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Abstract. We study a construction that yields a class of translation invariant states
on quantum spin chains, characterized by the property that the correlations across
any bond can be modeled on a finite-dimensional vector space. These states can
be considered as generalized valence bond states, and they are dense in the set of
all translation invariant states. We develop a complete theory of the ergodic
decomposition of such states, including the decomposition into periodic "Neel
ordered" states. The ergodic components have exponential decay of correlations.
All states considered can be obtained as "local functions" of states of a special
kind, so-called "purely generated states," which are shown to be ground states for
suitably chosen finite range VBS interactions. We show that all these generalized
VBS models have a spectral gap. Our theory does not require symmetry of the
state with respect to a local gauge group. In particular we illustrate our results
with a one-parameter family of examples which are not isotropic except for one
special case. This isotropic model coincides with the one-dimensional antifer-
romagnet, recently studied by Affleck, Kennedy, Lieb, and Tasaki.

1. Introduction

Determining ground state properties of quantum spin systems on a lattice is often
a hard problem, and is certainly much more complex than the corresponding
problem in classical statistical mechanics. One reason for this difference is that in
a classical theory the energy of a state can be minimized locally, by fixing the state
on the boundary dΛ of a finite region /I, and finding the local state in A of minimal
energy with the prescribed marginals on the sites in dΛ. This procedure breaks
down in a quantum system, because the local state obtained in this way, and the
state outside A may fail to have a common extension [65]. A closely related point
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is the following. Ground states can be expected to be pure in both cases, and in
the classical case this implies the purity of the local restrictions. In particular,
translation invariant pure states in a classical lattice system have a completely
trivial structure. For an Ising system, for example, there are just two such states,
either all spins are up, or all are down. In quantum mechanics the restriction of
a pure state is usually not pure, and consequently a translation invariant pure
state may have a rich structure of long range correlations. Thus in a quantum
spin system it is not trivial to establish rigorously properties such as the uniqueness
or degeneracy of the ground state (spontaneous symmetry breaking), the decay
law of correlation functions, and the spectrum of low-lying excitations in the
ground state (occurrence of a spectral gap above the ground level or not). The
aim of this paper is to present and study a class of states, and related Hamiltonians,
for which such questions can be answered explicitly.

The above mentioned extension problem for quantum states is trivial when
one is dealing with product states, and these are the states arising as the ground
states of purely ferromagnetic models. Models of antiferromagnetism gained new
interest in recent years mostly because of their relation to high-Tc superconductivity
(see e.g. [7]), and it is no surprise that a lot of the complexity of quantum ground
states has turned up in the study of such models. The uniqueness of the finite
volume ground state for a large class of models, including the standard nearest
neighbor isotropic Heisenberg antiferromagnets on any finite bipartite lattice, was
decided by a beautiful theorem of Lieb and Mattis [52]. In [51] it was shown
that the Heisenberg model on an infinite chain does not exhibit a spectral gap
above the ground state. An interesting form of nonuniqueness of ground states is
the occurrence of Neel order in translation and rotation invariant models. Clearly,
one has to consider systems in the thermodynamic limit in order to get relevant
examples of symmetry breaking. This phenomenon was demonstrated in certain
cases by Dyson, Lieb and Simon in [25], and in more recent extensions of this
work (e.g. [47]). A very stimulating conjecture was made by Haldane [38]. He
predicted that the behavior of the ground states of one-dimensional antiferro-
magnetic nearest neighbor interactions would depend qualitatively on the fact
whether the value of the spin s is integer or half-integer. For a discussion and a
proof of part of the conjecture see [4]. In the case of one-dimensional models
several Hamiltonians are known, which can be solved exactly by the Bethe Ansatz
[14,41,63,11] or with the use of Temperly-Lieb algebras or Yang-Baxter type
methods [12,13,49], and which have been inspiring examples in many branches
of theoretical physics. For these models the ground state energy, and the absence
or existence of a gap usually can be obtained. However, in all models mentioned
so far the determination of the correlation functions presents considerable
problems.

Correlation functions are relatively simple to obtain for another class of models,
for which the ground states can be constructed exactly [48,5,9,22,43]. They are
called VBS models, because of the Valence Bond structure of their ground states.
After suitable generalization one finds that the much older Majumdar-Ghosh
model [53,54,5], has the same structure, although the ground states are especially
simple there. The states, which we investigate are generalizations of valence bond
states, and before we sketch the main results of our paper, it may be in order to
recall the paradigm of such a state, namely a state on the spin 1 chain studied in
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detail in [5]. In a certain sense it is the simplest nontrivial state of the class we
study.

Affleck, Kennedy, Lieb, and Tasaki [5] consider the Hamiltonian

where Sf denotes the generators of the irreducible spin 1 representation of SU(2),
which lives in the one-site algebra at site i. The expression in braces is nothing but
the projection onto the spin 2 subspace in the decomposition of the tensor product
of the two representations at sites i and (i + 1). The basic results of [5] concern-
ing this Hamiltonian are that it has a unique ground state, which can be given
by a fairly explicit "valence bond" construction. It has exponentially decaying
correlation functions, which can be computed explicitly. Moreover, there is a
spectral gap above the ground state. It is remarkable that this ground state does
minimize the energy locally, i.e. each term in the above sum is positive semidefinite,
and has zero expectation in the ground state. The construction of the state involves
a contraction scheme with respect to indices of certain representations of 51/(2),
which can also be generalized to some other groups [3]. The SU(2) valence bond
states can also be expressed rather effectively in terms of homogeneous polynomials
in two variables [9,46,50]. In all these studies the presence of a gauge symmetry
group for the state under consideration plays a decisive role. It is therefore not
clear a priori whether models with the properties proven by [5] are singular
occurrences, or simply the gauge invariant examples in a larger class. We will
show in this paper that the latter is the case. To this end we use an abstract
definition of (generalized) valence bond states, which does not involve any
symmetry group. The ground state of the above model is thereby embedded into
a 19-dimensional manifold of valence bond states, each of which is the unique
ground state of a certain class of finite range Hamiltonians. Of each such state we
will prove essentially all the results obtained in [5] for the special example. All
these results will be worked out in detail for the following one-parameter
deformation of the AKLT model:

{ ^ + 1 } | (1.2)

where ίe[0,1] and η(t) = (3t2 + 2t- l)/(6ί 2-4ί + 2). The AKLT model corresponds
to t = 1/3 (η = 0).

In a quite different context the construction we use was suggested in [1,2]. It
emphasizes the role of a family of operators, which are reminiscent of transfer
matrices. Although the notion of a transfer matrix is usually limited to the context
of classical systems a generalization to quantum spin chains has been introduced
by [8] in order to prove uniqueness and analyticity properties of Gibbs states for
finite range interactions. It should be noted that in contrast with the case of classical
spin systems, such a transfer matrix essentially lives on an infinite-dimensional
space. Unlike the approach of [8], the fundamental difference between the quantum
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and the classical situation in our approach lies in the positivity properties of the
transfer matrix, rather than in the structure of the space it lives on. In specific
examples of VBS models the utility of transfer matrix-like objects was also realized
by other authors [35,9,43,44].

As the essential feature characterizing the states obtainable by our construction
we single out the property that the correlations across any bond of the chain can
be modeled on a finite-dimensional vector space. A subclass of states with this
property, called C*-finitely correlated states is then shown to be identical with the
class of valence bond states according to our abstract definition (Proposition 2.7).
Our aim is to give a general theory of this class of translation invariant states on
spin chains. Whatever the merits of the valence bond picture on lattices of higher
dimension, we found the transfer matrix point of view the more helpful represent-
ation on one-dimensional lattices, and therefore made it the starting point of our
investigation. A major advantage, both for practical computations and for general
considerations, is that the computation of correlation functions in our approach
reduces to obtaining the spectral properties of a finite dimensional matrix. In
particular, all these states have exponential decay of correlations. For example, in
the case of the state on the spin 1 chain as studied by [5] the valence bond picture
suggested a fairly involved diagrammatic technique to obtain the correlation
functions [5], whereas in our approach the computation reduces to evaluating
one matrix element of a diagonal 4 x 4-matrix.

We now give a more detailed overview of the results presented in the different
sections of this paper, without, however, entering into the technicalities. In order
to illustrate the different stages of our analysis we will carry through the paper
the one-parameter family of examples (1.2). Occasionally we will also consider the
Majumdar-Ghosh model [53,54] and the Heisenberg ferromagnet.

Section 2. Finitely Correlated States. Throughout the paper we are concerned with
translation invariant states on the chain algebra sίΈ = (X)j/t , where s/t denotes

a copy of a fixed C*-algebra s/ "at site i." Finitely correlated states on J / Z are
defined by the property that the correlations across any bond can be modeled on
a finite-dimensional vector space 0&. We show that the state can then be
reconstructed from a map E : J / ® ^ - > J*, and two elements ee$, pe&*. For most
of the paper we specialize to the case of "C*-finitely correlated states," for which
& is a finite-dimensional C*-algebra, and E, e,ρ are (completely) positive. The
class of C*-finitely correlated states is shown to be a *weakly dense convex subset
of the set of translation invariant states, which is important for the possibility of
using these states as trial states in variational computations. We define generalized
valence bond states, and show that on spin chains they coincide with the C*-finitely
correlated states.

Section 3. Ergodic Decompositions. Correlation functions of a C*-finitely correlated
state are expressed in terms of the powers of the operator Έ(B) = Έ(t^(g)B) on
3ft. If es 38 is the only fixed point of E then the state is exponentially clustering,
and hence ergodic (i.e. extremal translation invariant). We show that every
C*-finitely correlated state has a unique convex decomposition into finitely many
ergodic C*-finitely correlated states. Using a quantum version of the classical
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Perron-Frobenius theory, the breaking of translation invariance, i.e. the decom-
position of the given state into periodic components, can be diagnosed from the
set of eigenvalues of E with modulus one. AH these eigenvalues are necessarily
roots of unity, i.e. quasi-periodic behavior is excluded.

Section 4. Dilation Theory and Purely Generated States. We continue the reduction
of general C*-finitely correlated states to simpler building blocks. In classical
probability theory finitely correlated states can be seen as functions of Markov
Processes (see Sect. 7.1). In this section we identify a subclass, the "purely generated
states," which generate all C*-fϊnitely correlated states by 'taking functions.' What
is meant by 'taking functions' in the noncommutative context is explained there.
The purely generated states are those for which the map E is "pure," i.e. it can-
not be written as the sum of other completely positive maps. Equivalently,
Έ(X) = V*XV for an isometry V between appropriate Hubert spaces. The set of
pure completely positive maps on a quantum system has a much richer structure
than its counterpart in classical probability. This structure is essential in Sects. 4,5,
and 6. In particular, it allows the construction of an abundance of nontrivial pure
states. Sections 3 and 4 together amount to the identification of the basic building
blocks for all C*-finitely correlated states: these are the purely generated states
which have no proper decomposition into periodic components, or equivalently,
which are exponentially clustering.

Section 5. Ground State Property of Purely Generated States. Here a crucial step
for the applications is made. It is shown that each of the basic building blocks
identified above, i.e. every purely generated exponentially clustering C*-fϊnitely
correlated state, is the unique ground state of some translation invariant finite
range interaction. The interaction is chosen such that the energy density is equal
to the lowest eigenvalue of the interaction operator, i.e. the state minimizes the
energy locally. As a by-product, we prove that every purely generated exponentially
clustering state is pure, i.e. it cannot be decomposed even into non-translation
invariant components, and we also obtain a formula for the (finite) limiting absolute
entropy of these states (the entropy density vanishes).

Section 6. The Ground State Energy Gap. Continuing the study of the
Hamiltonians introduced in the previous section, it is shown that all these models
have a spectral gap immediately above the ground state. The methods presented
here are tailored to get a simple proof of the existence of the gap. Although they
also allow explicit estimates, these estimates are not optimal. We do not know
whether one could hope to derive exact expressions also for the gap, as is possible
in the integrable models [12]. A short overview of our technique, stated in valence
bond language, was given in [30].

Section 7. Applications. We chose only a few examples to highlight the general
structure developed in the main body of the paper. Further applications concerned
with entropy properties and finitely correlated states on a tree, will be treated
elsewhere [31,32,33].

7.1. Classical Systems. In order to put our results for quantum spin chains into
perspective, we briefly review earlier results [28] for the case that all the C*-algebras
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appearing in the general construction are abelian. In this case C*-finitely correlated
states are precisely the functions of Markov processes. A formula for the dynamical
entropy (or entropy density) for such a probability measure is given.

7.2. Integrable Systems. In the classical case any Gibbs state for a finite range
interaction is C*-finitely correlated, and conversely any faithful Markovian
measure is a Gibbs state for a well-defined nearest neighbor Hamiltonian [58,34].
Unfortunately, in spite of the fact that C*-finitely correlated states are dense in
the translation invariant states (as noted above), this connection fails in the
quantum case, even for ground states. As an example we show that the ground
states of some integrable half-integer spin chains, treated by Takhtajan [63], are
not C*-finitely correlated. Although this can undoubtedly also be demonstrated
by other methods, we show that it suffices to note that the known exact ground
state energy of these models is transcendental, i.e. not algebraic in the coupling
constant.

7.3. Gauge Invariant States. As states and models with a given group invariance
(acting on each site) certainly are of special importance, we study this situation in
more detail. A straightforward construction for states with given symmetry is given.
We apply this construction to obtain the well-known integer spin models [5,9,29].
By the results of Sect. 6 all these models have a spectral gap. It is also shown how
the representation theory of SU(2) can be used to carry out explicit calculations.

Appendix: Matrix order and complete positivity. Here we prove a characterization
result for finitely correlated, but not necessarily C*-finitely correlated states, and
collect the definitions and results about matrix ordered vector spaces needed for
this purpose.

2. Finitely Correlated States

In this paper we study a class of states on quantum "spin" chains. The observable
algebra for a single "spin" is some fixed C*-algebra si with identity t^. Often
this algebra will be finite-dimensional, or more specifically, the algebra Md of d x d
matrices. For each neΈ we consider an isomorphic copy si^ of si, and define
for each finite subset AaΈ the algebra siΛ=(§dsijx\. H e r e a n c * below the

XEΛ

symbol " ® " will always refer to the minimal C*-tensor product [62]. For si ^ n}

we also write sί®n. For infinite subsets A c TL, siA is defined as the C*-inductϊve
limit of the algebras si^ with A c A finite. The identification stA» c=-> si^ for A' c A
underlying this limit is by tensoring AesiΛ» with (8) t^ . The most

XEΛ'\Λ"

important example of this is the chain algebra J / 2 itself. The group Έ acts on J / Z

by the translation automorphisms αr, taking siA into siΛ+r. The set of translation
invariant states on siπ will be denoted by ̂ ", or &"(si\ By grouping segments of
p sites together, we obtain an isomorphism of siz with {s^®p)Έ, identifying
^{kP kP + P-l} With ( ^ ® * ) { Λ } .

The characteristic property of the class of translation invariant states on stfΈ

studied in this paper is described in (1) of the following proposition.
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2.1 Proposition. Let sέ' bea C*-algebra with unit, and let ωbea translation invariant
state on the chain algebra J / Z . Then the following are equivalent:

(1) The set of functionals Φ: J ^ N - > ( C of the form

with Xejtf%\N generates a finite-dimensional linear subspace in the dual of
(2) There are a finite-dimensional vector space &, a linear map E: Aestf\—•
ΈAeJ£(&,&), an element ee@, and a linear functional pe&*, such that p°Έt =
p, Έt(e) = e, and for neZ, meίtt and A{esέ^ = s/:

p°ΈAno. oJEAn+m(el (2.1)

where the symbol "°" means composition of maps.
If in (2) & is chosen as minimal in the sense that

and

then &, E, p, and e are determined by ω up to linear isomorphism.

2.2 Definition. If the equivalent conditions of Proposition 2.1 are satisfied, ω will
be called the finitely correlated state generated by (E, p, e).

Proof of 2.1

(1)=>(2): We abbreviate j/# = sf{n\n^i} and j / b = <$/{n\n^0} On s/# we consider
the equivalence relation X~ Yoω(Xb®(X — Y)) = 0 for all X^es^^ and an
analogous relation on j / b . Denote by @^ the quotients of si^ by these relations
and by [ X J G J Ί , the equivalence class of X^GS/^9 where ί stands for # or b.
Obviously, there is a well defined, nondegenerate bilinear form r\'M^, x&#^><£
such that */([Xb], [X#]) = ω(X^®X#). Clearly, Xb - X\ iff X\ generate the same
functional on s/#9 hence (1) implies that 0$b is finite-dimensional. Since η is
nondegenerate, we can identify 31 # with the dual of J^b, and we shall take 3$ = J # ,
e = [ l ] e Λ , and p = [ l ] e Λ b = («#)• in (2). Let ΈA(IX#]) = IA®X#]. We have
to show that this is well defined, i.e. that [A ® X#] = 0, whenever \_X#\ = 0. But
[X#] = 0 implies in particular that ω((Xb®A)®X#) = 0 for all X^GS/^^-I^

and by translation invariance of ω we also have ω(X^®(A®X^)) = 0 for all
X b e j/ b . The verification of (2.1) is straightforward.

(2)=>(1): Given J^, e, p, E satisfying (2), we define the maps ?Γf$t#-*@, ^ b : j / b -•«*
by

Then for X b 6 ^ b we have ω(Xb®X#) = 3Γb(X^(3r#(X#)). Since the range of #"b

is in the finite-dimensional space ^ * , (1) holds. If & is chosen to be minimal in
the sense described, ^"b is surjective. Therefore, 5"#(X#) = 0 is equivalent to



450 M. Fannes, B. Nachtergaele and R. F. Werner

ω(Xt ® Xu) = 0 for all X^ i.e. X# ~ 0. Since 2Γ% is also surjective,
defines a linear isomorphism from 38 # to 0&. •

The proposition gives an explicit formula (2.1) for ω in terms of the usually much
simpler objects J*, E, p, and e. We would therefore like to turn this formula into
a definition of the state ω. It is clear from the structure of this formula, and from
the invariance assumptions for e and p that the family of functionals on s/^n^M+m^
defined by (2.1) is consistent with the injections si A> CL* siA, SO (2.1) defines a linear
functional on (J s#Λ. This functional is also obviously translation invariant

A finite

and normalized to ω(t)= 1. But without further assumptions ω will rarely be
positive. For this reason we had to assume positivity from the outset, by applying
the proposition only to states. In order to turn formula 2.1 into a useful tool for
constructing states we need conditions, which will ensure the positivity of ω.

Necessary and sufficient conditions are given in the next proposition, using
the concept of matrix order. A matrix order for a vector space 38 is an ordering
of each of the spaces Jίn ® 38 of n x n-matrices with entries in 38, such that these
orderings satisfy a certain consistency condition. Since a finite-dimensional
C*-algebra si is a direct sum of matrix algebras, si®38 is matrix ordered in a
canonical way, for any matrix ordered 3&. A completely positive map T\31-*0b1

between matrix ordered spaces is a linear map such that for each n, \άJ(n®Ύ takes
positive into positive elements. In the standard case, which we shall consider almost
exclusively, 3& is a C*-algebra and Jίn®38 is equipped with its ordering as a
C*-algebra. Completely positive maps between operator algebras are well studied
[60]. Since many of our results make use of the detailed structure theory of
completely positive maps on C*-algebras, notably the Stinespring dilation theorem
[59], we could not extend our theory to states generated by completely positive
maps on a general matrix ordered space. Therefore we collected the basic definitions
and results concerning matrix order in Appendix 1, where we also prove the
non-trivial direction of Proposition 2.3.

2.3 Proposition. Let si be a finite-dimensional C*'-algebra, and 38 a finite-dimensional
matrix ordered space with ee38 positive, and pe38* a positive linear functional. Let
Έ:si®38^38 be a completely positive map such that

= p(B), Be@. (2.2)

Then with ΈA(B) = Έ(Λ ® B\ these objects generate a finitely correlated state ω,
and every finitely correlated state is of this form.

It is easy to see that complete positivity of E ensures positivity of ω, by
introducing the "iterates" Έ{n):si®n® @^>& with E ( 1 ) = E, and

Then E ( w ) is completely positive, since this property is conserved under composition
and tensoring with identity maps. Hence by (2.1) Aί®~Άn)-+ω(Aι® ' An) =
ρ(e)~ 1ρ(Έin)(Aί ®"Άn®i^)) is positive.

2.4 Definition. Let si be a {not necessarily finite-dimensional) C*-algebra with unit.
Then if the positivity conditions of Proposition 2.3 are satisfied, and & is a

finite-dimensional C*-algebra with its canonical matrix order, ω will be called the
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C*-fϊnitely correlated state generated by (E, p, e). The set of C*-finitely correlated
states on si% will be denoted by #", or $F(si\

Example 1. We now introduce a one-parameter family of C*-finitely correlated
states which will turn out to contain the ground state of the spin 1 antiferromagnet
introduced in [5], (we will call the latter model the AKLT model). As we are
working with a spin 1 chain the single site observable algebra si consists of the
3 x 3 complex matrices Mz. For the auxiliary algebra $ we take the smallest
non-trivial matrix algebra ^ — M2' We will label our states with a parameter
0e[O, π). In order to describe the three defining objects (Eθ, ρθ9 eθ) we first introduce
a linear map VΘ:<E2 -+ C 3 ® C 2 . Let | + ^> and | - 1 >, |0>, 11 > denote orthonormal
bases of C 2 and <C3 respectively. Later on we will identify these basis vectors with
the eigenvectors of the z-component of spin. Vθ is now explicitly given as:

- ± > - s i n 0 | O , | > , Vθ\ - £ > = sin0|O, - ± > - c o s 0 | - 1,±>.

Considering Vθ as a 6 x 2 matrix we now define:

(1) E a :
(2) /9θ:

(3) eθ =

It is well-known that a map of the form ΛTi—•£ VfXVt is completely positive [62].
i

It remains to be checked that the relations (2.2) are satisfied. As Vθ is an isometry,
JBe(tj,3®tj,2)=V*Ve = tj,2 and pθ(Έθ(i®B)) = pθ(B) follows from Tr C 3

VΘV* = tjf2. ωθ is then the state on {Jί^π constructed as in formula (2.1). We
will see later on that for cos θ = y/ΐβ, ωθ coincides with the ground state of the
AKLT model. Δ

For C*-algebras the above argument that complete positivity of E implies
positivity of ω is independent of si or £8 being finite-dimensional. If we drop the
restrictions on ^ , (2.1) yields every translation invariant state ω on siπ. To see
this it suffices to take 0b\ = siκ, and Έ(A(x)(Ax ® An)) = A®Aι®-Άn, and to
extend this map by linearity and continuity to all of $i®0&. The state p is then
taken as the restriction of the given translation invariant state ω on siΈ to the
subalgebra Λ/N. It is evident that with these definitions the original state ω satisfies
(2.1). Hence it is mainly the finite dimension of J^, which gives a non-trivial content
to Definition 2.4.

There is also a version of our construction for W*-algebras si: the tensor
product in the definition of the n-step algebra si{i+Uι+n^ is then taken as the
W*-tensor product, and the algebra siΈ is the C*-inductive limit of these algebras.
Since the category of normal completely positive maps between VF*-algebras is
closed under composition and tensor products, the above argument also shows
that provided E is normal and completely positive (and if $ is also allowed to be
an infinite-dimensional W*-algebra, provided also p is a normal state), then formula
2.1 defines a locally normal state on siz.

It is useful to note that the objects generating a C*-finitely correlated state ω
can be chosen in the standard form described in the following lemma. We shall
use this form whenever convenient.
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2.5 Lemma. Any C*-finitely correlated state ω is also generated by some Έ,ρ,e
such that e = t is the identity of the algebra &, and p is a faithful state on (%.
Moreover, 0& may he taken either to he minimal in the sense that no proper subalgebra
contains 1 and is invariant under all ΈA, or may be taken as a full matrix algebra

Proof If O^B^λe for some Be@, and O^Aesf, then 0
|| A || E(H <g> B) <, λ || A || E ( l <g> e) = λ \\ A || e. Hence the subalgebra J = eΛe generated
by elements dominated by e is a common invariant subspace of all operators ΈA.
Hence the restriction of E to si ® & also generates ω, and we may suppose that
e is invertible in the algebra U generating ω. Clearly, ω is also generated from
E , p , l # with Έ(A®B) = e-1/2Έ(A®e1/2Be1/2)e-1/2, and p(B) = p(e1/2Be1/2).
Hence we may take e = 1.

Suppose that p is not strictly positive, i.e. s: = supp(p) < 1. Consider the operator
P:B\-+sBs on &. Then since the functionals p' = p°ΈAί° -ΈAneβ* are all
dominated by p, we have p'°P = p'. Hence ω is also represented by U = sBs c J*
with i% = Pi@ = s, p = p{i%)~1'p\$, and ΈA = P°Έa\<%. The statement about
minimality is obvious. Since $ = ®Jtka is a finite direct sum of matrix algebras,

α

we may pick a representation on Cfc = @ Ckα. Let P α be the projection onto the
α

αth summand and Ψ\Jίk^^:Bv^YjP(lBPcι. Then E: = ψoΈ,°(\ά^®Ψ):<tf®Jίk^>
a

Jtk generates the same state. •

Example 2. We now compute the minimal representation of the states ωθ defined
in Example 1.

(1) The case cos θ sin θ φ 0. One can check that already Έθ(Jί3 ® ij?2) = Ji2 and
therefore Jί2 is a minimal $ for the state ωθ. And furthermore, as ρθ(B) = | T r β,
pθ is a faithful state on Ji2.

(2) T/κ? case θ = 0. We have

Hence E o ( ^ 3 ® i ^ 2 ) consists now of the diagonal matrices of Jt2 and it easy to
see that this is already the minimal algebra. Again ρ0 = \ Tr is faithful on this
algebra.

(3) The case θ = π/2. Έπ/2(A®B) = (0\A\0}σzBσz, where σz is the usual Pauli
matrix. Obviously the minimal algebra is (C. Therefore E π / 2 restricted to the
minimal algebra is now the state AeJί3\-+(0\A\0y. It follows that ω π / 2 is a
product state on the chain. Δ

The following proposition lists some basic properties of the class of C* -finitely
correlated states. For (3) and (4) of Proposition 2.6 we use the identification of
( j/® p ) z and J2/Z mentioned in the beginning of this section.
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2.6 Proposition

(1) Symmetric product states are in !F.
(2) !F is convex.
(3) For peN, ωe«f is also C*-finitely correlated as a state on (s/Θp)z.
(4) Conversely, let ω be a p-periodic state on stfΈ, which is C*-finitely correlated as

a state on (<srf®p)z- Let co = - £ ω°ocr be the average of p consecutive translates
pr=o

of ω. Then ώ e # \

(5) $F is *weakly dense in the set ZΓ of translation invariant states on srfΈ.

Proof (1) Let ω(An ® An+J = Π η(Ai). Then ω is generated by @ = C, p(λ) = λ,

e=l,andΈ{A®λ) = λη(A).

(2) Let ω = Σιλiωi with λt>0 and ωt generated by ( $ h ρh Έh βf). Set J* = ©$i9

i i

p = (Qχipb e = @eh and E = © E f . Since E maps each direct summand of &
i i i

into itself, we also have ΈAi °- '°ΈAn = @ E U l ° " ° E i Λ . Evaluating this at e
i

and applying p we conclude that ω is generated by (E, p, e).

(3) If ω as a state on srfπ is generated by (E,p, e\ then as a state on ( J / ® P ) Z it is
generated by (Έ(p\p,e)9 where E ( p ) is the pth iterate of E.
(4) Suppose now that the /7-periodic state ω is generated by pe&*9 e = ie&, and

p- 1

@. We set J = ®srf®r® J , with the convention J / ® ° ® J* =

We denote the r th component of Be J by 5 r . For Λ E J / let

β ί ^ ^ ^ ί ^ ? 5 ' - ^ if r = 0

(A®Br_u if l ^ r ^ p - 1 .

The state p e ϋ * is defined by

Note that by the invariance property of E the summand with r = 0 is just p(B0).
One checks that indeed p°Έt = p, and E(l) = 1, so p and E define a translation
invariant state on stfΈ. It is clear that the pth iterate of E maps each of the summands
of J? into itself. In fact:

and

Evaluating this on the state βrι—>p(Έ(i^ip~r)®Br)) gives the ω-expectation of
t®{p~r)®A1 ® •••Xwp® l ® r , i.e. the expectation of At ®-Άnp in ω°αr. The result
follows by summing over r.
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(5) Let ω be a translation invariant state. Consider the product state d on
formed from the p-site restriction of ω. Let ωp = d. Then by (1) and (4)
The states ω and d ° αΓ coincide on observables A = Ai+x ® At+„ for n < p, unless
the interval i + l,...i + n contains one of the "breakpoints" wp + r. Thus

We close this section with an alternative construction for C*-finitely correlated
states. It is a generalization of the "valence bond solid" states of [17-21]. For
constructing a state on the chain $#>% according to this scheme, we need two
auxiliary finite-dimensional C*-algebras & and J*. Thestate is determined by a
completely positive map Έ.stf -*0$®@l, and a state Φ : ^ ® ^->(C, which have to
satisfy the compatibility conditions

l Λ and (Φ®id#)(iM®F(4J) = i%. (2.3)

On any n consecutive sites a state ω is then defined by

Again, the compatibility conditions ensure that the hierarchy of functionals thus
defined for different n determines a translation invariant state on J / Z . Any state,
which can be obtained in this way will be called a valence bond state. The
construction can be visualized as follows:

JF I* IF IF

C ® C ® C ® ® C Ξ(C

Fig. 1. The VBS construction

The connection to the class of C*-fϊnitely correlated states is made in the following
proposition.

2.7 Proposition. Every C*-finitely correlated state is a valence bond state and
conversely. Moreover, in the representation of a valence bond state we may take
J ^ J» ~ j / k 9 and Φ to be a pure state with faithful restriction to either factor.

Proof. Given a valence bond state, we define

Έ(A ®B) = (\ά® ® Φ){Έ(A) ® B) and p(B) = Φ(i M ® B). (2.4)

Then the compatibility conditions for ¥ and Φ become those for E and p, and
one checks by induction on n, that ω is generated by E,p. The converse and
remaining statements will be shown using dilation theory in Sect. 4. •
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Example 3. We will now give the valence bond description of ωθ, i.e. we will specify
the maps Fθ and Φθ appearing in Fig. 1. We take & = i$ — Jl2. In order to define
Ψθ we introduce a linear map Wθ:C

3->(C2(χ)<C2. With the same notation for the
basis vectors:

The maps F θ and Φθ are given by:

Fθ(A)=WβAW* Φ$(

where φ is the singlet vector ^/T/21^, — ̂ > — y/ϊ/2\ —1,|>. We can now verify
the compatibility conditions (2.3) and thus obtain a valence bond state. We claim
that this state coincides with ωβ. For this to be true the formulae (2.4) should
reproduce the Έθ and pθ that were used to define ωθ as a C*-finitely correlated
state. And indeed, this follows from

Vθ = (W*®tj,2)(ijt2<g)φ)9 ±Tr£=Φ θ (ΐ^ 2 (x)£), BeJi2.

The reader can check that we have reproduced here the construction that appears
in the proof of Proposition 2.7 at the end of Sect. 4. The anti-unitary operator
χh-»χin that proof has to be taken in our case: |̂ >i—> — | — £>,| ~ i > ι - H | > . In the
case of the AKLT model (where cos θ = >/2/3), F equals | x the embedding of <C3

as state space of a spin 1 into the state space <D2(g)<E,2 of two spin 1/2's. Δ

In spite of the equivalence obtained in Proposition 2.7 both the C*-finitely
correlated and valence bond representation have their own merits. For discussing
states on the chain we found the formalism involving the map E far more useful.
For example, the computation of correlation functions and their cluster properties,
for which the valence bond picture suggests a rather involved diagrammatic
technique [5], is reduced to determining the spectrum of a finite matrix. On the
other hand, the main virtue of the valence bond structure is that it generalizes
immediately to graphs other than the one-dimensional chain: an algebra ^ is
then associated to any vertex "Γ of the graph, and an algebra J ^ to each directed
edge. The two basic kinds of completely positive maps are then a map 1F£ taking
each s/i into the tensor product of the outgoing edge algebras, and "contractions"

. With each set A of vertices one associates the "observable algebra"
a n d the "outgoing edge algebra" ΛdΛ = (X) ^ i y Clearly, every

ieΛ isΛJφΛ

state on &dΛ is transformed via the Ft and the contractions into a state on s/Λ.
In order to get an explicit definition of a state on the infinite system out of this
scheme one either has to show the existence of a unique limit state, independent
of the choice of states for &dΛ (which serve as "boundary conditions"), or one has
to find and verify appropriate compatibility conditions for these states. Both
problems appear to be highly nontrivial. Some results about a two-dimensional
example have been obtained in [46]. Some general answers can be given in the
case of the Bethe lattice (Cayley tree) [32].
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3. Ergodic Decompositions

It is known that the extreme points of the set ZΓ of translation invariant states,
called "ergodic" states, are characterized by the decay of their correlation functions.
For a C*-fϊnitely correlated state the correlation functions can be given explicitly,
and we shall now utilize this to obtain the ergodic decomposition of any C*-fϊnitely
correlated state. The behavior of correlation functions of any finitely correlated
state ω is determined by the map E: = E^: ̂ - > J* through the equation

ω ί ^ ® l ^ ^ ® A Λ + J = (poiEAJo(]E)*-i(EAn+m(lΛ)). (3.1)

m - l

Thus determining the m-dependence of all these functions reduces to a standard
task from linear algebra, namely computing all powers of the matrix E, e.g. by
diagonalization.

3.1 Proposition. Let ω be a C*-finitely correlated state on srfπ. Then the following
are equivalent:

(1) ω is extremal in the convex set 3F of C*-finitely correlated states.
(2) ω is ergodic, i.e. extremal in the convex set ?Γ of translation invariant states.
(3) ω is the C*-finitely correlated state generated by some (E, p, e) such that e = 1
is the only eigenvector of E with eigenvalue one.

Proof. (2)=>(1) is trivial.
(3)=>(2): Consider the Jordan decomposition of E, i.e. Έ = Σ(λPλ + Rλ), where

x
the sum runs over all eigenvalues, PλPλ> = δλλ Pλy and Rλ is nilpotent with
pλRλ, = Rλ,pλ = δλλ,Rλ. Since || E || ^ 1 we have Rλ = 0 for λ with \λ\ = 1. (Otherwise
there would be a vector Be $ such that RλB Φ 0 and R2

λB = 0, making the sequence
Έn(B) = λ"B + nλn~1RλB unbounded.) Therefore we may find for every ε > 0 convex
combination coefficients μπ,tteN, such that \\Pί-ΣμnΈ

n\\ f^ε. Since by
n

assumption P x is one-dimensional, this implies the clustering condition
[16,4.3.10,4.3.11] uniformly for all correlation functions. Hence ω is ergodic.
(1)=>(3): According to Lemma 2.5 we can choose a representation of ω with e = i.
Consider the cone Γ = {ee&\e^0,Έe = e}. Then for each eeΓ let ωe be the
C*-finitely correlated state generated by p, E, e. We claim that e is extremal in Γ9

iff there is no e'eΓ such that supp e' < supp e. In fact, if μe^e' φθ and e' not
proportional to e, then also e > e" = e — txef for all α ^ 0, and by choosing the
largest α consistent with e" ̂  0, we obtain a non-zero e"eΓ, which is also dominated
by e, and satisfies supp e" < supp e. Conversely, supp e' < supp e implies e' ^ μe for
some μ and e' not proportional to e.

If ω = ωt is extremal, all states ωe are equal as convex components of ω. Hence
by taking eeΓ extremal, we may choose a representation of ω for which the cone
Γ reduces to the single ray R + l , i.e. 1 is the unique eigenvector with eigenvalue
one. Since the adjoint of E has the same spectrum, this also implies that p is the
unique left eigenvector of E. •

If 1 is a simple eigenvalue of E, then the same is true for the adjoint of E.
Hence in (3) we could have demanded alternatively that up to a scalar p is the
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only element of J 1 * with p°Έ = p. Therefore, in the ergodic case p is determined
by E, i.e. we need fewer independent data to characterize ω.

3.2 Corollary. $F is a face in ZΓ, i.e. in any convex combination ω = £ k^{ with
i

Xt>0, (ύiE^, and ωe^, we must have α^eJ^ for all i. Moreover, all ω, can be
generated from the same E with different p,e. Every C*-finitely correlated state has
a unique decomposition of this kind, such that each ωt is also ergodic.

Proof. It is clear from the proof of Proposition 3.1 that we may decompose ω
into states ωe generated by the same Jf,E, which are extremal in J% and hence
also extremal in &. Since ZΓ is a simplex [16,4,3,11], such a decomposition of ω
is unique. Thus the ωe span the face in &" generated by ω. •

The condition that the eigenvalue 1 of E is non-degenerate, does not exclude
oscillatory behavior of the correlation functions, which would result from further
eigenvalues of modulus 1. In the Perron-Frobenius theory of Classical Markov
chains the set of such eigenvalues, called the "peripheral spectrum" of E, is shown
to be a group under multiplication. For finite-dimensional J*, this implies that all
such eigenvalues are roots of unity, so that almost periodic behavior of correlation
functions is excluded. The proposition below carries this result over to the quantum
Case. Examples of C*-fϊnitely correlated states, for which E has roots of unity as
eigenvalues, are provided by the construction in the proof of Proposition 2.6.(4):
in that^case, the spectra of E:i?-> 0& and E: 0&-^0& for the completely positive
maps E and E generating ώ and ω, respectively, are related by

spec(E) = {λeCμ'especflE)}.

In particular, the p t h roots of unity are in the spectrum of E. The converse of this
construction can be described as the breaking of translational symmetry, or the
detection of Neel order in the state ω. We are then given a C*-fϊnitely correlated
state and ask whether this state can be represented as a convex combination of
p-periodic states. The following proposition shows how this symmetry breaking
can be detected from the C*-finitely correlated representation of a state. We shall
call a p-periodic state C*-fϊnitely correlated, if it is C*-fϊnitely correlated as a state
on ®

3.3 Proposition. Let ω be an ergodic C*-finitely correlated state, and choose ω to
be generated by {Έ,p,e) such that e = t@ is the only fixed point ofΈ, and & is
generated as a C*-algebra by {ΈAl

o-oΈAn(i)}. Then p is faithful, and there is a
p e N such that

Aespec(E)
2m

"P

Each of these eigenvalues is simple, and the corresponding eigenvector can be taken
P

to be a unitary in $. Moreover, 08 is a direct sum 08 = © J>, and Έ(s/ ® 08r) cz08r_i

with 080 = 08p. ω has a unique representation as the average of p p-periodic states,
which are translates of each other. These components are again C*-finitely correlated.

Proof. It is clear from 3.1 (3) that we can choose a representation as described.
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Since 1 is a non-degenerate eigenvalue of E, there is a unique state p with p°E = p.
Let 5 be the support projection of p. Then {xe^\xs =J)} is an jnvariant subspace
of E, since xs = 0=>p(E(x*x)) = ρ{x*x) = 0=>sE(x)*E(x)s ^ sE(x*x)s = 0. Hence
E must have an invariant vector e with es = 0, which contradicts the uniqueness
of i , unless s = i and p is faithful.

Now consider the positive semidefinite sesquilinear map

It is easy to see [36,23] that j?(x,x) = 0 implies j?(y,x) = 0 for all yeJ*. Now let
ue0$ be an eigenvector of E, with Eu = eiau. Then p(β(u, u)) = p(E(u*w) — u*w) = 0
by invariance of p. Since p is faithful /?(«, u) = 0, and hence

Έ(xu) = eiaΈ(x)u for all xeJ*.

Also, w*w is invariant under E, and hence a multiple of the identity, so that we
can take u to be unitary. If Έv = eiyv9 then the above equation gives Έ(uv) = eι{a+y)uv.
Hence ut> is again an eigenvector of E. Since Ew* = e~iιxu* the peripheral spectrum
is a (necessarily finite) group under multiplication, i.e. it consists of the pth roots
of unity for some peN. It was already argued in the proof of Proposition 3.1. that
peripheral eigenvalues have diagonal Jordan blocks. Moreover, if uuu2 are
eigenvectors for the same eia, u\u2 is invariant under E, hence it is a multiple of
i , and ux and u2 are proportional. This proves that each peripheral eigenvalue is
simple. .

Let u be the eigenvector with eigenvalue λ = expj — I. Then since up = i the

spectral resolution of u is of the form u = ]Γ λrPr with P*Pr> = δrr.Pr and £ P r = 1.
r = l ^ r

The relation E(XMΓ) = Γ ίE(φ r then becomes Έ(xPr) = Έ(x)Pr^ι. Now let
and let O^B^eJU and O ^ ^ E J / . Then Έ(A®Br)^\\A\\Έ(Br) =

r ) = M | | P r _ 1 E ( 5 r ) P r _ 1 ^ M | | | |5 r | |P Γ _ 1 . Thus E ί ^ O S J e ^ - ! ,
and this result extends by linearity and continuity to all ois/%Λr. It follows that
the algebra J = 0 ^ r is invariant under all operators ΈAi and contains 1, so

that by our minimality assumption & = &. Clearly, the p th iterate of
Έ(p):s/p<88->£ takes each of the subalgebras Λf into itself. The restriction of
E p to J*r therefore defines a finitely correlated state on (s/®p)z. It is easy to check
that the resulting p states are translates of each other, and that their average is
ω. The uniqueness of this decomposition follows from the uniqueness of ergodic
decompositions, applied to the chain ®

Combining Corollary 3.2 and Proposition 3.3 we can summarize the results of
this section as follows:

3.4 Corollary. Every C*-finitely correlated state has a unique decomposition as a
finite convex combination of extremal periodic states. These periodic components are
again C*-finitely correlated.

It should be noted that unlike «̂~, or the set of p-periodic states with fixed p,
the set of all periodic states is not *weakly compact (it is dense in the whole state
space), so it is not a priori clear that it has an abundance of extreme points. It is
Proposition 3.3, which provides a criterion for the impossibility of decomposing
a state into other states of larger period. Together with Proposition 2.6(5) we have
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therefore shown that the *weakly closed convex hull of the extremal periodic states
is dense in 9~. We shall later study a set of C*-finitely correlated states, which are
even pure as states on stfΈ.

Example 4. We close this section by examining the ergodic properties of the states
ωθ. Again we discern three cases, and we immediately use the minimal repre-
sentations obtained at the end of Sect. 2 in Example 2.

(1) cos 0 sin 0 7^0. The Pauli matrices are a convenient basis to diagonalize Έθ. It
turns out that the eigenvalues and eigenvectors are given by:

E θ ( i ) = l ,

Έθ(σz) = (sin2 θ - cos2 0)σz,

Eβ(σ* ± σy) = - sin2 θ(σx ± σy).

Clearly there is only one eigenvalue of modulus one and so the state ω θ is ergodic.
Remark that for the AKLT model the three non-trivial eigenvalues E coincide
and are equal to — f. In view of (3.1) the correlations in AKLT state behave as

(-ir
(2) 0 = 0. The minimal & is now two-dimensional. There are two eigenvalues of
modulus 1:1 corresponding to the eigenvector 1 and — 1 corresponding to the
eigenvector σz. The state is ergodic but decomposes into two 2-periodic product
states. These states are the ground states of the Ising antiferromagnet.

(3) θ = π/2. Because here the minimal & is one-dimensional, the state is a
translation invariant product state and hence ergodic. It is even a pure state, indeed
it is a product of pure states AEjf3\-+(Q\A\Q}. Δ

4. Dilation Theory and Purely Generated States

The aim of this section is to reduce general C*-finitely correlated states to a
particularly simple form, which will then be studied in more detail in the following
sections. As a motivation, consider a C*-finitely correlated state generated by
(E,p,l^), and suppose that E can be decomposed into a finite sum E = ]Γ Έx

xeX

such that each Έx.srf®@l-+@l is completely positive. Then with ΈxA(B) =
ΈX(A ® B) we can define for all i < jeZ, and xh...,XjeX a. positive linear functional
ωijίχh > xjl o n <̂ z> s u c h that for n, m > 0,

= po(ΈAiί_no...oEAi_i)o(EXi^o...oE^

Clearly, the sum of these functional over all choices of xi9...9Xj is ω. The
normalization factors of these functionals define a cylinder measure Ψ on the set
Xz of "paths" of a process over discrete "time" Έ with state space X, i.e. with

Z(xh...,Xj) = {ξεXz\ξt = xt for t = U. . j }

we have

ωUj[xh..., xj\ (1) = Ψ{Z(xh..., x,.)).



460 M. Fannes, B. Nachtergaele and R. F. Werner

By increasing the interval {i,...J} we obtain finer and finer decompositions of
the state ω. Using the theory of liftings [42] one can show that one can assign to
each path ξeXz a state Ω\_ξ\ on siΈ, such that ξ\-^Ω[ξ](A) is cylinder measurable
for each Aesiπ, and

ωiJlxi9...9xj](A)= ί
ξeZ(xif...,Xj)

In particular, ω = J
We can view the above construction as the introduction of a new set of

"observables" to the system: in the refined description we can compute probabilities
for the variables of the stochastic process (£f) iez in addition to those of the original
chain. A more straightforward way to introduce this refinement is to simply enlarge
the one-site algebra si, i.e. to use instead of si the algebra si: = si® ^(X). A
C*-finitely correlated state ώ on the chain siΈ is then generated by the completely
positive map

Έ:si®@-^@:((A®f)®B)h+Σ f(x)Έx(A®B\
xeX

and the same state p. Since sίΈ = (sJ® <g(X))z = st%<g> ^{X)π = siπ®^(XΈ\ the
restriction of ώ to %>(XZ) defines a probability measure on Xz, which is just the
IP defined above. The integral decomposition of ω now simply becomes the direct
integral decomposition of a state on a C*-algebra of the form si ®%>(X) for a
compact space X.

We shall now study the relation between decompositions of E and possible
enlargements of the one-site algebra more systematically. We begin by defining
those E for which no decomposition E = £ E x is possible.

xεX

4.1 Definition. A completely positive map is called pure, if it cannot be written as
the sum of two completely positive maps, which are not proportional to itself A
C*-finitely correlated state ω on siΈ is called purely generated, if it is generated
by a pure map Έ\

Pure states in the usual sense are pure maps from an algebra into the
one-dimensional algebra C in the sense of this definition. We note that, unlike for
states, the pure unit preserving completely positive maps are in general only a
small subclass of the extremal unit preserving completely positive maps.

4.2 Proposition. Let si be a finite-dimensional C*-algebra, let ω be the state
generated by Έ:si ®&-+&, and p, and assume that p and the one-site restriction
of ω are faithful on si.

(1) Then ω is purely generated if and only if there are d,/ceN such that up to
isomorphisms si — Jίd, $ = Jlk, and E(^4®B) = V*(A®B)V for some isometry

(2) // 8t = J(ki then there is a faithful representation π:sf-tSίffl) on a
finite-dimensional Hilbert space J f, and a state ώ on the chain ^(^)z generated
by a pure map Έ:Λ(Jtf)®J(k^Jίk such that E(l<g>B) = E ( l ® B) for all BJί
and
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Proof. Each finite-dimensional C*-algebra is the direct sum of matrix algebras. A
completely positive map between direct sums 71: ©««/,•-*©^ has a natural

i j

decomposition into completely positive summands T{j. Hence such a map can
only be pure if it is supported by a single summand s/h and maps into a single
summand St^. By the non-degeneracy condition we conclude that both si and 0b
must be irreducible matrix algebras if E is pure. In particular, we may suppose
in both parts of the proposition that ^ = Jίk.

Consider now the Stinespring dilation [59] of E. This yields a representation
π\st%βi'+Λ{SίP) on a Hubert space if, and an isometry F:<C f c -*^ such that
Έ(X) = V*π(X)V for all Xestf®0$. Since π ( i ^ ® 0$) is a copy of the k x /c-matrices
in J ^ ) , we can split i f = Jf<g)C\ such that π ( l ^ ® B ) = l j r ® 5 . Since
π(ja/ ® H#) commutes with t ^ ® J*(Cfc), it is clear that we also have a representation
π:s/-+a(Jf) with πO4®l^) = π(v4)®l.

It is a basic property of the Stinespring dilation that completely positive
decompositions E = E X + E 2 are in one-to-one correspondence to the positive
elements in the commutant of π, i.e. to elements of the form E1®i with
[£, φ / ) ] = {0}. The correspondence is given by Έ^A ® B) = V*(E ® l)(π(A)® B)V.
Hence E is pure iff the representation π is irreducible. This is the case iff we can
identify ffl with C d and π with the identity representation. This proves (1). The
claim (2) follows by straightforward computation with the objects obtained from the
dilation and the C*-finitely correlated state ώ they generate on the chain

Note that by Lemma 2.5 the condition 0& = Jίk is not a restriction on the state
ω. The "additional variables" xeX discussed in the beginning of this section now
correspond to the commutant of π(s/) in &(Jίf). This algebra is non-abelian, and
it describes all possible extensions by abelian algebras ^(X) simultaneously. This
is a typical feature of all applications of the Stinespring dilation. It would therefore
be appropriate to call the purely generated state ώ the dilation of ω. Note, however,
that we do not assert the uniqueness of the representation of a C*-finitely correlated
state in terms of (E, p, e\ and that the state ώ depends on these objects as well.
Since π in Proposition 4.2(2) is a faithful homomorphism, we may consider si as
a subalgbra of J^(Jf), so that every C*-finitely correlated state arises from a purely
generated state by restricting to a subalgebra of the one-site algebra. In classical
probability a faithful homomorphism π:(^(Y)^(^(X) implies the existence of a
surjective map π + :X -• Y with πf(x) = f(n^.x). Thus the variables ye Y are functions
on X. Extending this analogy to the non-commutative setting we can interpret
the above proposition by saying that every C*-fϊnitely correlated state is a "local
function" of a purely generated C*-finitely correlated state.

Since proposition 3.1(3) gives a criterion for the ergodicity of ω which depends
only on E, it is clear that the purely generated state ώ associated with ω by this
proposition will be ergodic whenever ω is. Similarly, if translation symmetry is
not broken in ω, i.e. if the peripheral spectrum of E consists only of the simple
eigenvalue 1, the same will be the case for ώ. We therefore arrive to the following
procedure for studying a general C*-finitely correlated state: by applying
Corollary 3.4 we first decompose the state into its unique extremal periodic
components, which are C*-fϊnitely correlated states with the additional property
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that E" converges to Έco(B) = p{B)la exponentially fast. Then, by applying
Proposition 4.2(1) we associate with each component a purely generated state with
the same property. Thus purely generated states with strictly contracting E are
the basic building blocks for all C*-finitely correlated states, and will be studied
in detail in the following two sections.

Using Proposition 4.2 we can now give a simple proof of the remainder of
Proposition 2.7.

Proof of 2.7. It remains to be shown that every C*-finitely correlated state admits
a valence bond representation with the special properties listed in the proposition.
It is evident that it suffices to construct a valence bond representation for the
dilation ώ of the given state. Thus we may assume by Proposition 4.2(1) that
si= Jid = fflfflX 0& = JtkΞΞ Jf(jf), and Έ(A ® B) = V*(A ® B)Vfor some isometry
V: X -• #e ® Jf, and that p is faithful. We can therefore write p(B) = Σ P*< χ*, Bχa >

α

for some orthonormal basis {χα}* = 1 <= X. We ^hall then define the objects in the
valence bond construction as follows: & = &(X) will be the algebra of operators
on the conjugate Hubert space Xy i.e. on a space of the same dimension k as X,
which is connected with X via some anti-unitary operator χ\->χ. The state
Φ.0&® ^ - » C will be pure, and its restriction to J* will be just the faithful state
p. We set

Φ(X) = (φ,Xφy with φ = Σ v P α Z α ® % α e ^ ® ^
a

(Thus 2?ι—>llj® B is just the GNS-representation of (β,ρ) with cyclic vector φ).
The map F is defined in terms of its Stinespring dilation V\tf ® tf -*tf by

Έ(A)=V*AV with (Φ,Vχ®χ'y = (φ®(p~1/2χ'\Vχy.

In order to complete the proof we have to check the compatibility conditions for
¥ and Φ, which ensure that E,Φ define a valence bond state, as well as the two
equations used in the proof of the trivial direction to show that this valence bond
state coincides with ω. One of the latter equations, namely p(B) = Φ ( l j ® B) has
already been noted above. We check equation Έ(A ® B) = (\ά@ ® Φ)(Ψ(A) ® B) by
taking matrix elements, using a basis {φμ}

d

μ=1 <= f̂:

= Σ <vLΦμ®Xa><Φμ®XaΛA®B)Ψv®Xβ}<Φv®Xβ,Vχf>
Λ,β,μ,v

= < Vχ,(A®B)Vχ'} = <χ,Έ(A®B)χ'}.

This immediately implies the compatibility condition for 1 #. To demonstrate the



Finitely Correlated States on Quantum Spin Chains 463

other condition we proceed similarly:

= Σ PAVχx®χ,ψμ><,ψμ,l®ψv>(Ψμ,Vχ*®χ'>

by the compatibility condition for E and p. •

It is clear from this proof that for purely generated states the completely positive
map F will also be pure. The scheme for defining valence bond states can then
be transformed into a scheme for maps between Hubert spaces, with F replaced
by V, Φ replaced by the map λe<E\-+λ-φeJt'®JΓ9 and all arrows are reversed.

®JΓ ® x
01 01 01 01

χL ® φ ® φ ® ® ® XR

T

Fig. 2. Definition of the map Γn:Jf (x) X^tf®n

The map Γ π : J f ® J Γ ^ ^ f ®n depicted in this diagram will play an important
part in the next two sections. (Compare the algebraic definition of Γn in Eq. (5.5)).
In the literature [7,18,17,19-21] valence bond states have usually been discussed
in terms of the vectors Γn(χL®χR). This approach has the disadvantage that it
yields a state on the infinite chain only in the limit n-»oo. This limit need not
exist, i.e. there may be different accumulation points of the sequence of n-particle
states, depending on the choice of χL „, and χRn. In contrast, we can work with
an explicit expression for (the n-site restriction) of the state ω from the beginning,
and even in the non-ergodic situation, we have an explicit parametrization of the
translation invariant limit points by the 1-eigenspace of E.

5. Ground State Property of Purely Generated States

In this section we shall begin a more detailed study of the states, which were
identified as the basic building blocks for all C*-finitely correlated states in Sect. 4,
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namely the purely generated states which cannot be further decomposed into
periodic states. By Proposition 4.2(1) we can therefore take si = Md and @ = J(k

as the algebras of d x d- and k x fc-matrices, and take them to be represented on
Hubert spaces Jf, Jf of dimensions d, /c, respectively. Moreover, the pure map
E : , * / ® ^ - ^ is of the form Έ{A®B)=V*{A®B)V for some isometry
V:Jf-> J f ®Jf . The property that translation symmetry is not broken, or,
equivalently, that E has trivial peripheral spectrum, can be expressed as

lim Έn(B) = E°°(£) = Ίr(pB)t% (5.1)
π-^oo

for all Be&, where p is the non-singular density matrix invariant under E. (Here we
abuse notation, writing ρ(B) = Tv(pB).) Note that E, and hence p are both
determined by V9 so the state ω is completely specified by this isometry.

Before entering into the study of this manifold of states, it may be useful to give
a rough estimate of its dimension. For fixed d, k we have to study the set of
isometries K:C f c->C d® Cfe. Starting from the given isometry Vo we get all others
in the form V=UV0U' with unitaries l / e ^ C ' O C * ) , and U'eJ(k. The
transformation V = (Ί®U'*)VΌU' corresponds to a change of basis in <C\ hence
does not change ω. Thus we only have to consider V=UV0. Then U1V0 = U2V0

iff U\ U2 Vo = Vθ9 i.e. if the projection Vo V* reduces U* U2, and I/* U2 is determined
by an arbitrary unitary operator in the complement of V0(Ck. Since the unitary
group in (Cd® Cfe is a manifold of dimension d2k2, and the unitaries U yielding
the same isometry are parametrized by the unitary group on a (dk — /c)-dimensional
space, we find a manifold of isometries of dimension k2(2d — 1). From this we have
to subtract one, since isometries differing by a phase yield the same E. For example,
the state of [5], which is also studied in Sect. 7.4 below (d = 3, k = 2), is therefore
embedded into a 4-5 — 1 = 19-dimensional manifold.

It will be convenient to choose bases {Φμ\d

μ=γ^^ and { χ α } ί ί = i c ^ This
determines matrices v(μ)e& such that

y ( 5 2 )

In a more basis-free spirit we could also define a linear map v:3tf?-+$ by
(X>v(Ψ)χry = < ^ % > ( A ® Z / ) J s o t n a t ; v(μ) = ϋ(φμ). However, some of the equations
become more transparent in a fixed basis. The following are obtained by considering
the general matrix element <

ΈA(B) = Έ(A®B) = Σ< Ψμ, Λφv > v(μ)Bv(v)*, (5.3.a)

Σ v(μ)v(μ)* = E ( l ® 1) = 1, (5.3.b)
μ

Σv(μ)*pv(μ) = p, (5.3.C)

(5.3.d)
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The advantage of writing V and E in this form is that these formulas are easily
generalized to longer segments of the chain. We merely have to iterate (5.3a). This
gives

υ(μ1)'..υ(μn)BφH)*...υ(v1)*. (5.4)

This formula has exactly the same structure as (5.3a), with {ψμ}
d

μ=1 replaced by
the corresponding product basis {φμu...φn = Ψμι® - Φμn} <= 3^®", and v(μl9..., μn) =

Using this notation, we can give a more useful expression for the map
Γn: JΓ ® 3t -• J f ®" described at the end of Sect. 4. For the purposes of this section
it will be better to use the natural identification of JΓ ® X with Mk = &. Then
Γn becomes a map Γn:^-^Jf ®", with

Γn(B)= Σ Ψμι®'~ΨμnTr(Bv(μn)*-.v(μin (5.5)
μi,. . ,μ n

We shall only use this definition in the sequel and leave it to the reader to check
that this indeed coincides with the map introduced in Sect. 4. Note that Eq. (5.5)
can be written simply as the corresponding expression for n = 1, when μx is replaced
by the tuple (μ l 5 . . . , μn). Therefore it suffices in the proof of some algebraic relations
involving Γn to take n = 1. In Sect. 4 the range of Γn was described as the set of
valence bond vectors associated with the state ω. We shall denote this range by
c§n = Γn(β) a j f ®", and the corresponding orthogonal projection by Gn.

This suggests that the n-step restriction of ω will be supported by &„. Here we
prove a more detailed result, giving an alternative formula for ω in terms of Γn,
and a fixed density matrix W^ on ^ , where @l is considered as Hubert space with
the inner product

<A,B)p: = Ύr(pA*B). (5.6)

Since W^ is given by an invertible linear transformation, the formula below also
shows that the support of the n-step restriction is, in fact, equal to Gn. The Lemma
also gives a formula for matrix elements between valence bond states, which will
be useful below.

5.1 Lemma

(1) For all Aestf®\

ω(A) = Tr(ΓnWnΓn*A\ (5.7)

where W^\0&-+0!i is the density matrix on ( # , < v > p ) wίίft Wo0(B) = pBp.

(2) For all Aestf®\ and B,Ce@,

Σ ^ (5.8)
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Proof. We need to prove only the case n = 1, from which the general case follows
by substituting n-tuples for μ, v. From (5.3) we get

ω(A) = Σ < Φμ, Λφv > Tr {pv{μ)v{v)*)

μ,v,<x,β

= Σ < Γ i ( B β φ β

where Baβ = \y/pχa}(χβ\. Hence (5.7) holds with W^ determined from

<X,β

= Ίr(pC*/p^pCp) = <C, pCp}β.

This proves (1). For part (2) we write out the traces in the definition of Γ with
respect to the basis {χα}:

= Σ <Φμ,A
ocβ,μv

<*β

For large n scalar products involving valence bond vectors can be evaluated
by using the strict contraction property (5.1). The following lemma gives two basic
estimates of this kind.

5.2 Lemma. Let λ be such that \λi\<λ<ί for all eigenvalues λt of E different
from 1. Then there is a constant c such that for all n:

Moreover, we have the following estimates:

(1) For allB,Ce@:

\(Γn(B\Γn(C)}-(B,Cyp\^a(n)\\B\\p'\\C\\p. (5.9)

(2) For Aejtf®mJ9reN, and B9

(5.10)

Proof (1) Applying (5.8) with v4 = l w e get

Replacing E" by E 0 0 in the last expression we obtain
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The difference is less than

where at the last inequality we have used a special basis {χa} with p = £ Ajχα><χα

to obtain α

(2) Again by 5.8 we have

Writing the product of the three E-operators as

E ^ E ^ E 0 0 + E ' E ^ E 1 " - E 0 0 ) + (E^ - E 0 0 )E^ 1 ) E 0 0 ,

we obtain the leading term

and two remainder terms, which are estimated exactly as in (1). •

As a consequence of Lemma 5.2(1), the maps Γn are injective for all sufficiently
large n. However, the bound given does not exclude that this property holds
sporadically for some small n, but fails for some larger n' before becoming valid
universally. The following lemma excludes this possibility by showing a quantity
to be monotone, which vanishes iff Γn is not injective.

5.3 Lemma. The quantity

α_(n) = infspec(Γw*Γn): = inf — - — r — > \—a{ή)

|( 2 _\ p

is non-decreasing in n.

Proof. Since (|| Γn(B) \\2 - \\B\\2

p)^ - a(n) \\B\\2

p9it is clear that α_(n) ^ 1 - Φ ) The
monotonicity of α_ follows from the estimate

IIΛ, + 1(2*)| | 2= Σ X \Ίr((Bv(μn+ι)*)v(μn)*. υ(μi)*)\2

βn+i μι,...,μn
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= a-(n)Tτ(pΈ(B*B)) = a.(n)Ίτ(pB*Bl

i.e. α_(n + 1) ̂  a.(n). •

5.4 Definition. The smallest / e N such that />: J*-> J f Θ / has rank k2 is called the
interaction length «f0 of the purely generated state ω. A positive operator hes/®*
is called an interaction exposing ω, if S > / 0 , and the kernel of h coincides with
^t = Γf(@i). The Hamίltonian of the system is then the formal expression

where αf(/ι)6j/(. . + 1 i + ^x\ is the ith translate ofh.

The reason for this terminology is that ω(h) represents the energy density of
the Hamiltonian. By Lemma 5.1 the /-step density matrix of ω has support in <&^
so ω(h) = 0, realizes the smallest possible energy density, and ω is a ground state
in this sense. This is analogous to a state on a C*-algebra being contained in the
set {φ\φ(H) = 0} for some positive element i/, which is usually called the face
"exposed" by H. The "typical" interaction length of purely generated states can
be obtained by a simple counting of dimensions: in the space of k2 x dw-matrices
the matrices of maximal rank form an open set. Therefore, we expect Γn to be
non-singular as soon as k2 ̂  dn, i.e. we expect ί0 to be the least integer with

It is clear that if h exposes ω, the ω-expectations of the "finite size Hamiltonians"

m-ί

„+,„}= Σ α » + i W e j / { n + 1 n+m] (5.11)
i = 0

for m>*f also vanish. The kernel of H<x m i6j/® m is clearly equal to the
intersection of the kernels of the positive operators hk. On the other hand, since
ω(^{i,...,m})= 0' t ' l e support ^ m of the m-step density matrix must be contained in
the kernel of H^ m } . The following lemma asserts that these two spaces are, in
fact, equal. Hence if hestf®* exposes ω, then so does ®

5.5 Lemma. For a

Proof Proceeding by induction over m, beginning with the trivial statement
for m = /, we have to show that 9/+1 = ^ ® J f π / ® ^ , provided that / > / 0 .
The latter condition means that Γ^_1:^^^/f_1 is injective, i.e. that
Tr (Bviμ^ ι?(μ,_ J ) = 0 for all (/ - l)-tuples (μl9..., μ,_ J implies B = 0. Now the
vectors Φ = ΣΦ(μu...,μs+1)ψμί ® ••• μ̂/+1 in SF^nJf are precisely those with

with B(μ^+ι) an arbitrary μ^+1 -dependent matrix, which is uniquely determined
by Φ because Γ, is injective. The condition Φe«?f ® ^ can be expressed similarly
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with a μ^dependent matrix C ^ J . Then Φ e ^ ® ^ n J f ( x ) ^ iff

0 = Tr(B(μ,+ ί)v(μ,r - ^ i ) * ) - Tr(C(μJι;(μ,+ 1 )**;(/</)* -

Since this relation holds for all (/ — l)-tuples ( μ Λ . . . , μ2), the expression in braces
must vanish for all μ<f+1,μ1. Hence using (5.3.b):

B(μ) = Σ v(v)v(v)*B(μ) = £ φ)C(vMμ)* = Dυ{μ)\
V V

with D = £ι;(v)C(v). Hence Φ = Γ / + 1 ( D ) e ^ / + 1 . The converse inclusion is trivial,

since for given D we can take B(μ) = Dv(μ)* and C(μ) = v(μ)*D. •

This lemma points out an interesting feature of the structure we investigate
here. Given an arbitrary subspace ^ a #f®{ we could take the intersection in the
statement of the lemma as a definition of a subspace ^m c j f ®m. Then (§m is the
kernel of any positive hesrf®* with kernel ^ . Obviously, the definition of "exposing
interactions" depends only on these spaces, and one might try to set up a general
theory of such interactions and their ground states. The problem with this is that
for a generic subspace ^ c J f Θ / the intersection ^ m simply becomes empty for
large m. In fact, for n generic subspaces Rt of a vector space R the inequality

dim

is an equality, whenever the right-hand side is non-zero. Therefore, a naive estimate
of the above intersection would be

dim<gmx(m-έ+l)dm(d-'dim<gs- m~^ \

and this certainly becomes negative for large m. Thus the spaces ^ = Γ{(β) are
special in that these intersections stay non-empty, and it is precisely this property,
which makes the existence of "exposed" states possible.

With the help of Lemma 5.5 we can now give a concise characterization of the
different interactions exposing ω. Since ω, considered as a state on the chain
(stf®p)Έ satisfies the general assumptions of this section, we may also look for
interactions h'e(srf®p)®r = stf®p{> exposing ω. All these interactions are equivalent
in the following strong sense.

5.6 Lemma. Let hestf®{ be an interaction exposing ω, and let p, PeJN with pP > /0.
For h'e<stf®p*\ and meN let

ff{i M = V M * ' ) .
i = 0

Suppose that h! is an interaction exposing ω considered as a state on (^®p)χ. Then
there are constants C+ such that for pm ^ ί + p — 1 and m ^ {\

1 1 , . . . , ptn I —̂ 1 1 , . . . , ptn j —̂ • 1 1 , . . . , pm j *

Proof. Let m0 be the smallest m with m ^ P and m ^ (/ + p — \)/p. Then the
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Hamiltonians Ho = tf { 1 pmo] a n d H'o = H'{1 pmo] are both defined in ^{u_pmoy

Since both interactions expose ω, both Ho and iί'o have the same kernel, namely
$ H$pmo. Hence

where >/' is the smallest non-zero eigenvalue of H'o. Similarly, we obtain the estimate
H'o ύ η~ί II H'o ||. Now for m £ m0 we have

m-mo

% Pm]ί Σ
i = 0

i Pm} ^ Σ
i = 0

This estimate follows simply by inserting the definitions of Ho, H'o, and counting
how often each translate αf(/i), αpi(A') occurs in the sum in the middle. Combining
the estimates we find the inequality stated in the lemma with C+ = η ~11| H'01| mo/η,

5.7 Theorem. Let hes/®* be an interaction exposing ω. Then ω is the unique state
on J / Z such that

ω(φ)) = 0

for all ieZ.

Proof. Let ώ be a state with ώa^h) = 0. Then for all ieZ and n ^ t the density
matrix W<i+1 i+n^ of ώ|«β//f+lt ί + π\ is supported by the subspace
f) JT®S® <&/® j r ® ( " " 5 " ° . Hence by Lemma 5.5 ^ { ί + 1 ί + w } is supported by ^ n

s = 0

for all i9n. Thus we have a representation W{i+1 /+llj = X|Γπ(βs)><Γ/I(jBs)| with
s

£ s e Jf, and ^ II ^π(^s) II2 = l F ° Γ ^GJa^{j+ i,...,7+m}we aPPty ^ i s representation and
s

Lemma 5.2(2) with sufficiently small i and sufficiently large n to obtain

\ώ(A)-ω(A)\ = Σ {<ΓΠ(BS), AΓn(Bs)} - ω(A)(Γn(Bs),ΓΠ(BS)}}
S

+ i-,/-m))M||Σ||βJllί

For small i and large n the bracket can be made arbitrarily small. •

5.8 Deflnition. A VBS interaction is an interaction h of finite range ί, hesf®*, with
the following property, there exists a C*- finitely correlated state ω such that

n — t
(1) h^

(2) for all n^f let Hμ,...,„} = Σ a iW be the local Hamiltonian corresponding to

the interaction h and let η be any ground state of H^^ nγ i.e a state of srf^^
such that η(H{1 πj) = 0; then there exists a constant C>6 such that η^Cω\^{ι n}.
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At this point we want to remark that for a given purely generated and
exponentially clustering C*-fϊnitely correlated state ω, Theorem 5.7 guarantees the
existence of a VBS interaction h such that ω is the unique zero energy ground
state for the corresponding Hamiltonian. If the interaction length of ω is /0, there
always exists an interaction h of range £0 + ί exposing ω. Such an interaction is
a good VBS interaction in the sense of Definition 5.8. In some cases the intersection
property of Lemma 5.5 already holds for £ = £0. In such cases one can replace
the Hamiltonian of Theorem 5.7 by an equivalent VBS interaction of range ί0.
The family of examples introduced in Example 1 turns out to have this property
as will become clear in Example 7.

Moreover note that the fact that for a given interaction all ergodic infinite
volume ground states are C*-finitely correlated, does not imply that it is a VBS
interaction. The simplest example of this situation is given by the spin 1/2
Heisenberg ferromagnet and we will consider this in more detail in Example 5.

In view of Corollary 3.4 and the definition of VBS models of above we must
conclude that only certain types of symmetry breaking in the ground state can
occur. Indeed a C*-finitely correlated state can be decomposed into at most a finite
number of ergodic (or periodic) components. In particular one cannot have genuine
breaking of a continuous local symmetry. Breaking of a continuous symmetry can
occur but in such a case also the translation symmetry is fully broken (no periodicity
is left) and residual entropy is generated. A detailed analysis of such an example
is given in [31]. Examples of breaking of translation symmetry into periodic states
are given in Examples 4 and 6 (the Majumdar-Ghosh model).

Example 5. Any pure translation invariant product state of a spin 1/2 chain is a
ground state for the Heisenberg ferromagnet. For this model to be a VBS model
there should exist a C*-fmitely correlated ground state ω, which locally dominates
each of these ground states. We will show that this is not the case. Let us first
recall some well-known facts about the ground states of this model [40]. The local
Hamiltonians H,x . are given as:

n - l

H{l,...,n}= Σ ^ M + l
i= 1

where P° is the orthogonal projection on the singlet state in C 2 ® C 2 which can
equivalently be written as P° = | ( 1 - U). Here U is the unitary operator which
flips the factors in <C2®C2. It is easy to check that there is a state ω such that
ω(P? ί +J = 0 and these equations characterize the ground states of the ferromagnet.
In order to get the general solution of this equation observe that ω(P?f+1) = 0
implies that for any local observable A and for any ίeZ: ω(A) = ω(Uii+1A) =
ω(Ui,i+iAUu + 1). Therefore any ground state ω will be fully symmetric, i.e. ω is
invariant under arbitrary finite permutations of sites. It is then a standard result
by Stermer [61] that such an ω can be uniquely written as:

ω= J

In this formula ZΓ\ denotes the 2 x 2 density matrices, μ(dσ) a probability measure
on &"^ and (X)σf is the product state on the spin chain determined by the density

ieZ

matrix σ. As σ ® σ(P°) = |((Tr σ)2 — Tr σ2), it follows that σ has to be pure in order
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that (X)^ be a ground state. We will now contradict the assumption that the

Heisenberg ferromagnet is a VBS model. More precisely we will show that there
is no C*-finitely correlated ground state ω 0 that locally dominates all the other
ground states. Indeed, suppose that ω0 is such a C*-finitely correlated state, then
let μo{dσ) be the probability measure that defines ω0 as in formula (5.12) and Ko

the support of μ0. The minimal representation of ω0 is then given as follows:

(1) 0b — ̂ (Ko), the continuous, complex-valued functions on Ko.
(2) Έ(A®f)(σ) = σ(A)f(σ\ dzM2 and feV(K0).
As 3 is abelian and σ is a density matrix E is completely positive.
(3) To complete the triple (E,p,e) we take e=l and ρ(f) = jμo(dσ)/(σ). The
conditions (2.2) are now easily verified:

p(Έ(i ® /)) = \μo{dσ)σ{t)f{σ) = p(f).

With these definitions it is straightforward to verify that we recover the state ω 0

using the defining formula (2.1). Finally the minimality of the representation follows
from the Weierstraβ Theorem. As ω0 is C*-finitely correlated $ has to be
finite-dimensional, i.e. Ko is a finite set. As ω 0 is a ground state the elements of
Ko have to be pure states. It now follows that the restriction of ω 0 to any finite
volume is a convex combination of at most #(K0) vector states. As the degeneracy
of the ground state of the Hamiltonian H^ ^ is n + 1 clearly ω 0 cannot dominate
all these ground states. Δ

Example 6. The Majumdar-Ghosh Model [53,54~\. This model lives on a spin 1/2
chain and the formal Hamiltonian H is given by:

Σ u+u+2

where P 3 / 2 is the orthogonal projection onto the spin 3/2 subspace of C 2 ® <C2 (
which can be expressed in terms of the generators of SI/(2) as:

We now specify the triple (E,p,H) that will determine the unique translation
invariant ground state ω M G of this model [5]. As auxiliary algebra 88 we take
Jί2 Θ C Denote by φ the singlet state on M2 ® ̂ 2 We now define the completely
positive map E by

The state p on Jί2 © C has to be taken as

p(Bί@B2) = \B2 +

Again we have to check the relations (2.2). It is obvious that E is unity preserving.
We still have to verify that for all BeJi2®<£, p(Έ(t®B)) = p(B). Indeed

To see that the C*-finitely correlated state ω M G is indeed a ground state of the
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Hamiltonian HMG one checks that the state ωMG is rotation invariant and belongs
to spin S 1/2 on any set of an odd number of consecutive sites. Therefore it must
be a ground state. For a more complete discussion see e.g. [5]. The diagonalization
of E is given by:

E(1Θ1) = 1Θ1, E ( 1 Θ - 1 ) = - ( 1 Θ - 1 ) , E(Sα0O) = O, a = x9y9z.

So we find two eigenvalues with modulus 1, and by Proposition 3.3 ωMG can be
decomposed into two ergodic 2-periodic states. The two components are pure and
are the ground states of the Majumdar-Ghosh model as they appear in the original
papers. Δ

Example 7. We show that for our family of models the interaction length £0 = 2
and that the intersection property of Lemma 5.5 holds for £ = 2.

(1) cos θ sin θ 7*0. The range ^ 2 of A is spanned by the vectors:

(cos2 011, - 1 > - 2sin2 θ | 0,0 > + cos2 01 -1,1».
4^4 ny/ 2cos4 θ + 4sin4 θ

It follows that the interaction length £0 of ωβ equals 2. As mentioned above the
intersection property of Lemma 5.5 holds for £ = 2, i.e. ^ 3 = ̂ 2 ® C 3 n C 3 ® ̂ 2 .
By Lemma 5.3 4 ^ d i m ^ 3 ^ d i m ^ 2 = 4 and, as ^ 3 c ^ 2 ® C 3 n ( C 3 ® ^ 2 , it is
sufficient to show that d im(^ 2 ®<C 3 nC 3 ®^ 2 )^4 . This is straightforward to
check using the obvious symmetries of ^ 2 : rotations about the z-axis, spin flip
and space reflection.

It is now clear that any positive nearest neighbor interaction hθ with ker hθ = ^ 2 ,
will lead to a VBS model having ωθ as its unique ground state. In particular we
can take the projection operator on the orthogonal complement of ^ 2 . This
operator can be expressed in terms of the spin operators. Thus we obtain the
Hamiltonians given in (1.2):

^ ' / ( s ^ ) 2 +

where £ = sin2 θ and η = (4sin4 θ - cos4 0)/(2(cos4 0 + 2sin4 0)).
(2) 0 = 0. The spaces &„ are two-dimensional and spanned by the vectors

These are the ground states of the following Hamiltonian:

Clearly this Hamiltonian is a VBS model in the sense of Definition 5.8. Although
it is not the limit for 0 ^ 0 of Hθ9 we know by Lemma 5.6 that both models are
equivalent.
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(3) θ = π/2. The spaces &n are now one-dimensional and determined by the vectors
| 0 > ® | 0 > ® |0>. There exists in this case a completely trivial VBS interaction:

Again it is equivalent with but not equal to Hπ/2. Δ

We close this section with a collection of properties of ω, which are immediate
consequences of the foregoing.

5.9 Proposition, ω is a pure state on srf% with zero entropy density. The non-zero
eigenvalues of the density matrix of ω\srf®n converge to the numbers {pa'Pβ}k

a,β = 1,
where {pα}J=1 are the eigenvalues of p. The limiting absolute entropy of ω is twice
the entropy of p.

Proof. Any convex component ώ ^ λω of ω satisfies the condition of the theorem,
and is hence equal to ω. Since the n-step density matrix is supported by 9n9 which
has dimension k2 for large n, its entropy is bounded by 2 In (fc), so the entropy per
site vanishes as n-»oo. By Lemma 5.1.(1) the n-step density matrix is ^W^Γn*,
and since Γn becomes an isometry in the limit, we merely have to compute the
eigenvalues of W^(B) = pBp. The eigenvectors of W^ are B = \χΛ}(χβ\, where {χa}
is an eigenbasis of p, so the eigenvalues are papβ. The limiting entropy of ω\srf®n

is the entropy of W^ ^ p ® p. •

One can show that a C*-finitely correlated state with vanishing entropy
density is necessarily purely generated [33]. One can also find VBS interactions
with a (non-unique) C*-finitely correlated ground state having positive entropy
density [31].

6. The Ground State Energy Gap

There are two natural ways of looking at the infinite sum in the formal Hamiltonian
H = Σ an(h)> The first is to discuss only energy densities, i.e. the expectations of

neZ

the individual terms in this sum. For example, in the last section we considered
states, in which each term had zero expectation so that we never had to consider
the convergence of the sum. Another natural approach is to consider the
Hamiltonian not as an observable, but as the generator of the dynamical
automorphism group if—•τfeAut J / Z . More precisely, the generator of this group
is the closure of X\-+i\_H,X], defined on strictly local operators X. For such
X only a finite number of terms in the Hamiltonian contributes to the commutator.
The notion of "ground state" corresponding to the latter view of the Hamiltonian
is the inequality

ω(X*[H, JSQ) ̂  0 for all local Xestfπ. (6.1)

This is equivalent to the positivity of the Hamiltonian Hω, which is defined in the
GNS-representation (πω, J^ωi Ωω) of the state ω by

πω(τt(X))Ωω = eitH«πω(X)Ωω. (6.2)
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When hesί®( is an interaction exposing ω in the sense of Definition 5.4, we have
for Xetf{n π + m ) :

{ n _ , n+m+ί}X), (6.3)

since for all neΈ we have ω(X*Xan(h)) = 0. Therefore, the positivity of
#{„-/,...,π+m+^} implies that the ground states considered in the previous section
are also ground states in the sense of inequality (6.1). It is known [16] that,
conversely, inequality (6.1) implies the minimum energy density property for
translation invariant states.

In this section we want to investigate the existence of gaps above the ground
state. Again there will be two notions of "gap." The first is to replace the positivity
of H< Λ + m | by the stronger requirement that the first non-zero eigenvalue of
this operator is bounded below by a constant y > 0, independently of n and m ^ /.
The second notion is to postulate that Hω has a spectral gap, i.e. that the eigenvalue
zero is isolated from the remainder of the spectrum by an interval of length y.
This is equivalent to the inequality

ω(X*lH9X]) ^ y{ω(X*X) - \ω(X)\2} (6.4)

for all local Xe<s/Z. Again we can use Eq. (6.3) to simplify this expression,
so that only the finite volume Hamiltonians H< rt+mj appear. The first notion of
gap is meaningless as such. Indeed, even if there is a unique global ground state,
boundary terms in local Hamiltonians that still lead to the same global dynamics
may produce degeneracies or perturb the local gaps [37].

The following lemma shows that for the states under consideration a gap in the
first sense implies the inequality (6.4).

6.1 Lemma. Let hesrf%* be an interaction exposing the C*-finitely correlated state
ω. Suppose that for infinitely many meN the first non-zero eigenvalue of H^ ,
is larger than y > 0. Then inequality (6.4) holds.

Proof. Let Xes/Z be local. Then by translation invariance of H and ω we may
assume Xes/^ my Since neither side of inequality (6.4) changes, if we replace X
by X — ω(X)% we may also assume that ω(X) = 0. Consider for each L the vector

We abbreviate by HL the Hamiltonian if{i-L,...,m+L} acting in this space, and its
ground state projection by GL. By assumption, HL ^ y(l — GL) for infinitely many
L. Then by Lemma 5.2.(2) we have || ΨL \\'2 = ω{X*X) + O(α(L)), and for an
arbitrary vector Γ2L+m(B) in the range of GL we have

<Γ2L+m(B\ ΨL> = ω(XKBΛ>P+\\B\\p O(a(L))

= \\Γ2L+m(B)\\ O(a(L)).

Hence || GL ΨL \\ = O(a(L)). Using Lemma 5.2.(2) once more we find

{ } { n

= <ΨL,HLΨL}-O(a(L))

^ y< ΨL, (1 - GL) ΨL) - O(a(L)) = yω(X*X) - O(α(L)).
The result follows by letting L-* oo. •
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It is clear from Lemma 5.6 and Eq. (6.3) that if one interaction exposing ω has a
non-zero gap, then all other such interactions will have the same property. The
special interaction, for which we shall prove this property in Theorem 6.4 will be
of the form (1 — G2p) for some p. The following lemma establishes the basic estimate
for ground state projections needed in the proof of 6.4.

6.2 Lemma. For all /, m, reN, with m 2: / 0 , and α(m), α_(m) as in Lemma 5.2:

a_(m)

Proof. Since G / + m + r ^ ( G / + m ® l r ) , we can write (G
G ^ ^ r = ( G / + m ® l r - G ^ ^ t ^ ® G m + r - G / + m + r ) . Therefore, we have to
prove the following statement: for any vectors Φ e ^ + m ® Jf ®r and ΨeJtf®1®
<#m+r such that Φ, Ψ±9,+m+r9 we have \(Φ,Ψ>\£RHS'\\Φ\\ \\Ψ\\. We shall
write all vectors in components with respect to a basis {φμ}μ=ί c=Jf, grouping
the (ί 4- m + r)-tuple of indices into three tuples μ /,μw,μ r of lengths t,m,r,
respectively. We use the abbreviation v(μm) = v(μ^+1)v(μ^+2)'"v(μ^+m), and similar
ones for v(μ^) and y(μΓ) Then by definition of Γn we can write the components of
Φ and Ψ in the form

, μm, μr) =

where Φ(μΓ), Ψ{μ*)eJίk for each tuple μr or μ .̂

We show first an estimate of <Φ, Ψ}, which does not use the orthogonality of
these vectors to # , + m + r , namely

A ^ ^ - | | Φ | | | | ^ | | , (6.5)
α_(m)

where

4 φ = Σ W ) P ^ ) p - 1 and ΔΨ=Σv(μ')Ψ(μ').

Upon noting that

< Φ, ^ > = Σ < Γ m ( ^ 0 * * (/O), Γm( Ψ(μ')v(μT) >,

we can use Lemma 5.2 to write this as

£ <t;(μO*Φ(μr), ^(/MμT),= Σ
μf,μr μ',μr

= Σ Tτ(p{Φ(μr)p
μ',μr

and a remainder, which is bounded by

a(m) Σ O

This sum is estimated with the Cauchy-Schwarz inequality, using

Σ \\v(μ')*Φ(μr)\\2

p= Σ Tr(pΦ(μr)*v(μ')v(μ')*Φ(μr))\\p

μ/,μr μ<C,μ
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μr μr

= a^ + m)-ι\\Φ\\1^a_{my1\\Φ\\\

and a similar computation for Ψ, using Συ(μr)*pv(μr) = p. This yields the error

estimate given in (6.5). μr

Equation (6.5) takes a particularly simple form if Φ (respectively Ψ) is in the
subspace ^ί+m+n say equal to χ = Γί+m+r{χ) with χeJik. This condition is
equivalent to the special form Φ (μr) = χv(μr)* (respectively Ψ(μ') = v(μ')*χ). We
then have Δφ=χ (respectively ΛΨ=χ\ and that the sum £
appearing in the error estimate of (6.5) is equal to \\χ\\2. μ*'

If Ψ_L^/ + m + r , we then find that for all χeJfk,

In other words, \\Δ Ψ\\p <Ξ φ ? ) α _ ( m ) ~ 1 / 2 1 | Ψ\\. Together with the analogous
estimate for \\ΛΦ\\ and (6.5) we finally obtain

_S (a(m)2/a_(m) + a(m)/a_(m)) \\ Φ || || Ψ \\. •

In the following Lemma E A F and E V F denote the largest lower bound and
least upper bound in the lattice of projections, respectively.

6.3 Lemma. Let E and F be orthogonal projections on a finite-dimensional Hubert
space Jf then:

(1) \\EF-EAF\\ = \\(i
(2) EF + FE^-\\EF-EΛF\\(E + F).

Proof. Both EV F and E Λ F reduce all the operators that appear in the statement
of the lemma. The inequality (2) is trivially satisfied on (£ V F ) 1 and on E Λ F
and both EF — E Λ F and the corresponding expression for the orthogonal
complements vanish on (E V F)λJ^ and (E Λ F)J^. We can therefore as well
suppose that E V F = i and E A F = 0.

(1) Since Jf is finite-dimensional, we can find unit vectors Φ, ΨeJtf, for which
< Φ, EF Ψ > = || EF || = η is real and attains its maximum. Clearly, we must have
EΦ = Φ and FΨ = Ψ. For fixed Ψ, EM3ψ^{φ,Eψy attains its maximum only
when φ is a positive multiple of EΨ. Hence EΨ = ηΦ, and FΦ = ηψ. Consider
now the vectors Φ'^ηΦ -Ψ and Ψ' = ηψ-Φ. These satisfy EΦ' = FΨ' = 0,
and | | Φ Ί I 2 = II Ψ'\\1 = \-n1. Moreover, <Φ', ψ') = η

3-η. Hence

\\EF\\'\\Φ'\\'\\Ψ'\\=η(l-η2)=-(Φ\Ψ') = (Φ\(i-E)(i-F)Ψ')

^\\(t-E)(t-F)\\ \\Φ'\\'\\Ψ'l

and \\EF\\^\\(t —E)(t —F)\\. The reversed inequality follows by exchanging
£ < - > ( ! - £ ) and F<->(i--F).

(2) Since EW F = t and E A F = 0, any vector in ,W can be written uniquely as
φ + ψ with £φ = φ, Fψ = φ. Consider the eigenvalue equation

(E + F)(φ + ψ) = (l- α)(φ + ̂ ) .
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Then by uniqueness of the decomposition we must have E(φ + φ) = (l — α)φ, i.e.
Eφ = — αφ, and, similarly, Fφ= — ocφ. Taking the inner product of the first
equation with φ and of the second with φ, we get < φ, φ > = - α || φ \\2 = < φ, φ > =
- α | | ^ | | ^ Hence α | |φ | | | | ^ | | = - < φ , ^ > = - < φ , £ F ^ > ^ | | £ F | | | |φ | | | | ^ | | . Thus
α^jJEFH, and (E + F)^(l - \\EF\\)i. Squaring the last inequality we get
EF + FE = (E + F - t){E + F) ^ - || EF \\ (E + F).

Combining the two parts of the proof, it is clear that the eigenvector of E + F
with smallest eigenvalue is Φ + Ψ. •

Let h be a VBS interaction in the sense of Definition (5.8) which has a unique zero
energy C*-finitely correlated ground state ω 0 generated by a triple (E, p, 1). The
state ω 0 is purely generated and exponentially clustering. Let 0 ̂  λ < 1 denote the
minimal rate of decay of correlations in the state ω0, i.e. λ is the absolute value
of the second largest eigenvalue of E. There exists a constant c> 0 such that

As in Definition 5.4 we write / 0 for the interaction length of ω. We will denote
the gap in the spectrum of a local Hamiltonian ff{lf...fll} by yn. Finally we denote
by ί the smallest integer for which the intersection property of Lemma 5.5 holds.
It follows that ί is either / 0 or *f0 + 1. From the remarks at the end of Sect. 5 we
can assume that h has range /, that is hestf®^. We can now estimate the gap of
such a VBS model:

6.4 Theorem. With the same notations of above the gap-inequality (6.4) is satisfied
for some strictly positive γ, which can be estimated from below by:

l-cλ

Proof The idea of the proof is the following. First we estimate from below the
local Hamiltonian H<x Λ by a Hamiltonian H<x m, with the same ground state
space: take p ^ t ana put

i+l,...,p(i + 2)} {pi+l,...,pi + S} {pi + 2 pi + S+l} "

and define

m - l

H{1 m}= Σ Ki+1'

As h is positive we have the following inequality

# { 1 , . . . , m p } ^ £ { 1 m } (6.6)

i / μ m> has to be considered as a nearest ne ighbor VBS m o d e l o n a n interval
{ l , . . .m} of a regrouped chain where the one-site a lgebra in n o w srf®v. N e x t the
positive o p e r a t o r h c a n be b o u n d e d from below by a mult iple of the
projection t — G2p with the s a m e kernel, i.e.

h>γ2p(l-G2p). (6.7)
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We now estimate the gap of the equivalent Hamiltonian
m - l

K{l,...,m}= Σ (*-G2j,)u+l
i=l

We will prove

^ l ^ y { 1 .,. (6.8)
Combining the inequalities (6.6)-(6.8) we obtain the inequality stated in the
theorem. This estimate becomes strictly positive for p large enough. Using
Lemma 6.1 we have therefore shown the existence of a non-zero spectral gap in
the sense of (6.4).

It remains to prove (6.8). So we have to find a lower bound for the sum of the
(m — I) 2 terms in (X^ m p 2 . The sum of the diagonal terms in this square just
reproduces K^ w j . Since (1 - G2p)Ui+1 and (1 - G2p)jj+1 commute for | i -j\ > 1,
we can bound the sum of all such cross terms by zero. To the projections
E = (1 - G2p\i+1 and F = (1 - G2p)jJ+1 with | i -j| = 1 we apply successively
Lemmas 6.3.(2), 6.3.(1), 5.5, and 6.2, obtaining

EF + F £ = - \\EF-EΛ F\\(E + F)

= - || (G2p ® ip)(ίp ® G2p) - (G2p ® 1,) Λ (1 p ® G2p) \\ (E + F)

Since each (1 — G2p)u+x occurs in at most two of these cross terms, we get (6.8). •

Example 8. As a matter of illustration we evaluate the estimate for the gap in the
case of the AKLT model, λ and c of the theorem are easily determined: λ = j ,
c = 4. Hence the smallest value for p leading to a non-trivial estimate is p = 3. So
we need the finite volume gap for six sites. In [50] the value γ6 = .398451 is given.
Combining these numbers we find γ ̂  .119. Δ

As such Theorem 6.4 is not applicable to VBS models where the ground state is
not unique. We believe however that for VBS models with a finite ground state
degeneracy, the above arguments can be modified to obtain the existence of a
spectral gap. In the Examples two such models have been mentioned: the
Majumdar-Ghosh model for which the existence of a gap has been obtained in
[5], and the model introduced in Example 1 with 0 = 0 where the existence of a
spectral gap is also obvious.

Of course the theorem cannot be applied to the Heisenberg ferromagnet which
does not have a gap, simply because it is not a VBS model as was shown in
Example 5.

7. Applications

7.1 Classical Systems. In this section we consider C*-finitely correlated states for
which both algebras s/ and J* are abelian and finite-dimensional. Hence si - ^(Ω)
is the set of complex valued functions on a finite set Ω, say Ω = {1,... d). Thus as
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a vector space si is just C d, and its hermitian part R d is ordered componentwise.
The projections e f es i with ef(/) = δtj obviously form a basis of si. Similarly,
0& = #({l,...fc}) for some k< oo. T h e m a p E j / x J^->J^is best decomposed into
the d operators Έ.i:8ί\->Έ{ei®B). Since a map from or into an abelian C*-algebra
is completely positive iff it is positive [60], this constraint on E just means that
each Έh written as a k x /c-matrix with respect to the canonical basis of & = <Ek

has positive matrix elements. In order to get a C*-finitely correlated state we
further need a vector ee& = (Ck with positive components (which we can take as
1 by Lemma 2.5), and another vector p with positive components. With the
notations <•,•> for the scalar product of <Ck,Xτ for the transpose in J(k9 and

E = Σ E f these objects have to satisfy Έe = e, and E τ p = p.

In probability theory a state on the chain ^(Ω)z is usually called a "stochastic
process" with state space Ω, and the state is usually expressed via the Riesz
representation theorem as a cylinder measure μ on Ωz. In our construction this
measure is given by

where {kn, ....km} denotes the cylinder in ΩΈ consisting of those configurations of
the chain that coincide with {fcπ,..., km} at the sites {n, n + 1,... m}. We shall also
call μ a C*-finitely correlated measure (in [28] these were called "manifestly
positive").

It is straightforward to see that any finite state space m-step Markovian measure
is manifestly positive and finitely correlated. We demonstrated in Sect. 4 that a
general C*-finitely correlated state can be obtained from a purely generated
C*-finitely correlated state by embedding the one-site algebra of the given state
homomorphically into the one-site algebra of the purely generated state. In the
context of classical theories such homomorphisms are induced by continuous
mappings between configuration spaces. In probabilistic terminology one process
is a "function" of the other. We can now state the following result:

7.1 Theorem. Let μ be a C*-finitely correlated measure on Ωπ. Then there exists
a finite set Ωί9 a Markovian measure μx on Ωf and a function Φ:Ω -+Ωγ such that
μ = μλ o φ z . Moreover we can choose Ω1 in such a way that #ΩX ^ (#Ω)4.

Our next aim is to give an expression for the entropy density of the measure.
Such an expression has been obtained by [15] and was extensively studied in [28].
For technical convenience we assume the rather strong irreducibility condition
that all matrix elements of the Efc, {k = I9...d} are strictly positive. This implies
that E has trivial peripheral spectrum, and hence that the measure μ has no
non-trivial periodic components. Much weaker conditions are discussed in [28].
We first introduce a dynamical system for the purpose of describing the structure
of the "conditionings" of the process μ. So let us denote by 0$e the set of positive
elements v in <Cfc such that <v,e> = 1. Thus if we take e = 1^, as we may, 0$e is
just the state space of J*.

An operator Tμ is now defined on the space %>(&e) of continuous complex-valued
functions on 0&e\

Σ
aeΩ
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where Γa .3$e-^08e is defined by

7.2 Theorem. With the above notations there exists a unique probability measure
φ on &e, which is invariant under Tμ. The mean entropy s(μ) of the measure μ is
given by:

s(μ)=Σ ί Φ(dv)hM
aeΩ @e

where ha(v)= - <v,Efle> log <v,Eαe>.

The C*-finitely correlated states described in this section may, of course, be
used to generate finitely correlated states on chains J ^ Z with non-commutative
jf by applying a completely positive map Έ.^Ω)-*^ at each site. These
C*-fϊnitely correlated states, which could be called non-classical functions of
Markov processes, exhaust only a small subset of the C*-finitely correlated states.
In such a state the correlations across any bond will be "classically correlated" in
the sense of [64], i.e. the state can be decomposed as an integral over states, in
which the right and left halves of the chain are completely uncorrelated. It is easy
to see that non-trivial purely generated states, as studied in Sects. 5 and 6 cannot
have this property.

It would be interesting to have examples for states over a classical chain (st
abelian), generated with a non-abelian algebra 0&. More generally, one might look
for finitely correlated states over a classical chain, which are not even C*-finitely
correlated. We did not succeed in settling the question whether this is possible.

7.2. Integrable Systems. Since C*-fϊnitely correlated states are easy to construct,
it is natural to use them as trial states in the ground state variational problem of a
given interaction. Here we prove a general result, which illuminates the nature of
this variation. It also allows a neat one-line proof of the fact that the ground state
of the antiferromagnetic spin 1/2 Heisenberg chain with nearest neighbor

interaction h= £ Gμ®GμeJt1®J(1 and of some of its generalizations [63,11]

are not C*-finitely correlated.

7.3 Proposition. Let he(Jiά)®{ be hermitian, and suppose that with respect to some
basis {φμ}

d

μ=1 the real and imaginary parts of all matrix elements

are in some subfield FczIR. Suppose that hmin = inϊ{ω(h)\ωe£~} is attained at a
C*-finitely correlated state. Then hmin is algebraic over F.

Proof We may suppose that the minimizing state ω is generated by
Έ:Jίd®Jίk^>Jik and p:Jίk^>(E. In particular, this state has minimal energy
density among all states generated by different maps E,p acting on the same
spaces. We have to show that minimizing the energy functional over this set leads
to an algebraic minimal value.
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Since { π ( J d ) ® J f c F C k } is total in the Stinespring dilation space J f ®<Cfe of
E, J f has at most dimension d2k2-k < oo. We may therefore fix a sufficiently large
dimensional space J f and a representation π\Mά-*tf, and the map V of
Proposition 4.2(1) and a matrix ReJik, with p(B) = Ύr(BR*R) to parametrize all
C*-finitely correlated states generated in Jίk.

Using this parametrization there are no positivity constraints, but only the
constraints E(H) = i , and p(E(l ® B) = ρ(B\ which are a set of polynomial
identities with integer coefficients in the (real and imaginary parts) of the matrix
elements of V and R. The energy functional

is a polynomial of degree 2 in R and degree 2/ in V, with coefficients in F . Since
the constraints force V and # to lie in given compact sets, minimizers of the
constrained variational problem exist. Introducing as additional variables the
Lagrange multipliers λt for the constraints, we obtain a system of polynomial
equations for the minimizing (V,R,λ). We can cut down the set of minimizing
(V,R,λ) by further arbitrary polynomial conditions (with coefficients in F), until
we have one isolated solution of a system of algebraic equations, which represents
a minimizer. We can separate this solution from possible further solutions of the
same system (which might not minimize the energy) by some polynomial
inequalities. The resulting system of polynomial equations and inequalities thus
has a unique solution in the real field. By Tarski's Theorem [45, Sect. 5.6] we can
find a set of integer polynomial conditions on the coefficients of all these
polynomials, which decides the existence of solutions of the system for any real
closed field. Since there is a solution in real variables, this condition is satisfied
for the given coefficients. Hence there must also be a solution in the real closed
extension of F , i.e. the unique solution is algebraic over F . Therefore also the
value of the energy functional must be algebraic. •

Recently the exact ground state energy density has been computed for a class
of models generalizing the usual spin 1/2 Heisenberg antiferromagnet [63,11].
These models are spin J chains with isotropic nearest neighbor Hamiltonians and
the matrix elements of the interaction are algebraic numbers.

It follows from the computations that the ground state energy density e0 is
given by:

J- l j
eo = ~ Σ τ] 7 f o r integer J,

fc = o 2/c + 1
J-l/2 j

e0 = - log 2 - ^ — f° r half-integer J.
k=i 2/c

Applying Proposition 7.3 we therefore have:

7.4 Corollary. The ground state of the spin \ Heisenberg antiferromagnet and of its
generalizations [63,11] to higher half-integer spins is not finitely correlated.

7.3 Gauge Invariant States. It is clear that under suitable covariance conditions
E and p will generate a state ω, which is invariant under the action of some gauge
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group G. For simplicity, let us take si = Jiά and consider two additional Hubert
spaces JΓ and Jf'. Let μ, λ and λ' denote three unitary representations of G on
<Cd, Jf and Jf*' respectively. We suppose that there exists a non-zero intertwining
isometry K:Jf->Cd(g) Jf'<g> X satisfying

Vλ{g) = {μ{g)®λ'{g)®λ{g))V

for all geG^Set Λ = »(X\ Έ(A®B) = V*(A®tx,®B)V, e = te@ = %X\ and
choose an E-invariant state p on Λ{X\ e.g. the normalized trace. Then E satisfies
the covariance relation: λ(g)Έ(X)λ(g)* = Έ((μ(g)®λ(g))X(μ(g)®λ(g))*) From (2.1)
it then follows that (E, p, e) generates a state ω, which is invariant under the gauge
group G:

ω(Am ®"Άn) = ω(μ{g)Amμ(g)* ®- μ(g)Anμ(g)*).

If the map E is pure then Jf' is one-dimensional. Thus, in order to construct
purely generated gauge invariant states by this formula, we only have to pick the
representations λ and μ. Note that the intertwining relation does not automatically
imply that E has only one fixed vector, so this condition has to be checked by
hand. If it is satisfied, however, the theory of Sects. 5 and 6 applies. It can be
shown that the scheme of above is essentially the only possibility for constructing
C*-finitely correlated states invariant under a local gauge group [33].

In the AKLT model (see Example 1) the gauge group is 5(7(2). 08 = Jt2,
si = Jί^ and λ and μ are the irreducible representations of 5(7(2) on <C2 and C 3

respectively. This determines uniquely the intertwiner V. We will now study a
generalization of this example to arbitrary integer spin.

Let si = J?2j+i> where J is the value of the spin at each site. J is assumed to
be integer for reasons that will become apparent immediately. The algebra 0& will
be chosen as Jt2j+1 for some not necessarily integerje^N, satisfying) ^ J/2. These
are precisely the constraints on j and J for an interwining operator

K : C 2 ' + 1 ^ < C 2 J + 1 < g > C 2 >+1 with (3

to exist. In this case V is unique up to a scalar factor, and we can, and will choose
this factor so that V is an isometry. Then Έ:s/® 0&-+ J*, given by Έ(X) = V*XV
is completely positive and unit preserving. Let us denote by τ the normalized trace
on &, which is the only rotation invariant state on that algebra. Since E obviously
maps rotation invariant into rotation invariant states, it is clear that τ °E = τ.
Consequently, (E,τ,ΐ) generate a 5(7(2)-invariant C*-finitely correlated state co,-.
Note also that E is pure, so ω7- is purely generated, and since the eigenvalue 1 of
E is non-degenerate (see below) the whole theory of Sects. 5 and 6 applies.

7.5 Proposition. Any correlation function neNι->φ) = ωj(X10Ln(X2)) with X^es/^

XbEs/z\N is of the form c(n)= £ akλ
n

kfor some constants ak, where λk is the kth

k = 0

eigenvalue of E. λk is (2k + \)-fold degenerate, and equal to

j J]

U J
where the symbol between braces is a Wigner όj-symbol using the conventions of [26].
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Proof. In order to get at the behavior of the correlation functions we must
diagonalize E. There is a natural identification of the k x k matrices Jtk with
<C*<8)<C*: the rank 1 operator | ^ > < φ | is mapped onto ψ®φ where φ\-+φ is a
complex conjugation on <Cfe. This is in fact a unitary transformation if we equip
J(k with the Hilbert-Schmidt inner product (A,B} = TτA*B. The representation

k k ) ) * in the automorphisms of Jίk is transported by this

unitary transformation into the representation geSU(2)\-*@(k)®<2ig

k\ where

Q)g

k)φ = <2){k)φ but, as there is up to unitary equivalence only one irreducible spin

k representation of SU(2\ @{k) and <3{k) are unitarily equivalent.

As we have to consider decompositions of tensor representations of SU(2) we
recall the usual conventions [26]:

• {\k,m}\m= — k, — k+ l,.../c} denotes the standard basis of <E2k+1 which
corresponds to the spin k representation of SU(2): |fc,m> is the normalized
eigenvector of the z-component of the spin corresponding to the eigenvalue m and
the successive |/c,m> are obtained by applying the lowering operator to the highest
spin vector |fc,fc> and normalizing with a positive factor.

3?m3> denotes the |fc3,m3> vector in the spin k3 subrepresentation of
). The overall phase in each ^ ( k 3 ) subrepresentation is fixed by requiring

that \k1,k1)®\k2,k3 — kί) appears with a positive coefficient in \(kuk2)k2>,k3}.

As V intertwines <2)U) and @(J) ® @ij) we have with the notations of above that the
matrix elements of V are precisely the Clebsch-Gordan coefficients:

<J,mι\®<j9m2\V\j9mί+m2

>> = <J9mί\® <j, m21 (J,j)j, m1+m2

s)

As JE°(x{

g

j) = oc{

g

j)°Έ, E will be constant on each of the subspaces of J?2j+ι
carries an irreducible subrepresentation of ocg

j). Using the identifications of above
the spectrum of E consists of eigenvalues {λk\k = 0,1,... 2/}, and the multiplicity
of λk is 2/c -h 1 which is the dimension of the spin k irreducible representation of
α^λ In order to compute the values of the λk it is useful to make the following
explicit choice for the complex conjugation:

\k^n) = {-l)k-m\k,-my m= -fc, -k+l,...fe.

With this choice Θ{k) = Q)g

k). As teJf2J + 1 carries the spin 0 subrepresentation of
ag

J) and has Hilbert-Schmidt norm y/l +2J it can be identified with yjlj + 1
|(J, J)0,0> also the spin k subspace of Jί2j+1 is generated by {\{jJ)Km}\m =
— k, — k + 1,... k}. It is now straightforward to write down the eigenvalue equation
for E and to compute the λk using the conventions of [26]. As the eigenvalue 1 .
is non-degenerate ω ; is pure. •

We can now proceed to construct interactions exposing these states. Restricting,
for simplicity, to the case j ^ J g 2/, it is not difficult to see that the range of Γ2

has its maximal value k2 = (2j + I) 2 . Hence by Definition 5.4 the interaction length
of all these states is 2, and we know that we can find exposing interactions in
j ^ ® 3 , i.e. an exposing next-nearest neighbor interaction. When j < J, <S2 is a proper
subspace of 3tf ®2. This subspace is easily described in terms of the representation
theory. Given two representations @{Sι\ i = 1,2, let us denote by Sts

sχ S2 the subspace
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of <C2s2 + 1 ®(C 2 s 2 + 1 carrying representations with spin less than or equal to s, and,
similarly, denote by ^ * S3 the subspace of C 2 s i + 1 (χ)C 2 s 2 + 1 ® C 2 s 3 + 1 with spin
Ss. Then since K ( 2 ) 1 = ' ( t ^ ® V)V\X^ J f ® J f (g) Jf intertwines &* with
@w®@w®gU)9 it is clear that K ( 2 )Jf c= ̂ 2 j . Similarly, V{3)JΓ <=:&?„. Thus if
P2 denotes the projection on J f (χ)Jf onto the subspace carrying the spin s
representation, we have ω/α^/c7)) = 0 with kjestf®2 given by

kj= Σ n-

Note that kj cannot be an exposing interaction for^ > J/2, since also coJ/2(oίi(kj)) = 0,
contradicting the uniqueness theorem 5.7. However, for the smallest possible value
7 = 7/2, h = kj is indeed an interaction exposing coj. This reduction from a
next-nearest neighbor to a nearest neighbor interaction follows from the following
proposition (inserting st = s y = J\ which is a direct application of the technique
used in [9,46].

7.6 Proposition. Let sl9 s2, s3, s12, s23βjN.Let(sί2 — \sί — s2\),(s23 — \s2 — s 3 | ) e N .

Then

provided that s12 H- 5 2 3 — 5 2 ^ s i 2 3 -

Proof. It is most convenient to realize C 2 s + 1 as the space of complex polynomials
in two variables u and v, which are homogeneous of degree 2s. The elements of
C 2 s i + 1(χ)<C2s2 + 1 thus become polynomials in four variables uί9vuu2,v29 and so
on for higher tensor products. Then ψe@j

suS2 iff the polynomial ψ can be factorized
as

ψ(uί9υuu29v2) = (uίv2 - v^Y1 +S2~jφ(uuv1; u2,v2),

for a polynomial φ, which is homogeneous of degree sx — s2 +j in the variables
(u1,vί)9 and of degree s2 — s1+j in the second set of variables. For a discussion
of this structure see [39, p. 369 if]. Consider now a polynomials in six variables,
which is in the intersection described in the proposition, that is a polynomial with
two factorizations

φ(uuv1;u2,v2;u3,v3) = {uλv2 - v^)81 +S2~Si2φ(uuυ1;u2iv2;u3,v3)

= {u2v3-v2u3)
S2+S3~S23χ(uuvι;u2,v2;u3,v3l

with polynomials φ, χ. Clearly the factors (u1v2 — v^u^ cannot be further factorized
into polynomials. Hence by the prime factorization theorem for many variable-
polynomials [45, Sect. 2.16] we find that there must be a polynomial φ such that

φ(ul9...v3) = (UIΌ2 - v,u2r
 +S2~Sl2(u2v3 -

Clearly, φ is homogeneous of total degree 2(s1 + s2 + s3 — (sx + s2 — sl2) —
(s2 + s3 — s2 3)) = 2(s12 + s 2 3 — s2). Consider now a simultaneous transformation of
each variable pair by an S(7(2)-transformation (ui9vi)\-*{aui-\-bvi9 — fc*wι-hα*^)
with aa* + bb* = l. Since the factor multiplying φ is invariant under such
transformations, this degree is also the homogeneous power, with which α, α*, b, b*
appear in the transformed polynomial. That is to say, φ is supported by the
subspace of spins less than s12 + s23 — s2. •
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The simplest example of this situation occurs when J = 1 and j = 1/2. In this
case the nearest neighbor interaction h is precisely the AKLT model. For examples
of half-integer spin models we refer to [31].

Appendix: Matrix Order and Conditions for Positivity

The concept of matrix order originated in the theory of operator algebras
[10,23,24,27,57]. As a starting point one might take the observation that the
order structure of a C*-algebra almost determines the algebraic structure, in the
sense that an order isomorphism between C*-algebras can be split in a certain
sense into a homomorphism and an antihomomorphism. Antihomomorphisms
like the transpose map on a matrix algebra behave strangely also in that the tensor
product of such a map with the identity map of another algebra fails to be positive.
However, if one imposes on (iso-)morphisms the requirement of "complete
positivity," i.e. the stability of positivity under tensoring with identity maps, then
"order isomorphism" implies algebraic isomorphism. A matrix ordering of a vector
space is just the "enhanced order structure," corresponding to this more restrictive
notion of order isomorphism. The reason this structure appears in the present
context is that an ordered linear subspace or quotient of a C*-algebra automatically
inherits a matrix ordering from the algebra, but, unless it is a sub-algebra, it carries
no canonical product operation. We now proceed with the formal definitions.

For any complex vector space J1, we shall denote by Jin(β) the space of
n x n-matrices with entries in &. We shall also identify this space with Mn ® 0&,
where we have written Jin for Jΐn(<E). Jtn m will denote the space of complex n x m
matrices V = (Ko )?= 1;

m

= 15 and for any BeMn(β\ VeMn^m we define V*BVeJ(Jβ)
by

When & has an antilinear involution B\-•£*, an ordering of έ% is defined by a
proper generating cone 3#+ cz@th = {Be@t\B = B*}, i.e. £8+ is closed under addition
and multiplication with positive scalars, &+ n ( — & + ) = {0}, and J*+ generates &
as a vector space. Jίn(β) will then always be taken with the involution (£*%• = (By,)*.
A matrix ordered space gft is by definition a complex vector space with involution,
such that every Mn{β) is ordered by a proper generating cone J(n(β)+ a Jtn(β\,
and these cones have the property that for all n,meN, BeMn(β)+, VeJίnm we
have V*BVeJίm{08)+. A linear map F : J / - > ^ between matrix ordered spaces is
called completely positive, if the maps F n = i d # n ® F , i.e. the maps defined by
(ΨnΛ)^ = F(Al7), i, j = 1,... π, are positive for all n.

If 0& is matrix ordered, and stf is a finite-dimensional C*-algebra, then srf ® $
is matrix ordered in a canonical way: since stf = (J) Mna, for some finite set of
(possibly equal) numbers n α eN, we can set α



Finitely Correlated States on Quantum Spin Chains 487

Therefore, it makes sense to demand in Proposition 2.3 that Έ.si®@t^>$ is
completely positive.

It is evident that the composition of completely positive maps is completely
positive. Moreover, if F:«^ 1 ->J t

2 *s completely positive, and si is a
finite-dimensional C*-algebra, the map \ά^®Ψ\si ®^λ -> si ®$2 *s completely
positive. Note that this is all that is needed for the argument given after
Proposition 2.3, which shows that complete positivity of E is indeed sufficient to
ensure positivity of the state generated by IE and positive elements ee&, pe&*.

The second direction of Proposition 2.3 is now contained in the following
lemma:

A.I Lemma. Let si be a finite-dimensional C*-algebra, and let ω be a finitely
correlated state on siπ. Let £8 denote the unique minimal space characterized in
Proposition 2.1. Then $8 can be matrix ordered such that E is completely positive.

Proof. Clearly, & inherits an involution from si# by setting [^]* = [A*]. ^Ve
define BeJίJβ) to be positive, if there is some As Jίn(si#)+, such that Btj = [ i ί y ] .
Clearly, this defines a generating cone in Jίn(β)h. It is also proper, because if
both BeJΐn(@)+ and -BeJ(H(a)+, we have A,A'eJtn(s/#) such that for all
0 ^ XssJ^n]n^o} the n x n-matrix ω(X® AtJ) = Φx(Btj) = ω(X® A'tJ) is both
positive and negative semidefinite. Thus Φχ{Bij) vanishes for all positive X, hence
for all Xe<zi{n\n^Q}, hence B = 0. The compatibility of these cones for different n
follows directly from the corresponding property of s/#. Now let Έ(A®[A]) =
[A®A] as in Lemma 1.1 and let si = @Jίna as above. Then by definition

X = 0 XasJίn{si (x) 0$) = 0 Mn(J(n}^)) is positive iff for each α there is a positive

ψ that for ij = 1,... π, μ, v = 1,... na we have (X^)μv = [ ( f « ) μ J .

Hence ©XΛeJίn(si®si#) is also positive, and so is its equivalence class

Note that the matrix order for 38 is defined completely in terms of ω. This has
an important consequence: if there is some automorphism α of si, such that ω is
invariant under sitewise application of α, formally ω°α°°, then β([A]) = [α°°(v4)]
defines an invertible linear map on 0$. Obviously, Έ((x(A)®β(B)) = cc(Έ(A®B)).
And by simply transforming every step in the construction with α or /?, we find
that β is even completely positive. Clearly, this would be a very useful fact for the
discussion of gauge groups, as in Sect. 7.3, were it not for the intractability of the
theory of group representations on general matrix ordered spaces.

We remark that some of the results stated in the paper for C*-finitely correlated
states can be proven for general finitely correlated states as well. Among these are
Proposition 2.6, and a variant of Proposition 3.1. However, Proposition 3.3
explicitly uses the product in &, and all of Sect. 4-6 would be very difficult to
generalize, since there seems to be no dilation theory for completely positive maps
between general matrix ordered spaces.
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