ V jt=i

This result can also be obtained by calculating the (massless) spinor C-function
of ψ2 on SN. For both even and odd N, ζN(z) may be written as a finite sum of
Riemann-Hurwitz functions, see ref. [7] Eqs. (11.93)—(11.94). In the odd dimen-
sional case the fact that ζN has only a finite number of poles implies that the spinor
heat kernel expansion must terminate, in agreement with (3.27). Our result here is
more general since we can compute the finite coefficients ak(θ) (from (3.26)) and not
just the coincidence limits ak(0). The actual calculation is, of course, complicated.
The simple examples of S3 and S5 are considered below. On S3 we can use the
isomorphism S3 ~ SU(2) to work in a left-invariant vielbein defined everywhere.
The parallel spinor propagator can be easily evaluated in this frame, with the result

C/(0,n) = expί ^θn σ j = l c o s - + /n σ s i n - , (3.28)

where σ are the ordinary Pauli matrices and we are using canonical coordinates
y = Exp(θn), with θ = d(yθ9 y) and | |n | | = 1. Theorem 3.2 gives

This result was obtained long ago by Altaie and Dowker [4]. Thus

af >(0) = _ ί ^ β , af) = o, fc έ 2 . (3.30)
ϋ

Notice that U given by (3.28) is antiperiodic, so K can also be written as
+ 00

2πn,n,t)fdp(θ + 2πn,t). (3.31)



294 R. Camporesi

On the five-sphere we obtain the following heat kernel coefficients:

*•*»£. ,3.33)

and af5) = 0 for k 2: 3. The coincidence limits can be checked by remembering the
expression for ax and α2 in terms of the curvature. Since the trace over the spinor
indices is not included here, we have from ref. [6], p. 172,

^ (3.34)

(3.35)

From (3.34) and (3.35) we find

af\0) = - -, α(

2

s3)(0) = 0 , (3.36)

αf)(0)= - | , af\0) = ^. (3.37)

These values agree with those obtained by taking the limit θ -• 0 in the finite
expressions given above.

In the hyperbolic case since HN is noncompact there is only one geodesic
connecting two given points. Therefore in (3.14) we only have the "direct path"
term, which is an exact Minakshisundaram expansion terminating at aiN-1)/2. The
corresponding expression may be obtained by replacing θ -• ix and t -» — t in
(3.27), and multiplying by ( - If/2.

4. The Even Dimensional Case

In order to apply (3.13) we need to solve for the heat kernel on S2 (or H2). The
solutions of L2φn = — λ2φn, λn = n + 1, normalized to φn(0) = 1 are given by

(see (3.19)). They are antiperiodic and vanish at θ = π. The eigenfunction expansion
of/2 can be written down immediately, but it is more instructive to first write φn as
a Mehler-Dirichlet integral. There are two (fractional) integral representations that
are useful. Let us prove that

I _. | ..diin, C2n + 1(cos^) , (4.2)
πΓ(a + n + 1) \ 2/
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where C" is a Gegenbauer polynomial, and the fractional derivative is defined by
[27, 7]

U dfΦ φ, (4.3)
Θ -v/cost/ — cosφ

/ θ\ θ
provided/(π) = 0. In our case Ca

2n + 1ί cos- I is an odd polynomial in cos- and

therefore it vanishes at θ = π. To prove (4.2) we start from the explicit form of the
Gegenbauer polynomials [25] to write

\ 2) m%

Then we apply the operator dl'l^Q and use the following rule for fractional
differentiation of a power

(valid for any α and for β > — 1, see ref. [27] p. 67). By shifting the sum to
k = n — m and using the duplication formula for the Γ function we obtain

(n-

x(l+cosθ) f e . (4.6)

Using [19]

- n, α + n + 1, 1, i ± | ^ J (4.7)

and formula (22) p. 40 of ref. [25], we easily establish the validity of Eq. (4.2). We
now use the symmetry property of the Jacobi polynomials

to obtain

But [19]

Cl (cos φ) = ;—— , (4.10)

and finally we get
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The fractional operator d\l2

cosθ is now defined with the boundary point at θ = 0,
i.e.

dΦdφf1'2 f - 1 ?
l-cosθJ — ^ = J

/

π o ̂ /cos φ — cos θ

provided/(0) = 0. By noting that the degeneracy factor is precisely dn = 2(n + 1)
we can write the eigenfunction expansion of f2 as

= ^ - f dnφn(θ)e~t(n + ί)2 (4.13)

The operator acting on the sum in (4.14) could be identified with the fractional
power of order 1/2 of the operator D in Eq. (3.8). The problem with (4.14) is that the
sum is not a Jacobi theta function and can not be "inverted" in terms of elementary
functions. In the odd dimensional case (with a cosine instead of a sine) the sum is
inverted in terms of exp( — θ2/4t% θn = θ -f 2πn. Using the Poisson summation
formula in the present case gives exp( — Θ2/4t) times an error function Erf(ι^n/2Λ/ί),
which is not easy to handle. We shall now use a different fractional representation
of Pi 1 ' 0).

It is proved in ref. [18] that for a > b > —\ one has the following integral
representation of Pjf' b)(cos 0):

2 / Γ ( n + α + l ) Λ Q \ ( θ\~2b

iα'b) cos θ) = — = sin - cos -

Vί!Γ(6)Γ(fc i)V V \ 2)
θ/2

x J dψ sin φ (cos 2φ — cos θ)b ~1/2

o

ψ

xj#cos[2(n + p)φ]{cosφ - c o s ^ " * " 1 , (4.15)
0

where p = (a + b + l)/2. It is not difficult to rewrite this in terms of fractional
operators

P?'*>(cos0) = -4-Γ(n + a + l)2a~2b+1^2 M< f l ' f c > S m [ ( w + p ) g ] , (4.16)

/ (\\-2a / fi\-2b

M = I Sill- I I COS- I ^l-cosθ ί 7l-cosθ/2 5 l^ 1 / /

where 3^ is defined by the Riemann-Liouville integral [27, 7]. Equation (4.16) is
a consequence of the following fractional commutation:

D&ϊ! MS** b)f= M<° b) (d2

θ + P

2)f, (4.18)

where

D%- b) = (l~- x2)d2

x + \b-a-(a + b + 2)x]dx (4.19)
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is the differential operator for the Jacobi polynomials. Equation (4.18) can be
proved by using the rules of fractional calculus given in ref. [27]. It holds provided
/ satisfies

f{θ = 0) = 0, d\Za

cos θ/2f\θ = 0 = 0 . (4.20)

From (4.16) and (4.8) we obtain another fractional integral representation for the
spherical functions (4.1)

ΦM= -Jl^s^.ocJ^.^M, (4.21)

i.e. explicitly

Φ
c o s s i

flx-lπ cos
φn(θ) = v - cos - J dφ . (4.22)

π V -v β ,/cos θ — cos φ
Using this in the eigenfunction expansion (4.13) we obtain:

Theorem 4.1. The heat kernel of ψ2 on S2 is K(S2) = Uf2, where U is the parallel
spinor propagator andf2 may be written as a "sum over classical paths"

f2(θ,t)= - ( c o s ^ J (2πa i + c o s θ )- 1 ' 2 ocos^δ c o s ( ) K
<

1

+ ) (θ,ί) (4.23)

φr( ΘY1 φ
2 C O S 9 +oo πcos-(φ

Σ I , \ e-<*+**'«dφ . (4.24)
/COS θ - COS φ

The heat kernel on SN, N even, is given by UfNi where fN = D(N~2)/2 f2 and D is the
differential operator (3.8).

We can check our result (4.24) by computing the coincidence limit of the heat
kernel coefficients in the asymptotic expansion

/ 2 ( 0 , ί ) ^ ( 4 π ί ) - 1 Σ α f t ί
f t , (4.25)

k = 0

valid for t -• 0. Only the n = 0 term in (4.24) must be retained in this limit, the n Φ 0
terms being "exponentially small" when compared to the direct path contribution.
The ak should coincide with the values obtained from the spinor zeta function [7]

ζs2(z) = 2ζR(2z - 1), (4.26)

(ζR is the Riemann zeta function) through the relations [7]

resCS2(z)|z = 1 = a0, Cs2( - * ) = ( - l)kk\ak + 1 . (4.27)

Thus, we expect a0 = 1 and

lΓ^qfc) |B|
( 4 2 8 )

where Bk are the Bernoulli numbers [19].
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In order to prove this we take the coincidence limit (θ = 0) in the n = 0 term
in (4.24),

jγ(0 ή = (4πty3/2]φcott: e~φ2/4t

and use

jγ(09 ή = (4πty3/2]φcott: e~φ2/4tdφ , (4.29)
o ^

ώ J, $ \B2k\φ2k\

valid for \φ/2\ < π [19]. Then we change variable to x2 = φ2/4t, and integrate term

by term by replacing the upper limit of integration π/^/ϊί with infinity. Using [19]

]]x2ke~χ2dx = 2~k-1^[π(2k - 1)!! , (4.31)
o

and

(2fc)! 2kk\ '

we obtain as t -* 0

^ ^ - ^ , (432,

/?(0, t) * (4πί)"1 ( l - Σ χ ̂ f p ) ^ (4-33)

in complete agreement with the result from ζ-function theory. The values of a1

and a2

a ί = - \ , α 2 = - l , (4.34)

can also be checked by using Eqs. (3.34)—(3.35).
The hyperbolic spaces can be handled in a similar way. (The spherical functions

and the eigenfunction expansion of the heat kernel will be considered in the next
section.) The basic difference from the compact case is that the Riemann-Liouville
integral becomes a Weyl integral, with the boundary point at infinity [27, 7]. The
geometric representation of the heat kernel on H2 is K(H2) = Uf2,

/2(x,ί) = )A J/ f =dy . (4.35)
(4πί)3 / 2 i ^/coshj - c o s h x

On H N we have K{HN) = UfNJN = D ( J V " 2 ) / 2 / 2 , where D is the operator (3.11).

5. The Plancherel Measure and the f-function on HN

In the hyperbolic case the spectrum of LN is continuous and the spherical functions
satisfy

LNφλ= -λ2φλ (5.1)
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(λ is an 'arbitrary real number), with the normalization φλ(0) = 1. Letting

z = — s inh 2 - and φλ = (1 — z)1/2φλ we obtain an hypergeometric equation for </>Λ

| z ( l - z)dl + - - (N + l)z I dz - λ2 - — \φλ = 0 . (5.2)

The solution for φλ is then found to be

x ί N N N x

Φλ(x) = cosh-Fί a + - , - a + ̂ γ - s i n h 2 2

The spectral distribution of the eigenvalues is given by the Plancherel measure μ(λ),
which is completely determined by the asymptotic form of the spherical functions
at infinity. For x-^ oo we have

φλ(x) ~ C(λ)eiλχ-px + C( - λ)e-(λχ-px , (5.4)

where p is a (positive) constant, and C(λ) is the Harish-Chandra function [21]. In
terms of C(λ) the Plancherel measure is [20, 7]

μ(A) = [ C ( λ ) C ( - A ) ] - 1 = |C(A)Γ 2 , (5.5)

where the last equality holds only for λ real. In the scalar case the Plancherel
measure is known on any noncompact Riemannian symmetric space, where it may
be written as a product over the positive roots of the space [20]. The explicit form
of μ on the real, complex, and quaternion hyperbolic spaces may be found e.g. in
ref. [7].

In order to calculate the spinor Plancherel measure from (5.4)-(5.5) we use the
following functional transformation for F [19]:

+ 1 - γ,β + 1 - α, 1/z)

Using this in (5.3) and letting x -• oo gives

where p = (N — l)/2. Comparing with (5.4) and using (5.5) we obtain

O4-2N

(5.8)

In the odd dimensional case μ(λ) reduces to a polynomial:

7 1 T~T / 1 2 , 2\ M
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In the even dimensional case we get

( 1 j i Γ ( A a + A Neven' (5 io)

where the product is omitted for N = 2. The analytic structure of μ is different in
the two cases. For N even μ defines a meromorphic function in the complex A-plane
with simple poles on the imaginary axis at λ = ± ί(n + N/2), n = 0, 1, . It is
easy to calculate the residues at these poles, and we find the following relation:

resμl A = t ( w + i V / 2 ) _ (n + N - 1)! _ dn

r e s μ | w / 2 " n ! ( N - l ) ! ~ d0 '

where

are the degeneracies of the iterated Dirac operator on the N-sphere [12]. Thus, the
singular points of the Plancherel measure determine the spectrum of ψ2 on SN.
A similar result holds in the scalar case [21, 7], where it may be proved for any pair
of dual Riemannian symmetric spaces [22]. It is natural to conjecture that the
spinor result generalizes to any symmetric pair admitting a spinor structure.1

In odd dimensions μ(λ) is analytic and from (5.9) we obtain a relation similar to
(5.11)

μ(i(n + N/2)) =dJ,

μ(iN/2) d 0 * ' '

The eigenfunction expansion of the spinor heat kernel can be written as

y, t) = U(y)cN f φλ(x)e-'λ2μ(λ)dλ , (5.14)
o

where the constant cN = 2AΓ~3Γ(Λf/2)/πΛί/2 + 1 is determined by requiring that (5.14)
agree with the Minakshisundaram-De Witt expansion for t -»0. The zeta function
of the operator Tr[ — ψ2 + m 2 ], defined as a Mellin transform of
Tr\_K(yo,t)e~tm22, is given by

ζN(z, m) = J^ 7 dt ίz~ lTr κ(H"\yo, t)e-""2

[f] °Y μ(λ)dλ

= 2 c» I W^^Ϋ • (5 15)

Here a mass m for the spinor field has been inserted in order to avoid the infrared
divergence at the lower limit of integration. (In the compact case the (-function of
ψ2 is well defined because the spectrum does not include zero.) The integral (5.15)
converges for Re z > N/2 and is defined by analytic continuation for the other
values of z. For N odd the integrations are elementary . Defining numbers akiN by

(N-2)/2 (N-l)/2

Π (λ2+f)= Σ ^,Nλ2k, (5.16)
7=1/2 fc = 0

1 For example it should hold on the complex projective spaces P6(C), P10(C), . . . , but not on
P4(C), P\C\ . . .
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and using1 Eq. 3.251, n.2 of ref. [19], we obtain

2 C f ] l-2z (JV-D/2

where B(x, y) is Euler's beta function. For N even > 2 we define bκ N by

(N-2)/2 (N-2)/2

Π V2+J2) = Σ * W 2 k , (5.18)
j = l fc = 0

and bOt 2 = 1. Using the identity

coth(τd) = 1 + 2/(e2πA - 1), (5.19)

we find
rjV-i

9L2J (N-2)/2

g i ^ (5.20)
0 e x J

The terms containing the beta functions give the meromorphic part, with poles at

The other terms are analytic in the z-plane. For example on H4 we obtain

r , λ - j v / , (a2m2)2

2π2 { 2 ( z - l ) 2 ( z - l ) ( z - 2 )

+ Z J (e2«λ - \){λ2 + a2m2Y \ ' l j

where the radius α has been reinstated. The derivative of ζ4 at zero gives the
one-loop functional determinant for a spinor field in anti-de Sitter space, and can
be used to calculate the spinor effective potential and stress-energy tensor in this
spacetime [10].

6. The Two-Point Function

The massive spinor Green's function with one point at the origin, G(y) = G(yθ9 y\
is a solution of

(Ψ2-m2)G(y)= -δN(y), (6.1)

with the appropriate boundary conditions to be specified below. G is related to the
heat kernel by

G(y)= f K(y,t)e-tm2dt. (6.2)
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From Eq. (2.16) we have

G(y) = U(y)gN(σ), (6.3)

+ 00

dN(σ)= j fN(σ, ήe-tm2dt, (6.4)
0

where σ is the geodesic distance from y0 to y (hereby the radius a = 1), and/N is the
scalar function multiplying U in Eqs. (3.14) and (3.25), for N odd, and is given by
Theorem 4.1 and Eq. (4.35), for N even. It is, perhaps, more instructive to solve
directly Eq. (6.1) with the boundary conditions appropriate to the compact and the

n

noncompact case. On SN we define gN(θ) = cos-hN(θ) and change variable to

z = cos 2-, to obtain an hypergeometric equation for hN

*(1 - z)dl + I y + 1 - (ΛΓ + l)z 3Z - — - m2 \hN{z) = 0 , (6.5)

where we assume σ Φ 0. The boundary conditions require that for N ^ 2, hN have
only one singular point at the origin θ = 0 (north pole), i.e. in the coincidence limit.
In particular, the Green's function should be regular at the south pole (θ — π). This
uniquely determines hN up to an overall factor,

(N N N \
hN(z) = cNFl — + im, — - im, — + 1, z I . (6.6)

To obtain the constant cN we require that the θ -• 0 singularity have the same

strength as in flat space, namely as θ -• 0 gN should approach g^\ where

" 2 L i V φ 2 ,

: (6.7)

- — lnθ, N = 2.
2π

From ref. [25] we have near z = 1 and for α + β — y > 0,

" " - " - ' <6-8)

From this we find the value of cN for N + 2:

(N \ (N

2NπN/2rί~+l

For A/" = 2 we use Eq. (2), p. 74 of ref. [17] (with / = 0), which shows the required
logarithmic singularity of F(l + im, 1 — im, 2, z) near z = 1, and gives the same
value (6.9) (with N = 2) for c2. Thus we obtain the following result, valid for any N:
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Theorem 6.1. The spinor Green's function (6.1) on SN is given by (6.3) with

Consider now the case of HN. As before, let x be the geodesic distance from y0 to
x

y (in units of the radius α), and let g^x) = cosh — hN(x). Then hN is a solution of Eq.

x
(6.5) with z = cosh 2 - and m2 -» — m2. It is useful to change variable to u = 1/z,

and define

p(u) = u~N/2~mhN(u) . (6.11)

The function p(u) satisfies the hypergeometric equation with

a = hm, β = m, y = 2m + 1 . (6.12)

2

Two linearly independent solutions are [17]

Pl(u) = F(<x9β,γ,u) , (6.13)

p2(u) = u1 " ^ ( α - y + 1, β - y + 1,2 - y, u) . (6.14)

The boundary conditions in the hyperbolic case require that the Green's function
gN (or hN) fall off as fast as possible for x -• oo, and have the same strength x -+ 0
singularity as in flat space [2, 3]. The first condition selects p(u) ccp^u) and the
second condition fixes the overall coefficient in p. We obtain:

Theorem 6.2. The spinor Green's function (6.1) on HN is given by (6.3) with

2 π f Γ(2m + 1)

/ x \ ί N x\
x I cosh- y-M-znpί — + m, m, 2m + 1, c o s h " 2 - I . (6.15)

We end this section with a few remarks. First of all we note that the spinor
propagators and heat kernels on the maximally symmetric spacetimes (dS)^ and
(AdS)]v (signature ( — , + , , + )) coincide, for spacelike separation, with the
corresponding quantities on SN and HN

9 respectively. In the timelike case θ and
x are imaginary and the hypergeometric functions in (6.10) and (6.15) have a branch
cut, since the argument z > 1. In this case the Feynman propagator is obtained as
the limiting value GN(σ + zΌ) above the cut [2, 3].

The second observation concerns the Green's function D to the first order Dirac
operator

(Ϋ+m)D= -δN9 (6.16)
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which is related to G by [15]

D = (ψ-m)G . (6.17)

We shall evaluate D and compare our results with those obtained by Allen and
Lϋtken in the four dimensional case. Using Eqs. (2.18), (2.32), (2.34), (2.39), (6.3) and

ΓaΣah=
l-{N-\)Γh (6.18)

in (6.17) we obtain

D(y) = naΓaU(y) Γ |- + \(N - l)A(σ)] gN(σ) - mU(y)gN(σ) . (6.19)
Iδσ 2 J

In order to evaluate the first term we rewrite the operator in square brackets in
(6.19) as

--sinflf c o s 2 - ) 5 c o s 2 i o ί c o s 2 - j

for SN, and as

- - s i n h x ί c o s h " 2 - ! δCOsh-2f o( c o s h " 2 - j

for HN. Then we take gN from (6.10) and (6.15), and use ref. [17], p. 102, Eqs. (22) (for
SN) and (21) (for HN) with n = 1, to obtain the following result:

Theorem 6.3. The spinor Green's function (6.16) on SN is given by

N-ί

. 2 / 1 2 J \ θ ίN N N oθ
D(y) = ^ ^ <mU(y)cos-Fl- + im, - - im, - + 1, c o s 2 -

N θ ίN N N I
+ -^nTaU(y)sm-F( - + im, - - im, -, cos2-j } . (6.20)

The spinor Green's function (6.16) on HN is given by

m + l)

x<naΓaU(y)sinh-Fl — + m, m + 1, 2m + 1, cosh~ 2 -

x ίN xX)
+ (7(j;)cosh-F[ — + m, m, 2m + 1, c o s h " 2 - j > . (6.21)

For N = 4 one can easily show that (6.20) coincides with Eqs. (3.9), (3.13) and (3.14)
of ref. [3], and that (6.21) coincides with Eqs. (3.9), (3.15) and (3.16) of [4].



Spinor Heat Kernel in Maximally Symmetric Spaces 305

7. Conclusions

In this paper we have obtained a geometric representation of the spinor heat kernel
in maximally symmetric spaces. By squaring the Dirac operator the heat equation
is solved by the simple ansatz K = Of, where U is the parallel spinor propagator
and/a scalar function. It is not clear, at the moment, whether this simplification is
due to the maximal symmetry of the manifold or holds for other homogeneous
spaces as well. A possible generalization to rank-one symmetric spaces and to
compact Lie groups is presently under investigation.

For groups there is the interesting conjecture [8] that the spinor heat kernel
expansion terminates to the coefficient αμ, where μ is the number of positive roots
of the group. The parallel spinor propagator on a group G can be written down
explicitly in a left-invariant vielbein as

U(y) = exp( - yaQJ2), (7.1)

where {ya} are canonical coordinates, and

Qa= -\fatcΣbC (7.2)

are the generators of the spin representation of G (fabc are the structure constants).
Since a compact Lie group is topologically the same as a product of odd spheres
(apart from torsion they have the same cohomology) the conjecture formulated
above seems quite plausible, in view of the results obtained in this paper. We defer
this problem to our future work.

A. Appendix

In this appendix we calculate the covariant derivative of the parallel spinor
propagator U on SN. The basic idea, due to Higuchi [23], is to work in a vielbein
which is parallel along each geodesic emanating from the north pole. As proved in
Sect. 2, the parallel transport equation satisfied by U has the trivial solution U = 1
in this frame, so that the covariant derivative of U reduces to

VaU= -l-ωabcΣ
hcU (A.1)

(see Eq. (2.6)). Then we need to calculate the connection components in this
vielbein and reexpress the right-hand side of (A.I) in geometric form, so that it is
valid in any frame. Let us first construct a parallel vielbein on SN. Consider
projective coordinates {xa} based at the south pole (SP), i.e., define a mapping
SN — {SP} -> RN by associating to the point xeSN the intersection of the line
SP - x with the plane zN + x = 0, where (z1,. . . , zN, zN + x) = (z\ zN+1) are cartesian
coordinates in RN+1. Then

xa = zfl/(l + zN+1), a = 1, . . . , N , (A.2)

with (zN + 1)2 + Σf = 1 (z f l ) 2 = I and conversely

za - 2x7(1 + x2) , (A.3)

(l - χ 2 ) / ( l + χ 2 ) , (A.4)



306 R. Camporesi

where x2 = Σ* = 1 (x β ) 2 . τ h e n o r t h P o l e ( N P ) corresponds to xa = 0 (=>zα = 0,
= 1). A simple calculation gives the metric in projective coordinates

4δ,ab

(1 + X2)2\2 '

A vielbein of this metric is

(A.5)

(A.6)

The vielbein components of the Levi-Civita connection (2.7) are given by

ω α b c (x) = xcδab - xbδac = ωa[bc](x) , (A.7)

where all indices are raised and lowered with the vielbein metric, e.g. xa = δabx
b. We

shall now prove that the vielbein {Xα} is parallel along each geodesic yy(t\ with
yy(0) = NP and yy(ΐ) = yeSN — {SP}. Let us first derive the equation of such
geodesic. The connection components in the coordinate frame d/dxa are

The equation for γy(t) = (xα(t)} reads

(xbδ
c

a + xaδ
c

b - xcδab) = ωm\x)

dt2 1 + x 2

with the boundary conditions

xa(0) = 0,

at dt dt dt

x"(l) =

(A.8)

(A.9)

(A. 10)

{ya} being the coordinates of the point y. The unique solution to (A.9) and (A. 10) is

x"(t) = ftan{bt)/y , (A. 11)

where

[ ΛΓ ηi/2

Σ ( / ) Ί > ( A 1 2)
(A.13)

b = arctan(y) .

The tangent vector to yy(t) may be written as

yy(t)

= 26-X (A. 14)

where (A.6) was used. Thus dt has constant (ί-independent) components with
respect to Xβ. From (A. 14) and (A. 7) it easily follows that Xα is parallel along yy(ή,

F a X J M ( ) = 0 . (A. 15)

We can now express the geodesic distance on a great circle, θ = d(NP, y), in terms
of projective coordinates. From the definition of Riemannian distance and from
(A. 14) we have
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and remembering (A. 13) we find

θ = 2arctan(j;), y = tan I - I . (A. 17)

We also notice, from (A. 11), the following relation between projective and Riemann
normal coordinates on SN:

with Σ ( / R N C ) 2 = θ2.

The unit vector field na = Vaθ has vielbein components

na(y) = Xaθ=1-(l+y2)^-a = ^ , (A. 19)

where (A. 17) was used. The spinor covariant derivative (2.6) takes the form (using
(A.7))

Vaφ\y = XaΦ\y-Σaby
bψ(y), (A.20)

and the parallel transport operator reduces to

naVa = rf\a, (A.21)

proving that U = 1 in this frame. The covariant derivative of U is then

VaU\y = Kl = - Σaby»l

= -yΣabn
bl

= -tan^Σabn
bU(y). (A.22)

This is now written in geometric form and is valid in any frame. Another derivation
of Eq. (A.22) may be found in Sect. 2.

Acknowledgements. We would like to thank Ted Jacobson for an illuminating conversation which
inspired part of this work. We also thank Atsushi Higuchi for useful discussions. This work was
supported by NSF Grant No. PHY-87-17155, and by the Natural Sciences and Engineering
Research Council of Canada.

References

1. Allen, B.: Nucl. Phys. B226, 228 (1983)
2. Allen, B., Jacobson, T.: Commun. Math. Phys. 103, 669 (1986)
3. Allen, B., Lϋtken, C.A.: Commun. Math. Phys. 106, 201 (1986)
4. Altaie, M.B, Dowker, J.S.: Phys. Rev. D17, 417 (1978)
5. Anderson, A., Camporesi, R.: Commun. Math. Phys. 130, 61 (1990)
6. Birrell, N.D., Davies, P.C.W.: Quantum fields in curved spaces. Cambridge: Cambridge Univ.

Press 1982
7. Camporesi, R.: Phys. Rep. 196, (1990)
8. Camporesi, R.: Class. Quant. Grav. 8, 529 (1991)
9. Camporesi, R.: Phys. Rev. D43, 3958 (1991)

10. Camporesi, R., Higuchi, A.: in preparation
11. Candelas, P., Raine, D.J.: Phys. Rev. D12, 965 (1975)
12. Candelas, P., Weinberg, S.: Nucl. Phys. B237, 397 (1984)



308 R. Camporesi

13. Dowker, J.S., Critchley, R.: Phys. Rev. D13, 224 (1976)
14. Destri, C, Orzalesi, C.A., Rossi, P.: Ann. Phys. 147, 321 (1983)
15. DeWitt, B.S.: Dynamical theory of groups and fields. New York: Gordon and Breach 1965
16. Dϋsedau, D.W., Freedman, D.Z.: Phys. Rev. D33, 389 (1986)
17. Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions.

(Bateman Manuscript Project) vol. I. New York: Mac Graw Hill 1953
18. Gasper, G.: In Fractional Calculus and its Applications. Ross, B. (ed.) Berlin, Heidelberg, New

York: Springer 1975, p. 207
19. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. New York: Academic

Press 1980
20. Helgason, S.: Groups and Geometric Analysis. New York: Academic Press 1984
21. Helgason, S.: Asterisque (hors serie) (1985) 151
22. Helgason, S.: private communication
23. Higuchi, A.: private discussion
24. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I and II. New York:

Interscίence 1969
25. Luke, Y.L.: The Special Functions and their Approximations, vol. I. New York: Academic

Press 1969
26. Minakshisundaram, S., Pleijel, A.: Can. J. Math. 1, 320 (1949)
27. Oldham, K.B., Spanier, J.: The fractional calculus. New York: Academic Press 1974
28. Wald, R.M.: Commun. Math. Phys. 70, 221 (1979)

Communicated by S.-T. Yau




