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Abstract. The quantum groups gl^ and A^ are construted. The representation
theory of these algebras is developed and the universal 7?-matrix is presented.

0.1. The Lie algebra gl^ and its extension A^ play an important role in the
theory of nonlinear equations [DJKM]. They are of interest as an example
of Kac-Moody-Lie algebras of infinite type [K, FF]. Therefore it is natural to
ask: what are the quantum analogues of these algebras in the sense of the
quantum groups theory of Drinfeld [Dl]? The answer is trivial for gl^ =
lim gln, but this is not the case for A^. Some non-triviality is due tot the fact

n

that there is no Lie algebra gl^ in the quantum group case [we have the quan-
tized universal enveloping algebra Uh(gl^) only]. Hence one must analyseJ he
completion of gl^ and the central extension of the corresponding algebra gl^
in terms of Uh(gl^ only. Moreover we need the Hopf Algebra structure in
Uh(A^). This is essential in the case h = 0 already, because, for example, the
well-known KP hierarchy is related to the equations for the orbit of highest
vector in L(AQ)®L(AQ) where L(ΛQ) is the basic representation of Am [K,
Chap. 14], For the same reason we want to obtain Uh(A^) as the quasitri-
angular topological Hopf algebra [Dl].

The purpose of the paper is to construct Uh(gl^) and Uh(A^) as quasi-
triangular topological Hopf algebras and investigate the representation theory
of these algebras. Some results along this lines have been obtained by Hayashi
in [H]. Note that there are no constructions of Uh(gl^) and U^A^) as quantum
groups in his paper.

0.2. Let us describe the contents. In Sect. 1 we construct the Hopf algebra
£4(0/oo). This is the quantum analogue of gl^. The representations of Uh(gl^}
in the spaces of sequences and (quantum) semi-infinite forms are given in
Sect. 2. The Hopf algebra Uh(A^) (and some related algebras) is constructed
in Sect. 3. This construction is more complicated than in the non-quantum
case [K]. The representation theory of Uh(A^) is presented in Sect. 4. Our class
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of representations is the same as in [FF, Chap. 3]. For example, we construct
the representations in the space of quantum semifinite forms and in the space
of the usual semifinite forms. The vertex operators for Uh(A^) is constructed
also. In the last section, Sect. 5 we construct the universal quantum ^-matrix
for £4(^00) and the related quantum analogue of Casimir operator [D2].

0.3. Concluding remarks. We deal with algebras and modules over formal
power series C [[h]]. It is easy to see that all the results of Sect. 1-4 remain true
for fixed h φπ/Q.

We can't construct the embedding of Hopf algebras Uh(A(

n

i}) -> Uh(A^}. This
differs strikingly from the case h = 0. Still, this embedding exists in certain
representation space (cf. [H, Sect. 6]).

0.4. We wish to express our thanks to V. Drinfeld for useful discussions.

1. The P.B.W. Basic for Uh(glJ

1.1. Definition. Let <C[[A]] be the ring of formal power series in h. Uh(gl^) de-
notes the Hopf algebra, which is a topologically free module over C [[/*]] (com-
plete in /j-adic topology), with generators {Xiti + ί, Xi + ι,i, £ϋ}iez and funda-
mental relations

[ E i i 9 E j j ] = 0 9 (1.1)

[Xi' + i X'+i -]-δ qHί'ί + ί~qIHί>ί + \ (1.3)ι,ι+ j ,j u q-q 1

where Htj = En - EJJ9 q = exp(A/2)

[jr<fl+1,JΓ j J+1] = 0, |/-;Ί>1,

V2 V / r 2 _ ι _ 4 _ ι _ — 2 \ v V V _ L VΛ i , i+l Λ j, j+l "~ W -Γ 1 "Γ ^ A i , t+l A j , j+l A i , i+l ~r A j , j+l Λ i , i+l

the formulae (1.4) with pairs of indices (/ -f 1, /), 0 + 1?7)
substituted for pairs (/, / + 1), (jj + 1). (1.5)

The coproduct map is defined on generators by

and the counit ε and the antipode S are defined by

ί + ̂ i) = -q-1Xί + iΛ. (1.7)
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1.2. The adjoint representation ad: Uh(gl^) -> End U^gl^) is given by adα(x)
= A (a) ° (x), where (α ® b) ° x = axS(b). Starting with the opposite coprod-
uct A' and the related antipode 5", we ojbtain another adjoint action ad'. We in-
troduce the new generators £u + 1 = Xv + i ' q-Hi>ί+^2, FM + 1 = Xi + 1Λ' qHi'i+i/2

and define the quantum analogues of root vectors by induction: for i < j — 1,

J^ = ad£lιl + 1(£ ί+li/), FiJ = ad'Piιi + ί(Fi + lJ). (1.8)

From (1.8), (1.7), (1.2) it follows that

Eij — [^i,ί+l> Ei + l,j]q> fij = [̂ ,i + l ? Fί+1j]q9 (1.9)

where [^4,5]β = AB - qBA, and

[£**, Erf = (δki - δkj) Eij9 [Ekk, Ftj] = (- δki + δkj) Ftj. (1.10)

In the next subsections we state and prove the communication relations for
root vectors.

1.3. Theorem. Let i < j < k < m. Then

[E^Ekk}q = Eik, (1.11)

[Eik> Ejk]q-ι = 0, [Eij, Eik]q-ι = 0, (1.12)

[Eik9EJml = (q-1-q)EimEJk, (1.13)

[Eij9Ekml = 09 [Eίm ,^J = 0, (1.14)

formulae (1.1 !)-(!. 14) with the letter F substituted
for the letter E. (1.15)

Proof. Formulae (1.1 !)-(!. 14) were proved in [R] and (1.15) is their conse-
quence since linear Cartan involution ω0 defined on generators by

ω0(A) = A, ω0(Eii) = - Eii9

extends to Hopf algebra isomorphism, ω0: (Uh(gl^, δ) -> (Uh(gl^),Δ'} and

(- !)''-%, ωQ(Ftj) = (- 1)^' EtJ.

1.4. Theorem, a) For i < j <k <m,

[^,Fkm] = 0, [Ekm,FtJ] = 0. (1.16)

b) For / < 7

,̂, FtJ] =
 (~^y (Kfj - KΓj2). (1.17)

c) For i < j < k <m,

[Eik, Fjk] = -(- q2}k~ϊ Ei} KJ k

2, (1.18)

[Fim,f;j.] = (-^)^ίί:?;.£J.m, (1.19)

[£'jm,/ίJ = (-92)m- '^A?m, (1.20)

[Fυ , Fίm] = - (- ^2)^' A5}2 F7m> (1.21)

[EJk,FtlJ = 0. (1.22)
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Proof, a) (1.16) is an easy consequence of (1.3), (1.9).
b) For j — i = 1, (1.17) is just (1.3) and the general case can be proven by in-
duction, use being made of the formulae (1.11), (1.15), (1.10).
c) Formulae (1.18)-(1.22) follows from Theorem 1 and the formulae (1.17),
(1.11).

Below now consider the action of the coproduct on root vectors.

1.5. Theorem. For i < j,

+ (i-q2) Σ EimKmf®Emj + KΓj

2®Eij, (1.23)
i < m < j

(ί-q2) Σ Fmj®FίmK2

mj + F i j ® K f j . (1.24)
i<m<j

Proof. Formula (1 .23) was proved in [R] , and (1 .24) follows from (1 .23) since
MO'- (Uh(gl<n)>Λ)-*(Ul,(gl?}),Δ') is Hopf algebra isomorphism and ω0(K^2)
= Kfj, ω0(£;j ) = (- 1)'-' FtJ.

1.6. Set

1' '' = ' F. =ί1' l=j

- q2) EtJ, i<f *ij {(1 - q2) F ί } , i<f

and rewrite (1.23), (1.24) in the more convenient fashion:

Δ(EiJ) = Σ EίmK-f®Emj, Δ(Fi}) = Σ Fmj®FimK2

mJ. (1.29)
i^m^j

Define the homomorphisms

by induction:

AW = Δ,

Due to (1.29)

Σ EinK-2j®Erιr2K-ϊ® ®Enj, (1.30)

and due to (1.6)

,, (1.32)

(1.33)

1.7. Set for / < j Ejt = Ft j and introduce in ΊL2, the ordering as follows:
1) if i < j, I < k, r < s9 then

2) let r' < sf, r < s; then

(r',s') < (r,s) iff r'>r or r' = r and s' > s
and

(s\ r') > (s, r) iff r' > r or r' = r and s' > s.
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1.8. Theorem. The set of ordered monomials

Et = π Ely
(i,j)eZ2

with finitely many non-zero exponents nijeΈl + form a basis in <C[[h]]-module

Proof is essentially the same as that for Uh(sl(n)) in [R, Theorems 1.3-1.5]
being used.

2. The Representations of Uh(glJ in (<Ϊ>)Λ and in Λ$}>h

2.1. Definition. Let A be an algebra and C[[/z]] -module. Let Fbe topologically
free C[[Λ]]-module. Then a <C[[/z]] -module homomorphism ρ: A-^EndV is
called a representation of A in V provided ρ is continuous in the /z-adic topol-
ogy.

2.2. Definition. <C* denotes the vector space of sequences (Ui)ieZ with finitely
many non-zero ut for i > 0. We consider C^ as a topological vector space, the
fundamental system of neighbourhoods of zero being {V\ r e TL] , where

V = {u I Ui = 0 for ί > - r} .

C°° denotes the subspace consisting of {ut} with finitely many non-zero ut.
It's evident that <C°° is dense in <C^.

2.3. Let lij denote the matrix which is 1 in (ij) entry and zero everywhere
else. Such ma trices jict in (C1? and we can define the representation of U^gl^)

B y ( 1 . 9 ) f o r z < y ,

π(^,) = ϊ"-«/2 I i j 9 π ( E j ί ) = (- l)^-'-1 ^0-0/2-1 . ̂ ?

and by (1.30)-(1.32) the representation in (C^)®(/ + 1)(x)(C[[/z]] is given by

!, (2.1)

(2.3)

where ΐps = I for p = s, ΐps = lps otherwise, and μ(r) is the number of ΐps φ 7 in
summand of (2.2), (2.3), ltj are the matrix units.

2.4. Let {fi} be the standard basis in <C°°. Denote by Λ$th the <C[[h]]-module
generated by all expressions of the form w 0 Λ w _ 1 Λ w _ 2 Λ , where w^e <C°°
and u-i = f-ί+s for sufficiently large /, the following identification being as-
sumed: i f / <j then

' ' ' Λ fi Λ fj Λ ' ' ' = ~~ % ^ ' ' ' Λ fj Λ fi Λ ' ' * (2-4)
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If we start with expressions W = W O Λ W _ I Λ Λ W _ J , where UJG C00, then we
get the definition of the <C[ [A]] -module Λi+1(C°°).

2.5. Define the action π(s): Uh(gl^) ->EndΛg) Λ(C°°) on generators En, Eij9

Eji(i<j)by

π(s)(Eit) (U0 Λ W _ ! Λ •••) = lnU0 Λ W _ ! Λ + UQ Λ ln U- x Λ ••• + • • • ,

(2.5)

*U(EU) (U0 Λ «_, Λ - •) = 0<J-'>/* Σ Σ to"1 ~ J)^"1

ί^O i ^ f c i ^ • • • ^ f c z ^ j

' / ί f c l W 0 Λ ΐklk2

U-l Λ ••• Λ 4 , j W - Z Λ W - I - 1 Λ ••• , (2.6)

π w O E u M K o Λ i i ^ Λ ...) = (-!)'-<- V"-0'2-1 Σ Σ
/ ^ O i ί Ξ Λ i ^ • • • ̂ fczί i ./

•(q-q~lY(k}~lϊjklUv Λ lklkl_1u-1 Λ ••• Λ 42*ιM-ι + ι A
(2.7)

2.6. Theorem. Formulae (2.5)-(2.7) rfe/?^ /Ae representation ofUh(gl^).

Proof. For a fixed w, in (2.5)-(2.7) there are finitely many non-zero sum-
mands. Hence, it suffices to prove that the formulae (2.1)-(2.3) define the
representation of Uh(gl^} in /^((C00). Since the latter formulae define the
representation in C[[A]]® (<C°°)<8)(/+1), it suffices to show that the subspace in
C[[A]] ® (C°°)®(ί+1) generated by the expressions

is stable under all of the Ekk, Eiti + ί9 Eί + 1>i. But this is easily verified by
straightforward calculations.

2.7. In this subsection we'll simplify the formulae (2.6), (2.7) for u = fίl Λ fi2

Λ Λ fit Λ with iί> i2> . Denote by κ(ij) = κ(i,j, u) the number
of indices ike(i,j) and note that if j φ ir for all r or / = it for some t, then all
the terms in (2.6) vanish, otherwise all but one of them are zero. Hence, we
obtain

f> = ^ ••• Λ / Λ • - . , (2.8)

the indices on the right-hand side being ordered.
Further, π(S)(Eij)u = 0 unless / = ir for some r and j φ it for all t\ of these

two conditions hold, then in (2.7) the number of non-zero summands with
fixed μ = μ(k) is CJί-Y^ and each non-zero term is of the form

Λ

wherey > vί > > v μ_! > / (and vί = ί i ΐ μ = 1).
By using (2.4) we get

^3U-0/2- 1 ( ( 2 _^ ) ( _^-l ) r ( i , Λ . . . Λ ^ Λ . . . Λ / ^ . Λ / ^ Λ . . (2.9)

the indices on the right-hand side being ordered.



Quantum Group A^ 405

2.8. Define ./^((C00) as the C-span of all expressions of the form w0 Λ
w _ ! Λ u-2 Λ - with the identification

• ' ' Λ fi Λ fj Λ ' = - ' Λ fj A ft Λ

for / ^ y . Next, define the C [[A]] -module isomorphism j: Λ$ ^((C00) ->
4?)(C°°)<8>C[[A]] b y / ^ Λ / f c Λ . - . Λ ..-->/;, Λ / ί 2 Λ ... Λ . . . , and denote
by ρ(s) the usual representation of gl^ in /^(C00):

Q(s)(lίj)u = lίjUθ Λ M _ ! Λ ... + UQ Λ /υ W _ ι Λ W _ 2 Λ ••• .

Now, if we define

i + l g r g j-l

then the formulae

(2.H)

(2.12)

define the representation π(s): Uh(glx) ->• End(/l(^(g)C[[A]]) [see (2.5), (2.8),
(2.9)].

3. The Algebras ^(^(^J), Uh(g(AJ)

3.1. Definition. ί4(g'(^oo))/ is tne topologically free C[[/z]]-module, complete
in /z-adic topology, and the unital algebra with generators {c, Eti, Etj, Ejt =

and relations

1) [c, everything] = 0; [ E l t , E j j ] = Q, all ij, (3.1)

2) formulae (1.10)-(1.15); (3.2)

3) formulae (1.1 6) -(1.22) with

(En, ί > 0 o o . o .

ι + c, iίO' H** = E»-E»' *J = <1">

substituted for Eiif Hij9 Kiy (3.3)

3.2. i4(0'C4oo))/ can be equipped with a Hopf algebra structure, the coproduct

being defined on generators by formulae

A^®! + 1®^, (3.4)

and by

formulae (1.23), (1.24) with Ktj substituted for Ktj. (3.5)

One easily gets the following analogue of Theorem 1.8.
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3.3. Theorem. The set of ordered monomials

rl pn __ I T-T pmj
c i^έ — c IJ.-'-'i/

with finitely many non-zero exponents 72^62+, / e Z + form a basis in the
<C[[h]]-module Uh(g'(A^)f.

3.4. Set /' = 0 (C EU, define linear functional ε f : h' -> C by st(Ejj) = δ t j and
i

set αf = εf — εί + 1, QV = 0 TL+ α f . Denote by Uh(n+) (respectively C7Λ(«_)) the

unital subalgebra in Uh(g'(A^))f generated by {JS^}^- (respectively
Evidently,

C/Λ(/ι±) = 0 I7h(»±)±α,
αeQ'+

where

for α φ 0, and Uh(n±)0 = <C. By Theorem 3.3, any element ueUh(g'(Ax))f

can be represented as follows:

'̂ .*.!.*. 0-6)

Here Jζ > f c f Z e ί/Λ(«_)_a, $βtk,ι,t£ Uh(n+)β and for fixed fc, / there are finitely
many non-zero summands in (3.6).

To obtain the completed algebra Uh(g'(A^}) we replace the sums over (α, /?, 7)
for the series but impose certain conditions on pairs (α,y) corresponding to
non-zero summands (note that the set of such pairs is uniquely defined by the
series u) .

3.5. Setfor α-

By connecting i,j for | / — j \ = 1, we can view 5(a,y) as a graph. Denote by
^/(α, 7) the set of its connected components and set for p e 5£+ ,

where the union is taken over non-zero summands with k ^ p in (3.6).
For ieZ and/?eZ+ set lnt(u,p,i) = {/e *#(u9p)\i e/}.
Recall that $β,k,ι,t (respectively Jζ ί Jk(Z) are expressed via ̂  and ̂ f + i (re-

spectively Eί + 1>ί), z e Z , and, for reN, define the series u(r) by substituting 0
for all En (i ̂  - r or / ^ r + 1) and for all E^ t + 1 , £ ί + l ϊ ί, ( | / | ^ r).

3.6. Definition. The series u of the form (3.6) is said to belong to Uh(g'(A^)}
provided the following conditions hold
a) for all p e Z+ , / e Z the sets Int (w, p, 0 are finite,
b) W (r)eC4(^(^oo))/foral lrGN.

3.7. Definition. Let Spti be finite sets of finite integer intervals containing /
(i e Z, p e TL+) , and letV e N.

We say that ueUh(g'(A^)) belongs to the neighbourhood of zero
V({JpΛ}i^pe7L+,r} provided
a) Int (i/, /?, /) c: ̂  t-, V/7 e TL+ , V i e Z,
b) w(r) = 0.
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3.5. We introduce in Uh(g'(A^}} the topology by declaring (V '({Spti} ί6Z, peZ+ , r)}
to be the fundamental system of neighbourhoods of zero.

3.9. Proposition. Uh(gf(A^)f c Uh(gf(Aao)) densely.

Proof. u(r) -> w as r -> oo.

3.10. Theorem. Lei W ίe IWί^J), / = 1,2, and let {uϊ}^ c ̂ '(ΛJ), fo? α
sequence having the limit ut. Then the sequence {u{ u{} has the limit, denote it w, in
Uh(g'(A^}) and u is independent of the choice of sequences {u{} , {u{} .

Proof. Write the expression (3.6) for u{ and uj ά= u{ u{ in the form

u{ = Σ Σ Σ Σ Σ u{(k, /, α, ft y, 0, (3.7)
fc I Λ,β γ t

uj = ΣΣΣΣΣuj(k,l,a,β,γ,t), (3.8)
fc I a,β γ t

and fix a tuple (£,/,α,fty, ί) From Theorems 1.3, 1.4 and from Definition 3.6
it follows that uj(k,l,a,β,γ,t) depends on finitely many summands in (3.7),
/ = 1,2. Moreover, the number of these summands is bounded uniformly in j.
From Definitions 3.7, 3.8, it follows that w 7 '(fc,/,α,fty,0 is independent of 7,
provided j is sufficiently large : u j (k, /, α, ft 7, /) = u (k, /, α, ft y, /) for j ^ y'0 ,
where 7o depends on (k,l9a,β,γ9t). Hence, u(k9l9cc,β9γ,t) is independent oif a
choice of sequences {u{} , {uJ

2} . Now we see that the omission of upper indices
in (3.8) gives the formula u\ clearly, it's independent of a choice of sequences.

The close inspection of the above arguments shows that u obeys the condi-
tions of Definition 3.6.

3.11. Let s e N. Consider a formal series

u= Σ hk Σ cl>® ®cls Σ Σ

βs,k,l,ts

Non-zero summands of this series determine the set of tuples of pairs (α, y) =

where the union is taken over non-zero summands with k ^ p in (3.9).
For i e TL* and peZ+ set

Int(u9p9i) = { ( I i

9 I 2

9 . . . , I < ) e S l ( u 9 p ) x ••• x Js(u9p)\iίe I1, . . . , isels}.

For r eN define the series u(r) by substituting 0 for all Eit (i ̂  — r or
/ ^ r + 1) and all £M + 1, £ί + 1>ί ( | / | ^ r).

3.12. Definition. The series M of the form (3.9) is said to belong to Uh(gf(A^)®s

provided the following conditions hold
a) for every p e Z+ , / e 5P the set Int(u9 p, i) is finite;
b) u(r) e Uh(g'(A«3)f for all r e N.
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3.13. Definition. Let Spti. be finite sets of finite integer intervals, containing i 3

(peZ+9l£j^s9ijeX) and let r e N.
We say that u e Uh(g'(A^}}®s belongs to the neighbourhood of zero

^({Λ,iι x ••• x 4, J> r)> Provided
a) Int(ιι, />,/) c^x ... x . / | , f i β V ι e Z s , V / > e Z + ,
b) ιι(r) = 0.

3.14. We introduce in Uh(g'(A^}}®s the topology by declaring {K({./pfίl x •••
x ,/p>ίs} , r} to be the fundamental system of neighbourhoods of zero.

3.15. The analogues of Proposition 3.9 and Theorem 3.10 for Uh(g'(A^})®s are
obvious.

3.16. Theorem. Let ue U^g^A^)) and let {uj} c Uh(g'(A^)}f be a sequence
having the limit u.

Then the sequence {A (uj)} c= Uh(g'(A^)J2 has the limit, denote it A (u), in
)®2, and it is independent of a choice of a sequence.

Proof 'is similar to that of Theorem 3.10, use being made of Theorem 1.5.
One can easily state the analogues of Theorem 3. 16 for the maps id® J,

A® id: Uh(g'(Aaΰ))*2-+Uh(g'(Aaΰ))**.
Since Uh(g'(A^)}f is a Hopf algebra, from Theorems 3.10, 3.16 and their

analogues the next theorem immediately follows.

3.17. Theorem. Uh(g'(A^)} is a topological Hopf algebra with the product map

Uh(g'(AJ)®2 ιu,®u2^>uE Uh(g'(AJ)9

and the coproduct map

3.18. If we set in all constructions of this section cj= 0 then we get another
Hopf algebra which can be naturally denoted by Uh(gl«^ Note that Uh(g'(A^)}
can be naturally viewed as the central extension of Uh(gl^}.

Now we extend Uh(g'(A^)) be derivation d.

3.19. Definition. Uh(g(A00))f is a topologically free (C[ [h]] -module, complete in
/z-adic topology, and an unital algebra with generators {c,d} u {£;,-} ;,7 e2 and
relations
1. formulae (3.1)-(3.3);
2. [d,Eiti + 1] = δioEitί + 1, [d,Ei+lti] = - δioEi + lίiί [d,c] = 0, [ d 9 E i t ] = 0 all /.

Uh(g(AaQ))f can be equipped with a Hopf algebra structure, the coproduct
being defined by (3.4), (3.5) and by A (d) = d® 1 + 1 ® d.

3.20. Now, in the complete analogy with the definition of Uh(g'(A^)} we can
define the Hopf algebra Uh(g(Aao))9 in the definition of polynomials in c being
replaced for polynomials in two variables c, d [see (3.6)] .

3.21. Below we shall need the subspaces K = h'@(Cc c Uh(g'(A^)}f c
Uh(g'(AJ), h = h'®<£d^ Uh(g(AJ)f c Uh(g(Aaΰ)) and the subalgebras

ϋ*(*±)/ c U h ( g r ( A a o ) ) f f 9 Uh(b'±) c Uh(g'(AJ)9

Uh(b±)fc,Uh(g(Aaΰ))f9

defined in an obvious way.
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4. Representations of the Algebras Uh(gf(Aao))9 Uh(g(Aao))

4.1. Definition. A representation of the algebra Uh(g(A^) in a topologically
free <C[ [A]] -module Fis said to be restricted if for a given vector f = Σ A7 't;/e V

;=°
there exist r7 e N, y = 0, 1, . . . , such that for every j vector t^ is killed by the
following subspaces :
1. Uh(n+)a provided 5(α) Φ [- r^r,-] or A f α > r, ,
2. C7Λ(«_)_α provided 5(α) c (- oo, - η) or A / α > r,- or S(a) c (r, +1, + oo),
3. (C Uϋ provided / < — η or z > r, + 1 [for definitions of Uh(n±)±Λa.nd S(α), see
3.3,3.4].

Restricted representations of the algebras Uh(g'(A^)}f, Uh(g'(A^)),
Uh(g(A^))f are defined by the same conditions.

4.2. Theorem, a) A restricted representation σf of the algebra U^g^A^f ex-
tends uniquely to a restricted representation σ of the algebra Vh(g'(A^)) and to
restricted representation σ of the algebra Uh(g(A^)), the action of d being de-
fined by

a(d) = - Σ σ f ( E j j ) . (4.1)
j>o

b) A restricted representation σf of the algebra Uh(g(A00))f extends uniquely to a
restricted representation σ of the algebra Uh(g(A00)).

Proof. Evident.
It is clear that every submodule or quotient of a restricted module is restrict-

ed, and that the direct sum or tensor product of a finite number of restricted
modules is also restricted.

4 J. Example. The formulae

*• /^λ 1 sr fΐT \ )Q(s)('ii)> I > S fλ^\σ(s}(c) = 1, σ^En) = <„,, ^ r . < , (4.2)
(Q(s)\liί) — 1^ l = s

- - (s) rr

(4.4)

where i < j, define restricted representations of the algebras U h ( g / ( A a o ) ) f 9

Uh(g'(A^} in ΛSίC00)® C[[A]] [cf. (2.10)-(2.12)].

4.4. Example. The formulae (4. 2) -(4. 4) together with formula

<Γ(S)(</) = - Σ °(S)(Ejj)

define restricted representations of the algebras Uh(g(Aao))f,

4.5. In what follows the linear functional A on K = A '0Cc is supposed to sat-
isfy the conditions A(Hj) e Έ+ and Λ(Hj) > 0 for finitely many j.

The functional Λs is defined by conditions
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4.6. Definition. A Uh(g'(A^)} -module Fis called a highest weight module with
highest weight A if there exists a non-zero vector veV such that

Uh(n+)υ = Q, h(v) = A(h}v ΐorheh'.

The vector V is called a highest weight vector.
A highest weight module over Uh(g(Aao)) is defined in the similar fashion.

4.7. Example. The representation σ(s) of Example 4. 3 is a highest weight re-
presentation with the highest weight ΛS9 the highest weight vector being
/ S Λ/s-l A / S _ 2 Λ • • ' .

Denote by L(As)h the corresponding Uh (g'(A^}} -module and recall that the
representation ρ(s): U(g'(AJ) -> End Λ$(C°°) defined by ρ(s)(c) = 1,

βw(7u) IΛ..Π.Λ otherwise,

is the classical highest weight representation L(AS) with the highest weight As,
the highest weight vector being fs Λ / s_! Λ / s_2 Λ .

Recall also the following classical result [K].

4.7. Theorem. The space of the basic representation L(A0) can be identified with
the space of polynomials (C [x1, x2, ... ] so that c i—> 1 and

where Γ(u,v) is the following vertex operator:

Hence, from formulae (4.2) -(4.4) and the definition of the representation
σ(0) we obtain the following.

4.8. Theorem. The space of the representation L(AQ}h over Uh(gf(A^)) can be
identified with the space C [[/?]] (g) <C [x1 , x2 , . . . ] so that c\-^ί and

i,j U — V

where for i < j

EH ~ EH,

Etj = (- ly-'-1

 ?ι-3U-ί>

Here Err = £:„ if r > 0, and Err = Err + cifr^O.
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In particular, for k e N,

ieZ

5. Quantum /^-Matrices and Quantum Casimir Operators
for the Algebras Uh(g'(AJ), Uh(g(AJ)

5.1. Set for finite set {A j } ι^/^s of restricted t4(^/(^400))/-modules and for

= 0, 1 £j ^ p}9

and introduce in Uh(g' (A^))JS the topology by declaring [V({Lij9 I?/;})} to
be the fundamental system of neighbourhoods of zero. The completion of
Uh(g'(A^))Js with respect to this topology will be denoted by Uh(g'(A<J)&s.
Clearly, Uh(g'(A^})®s ^ Uh(gf(A^))^>s continuously and the product in
Uh(g'(A^})^s has the unique continuous extension to the product in
Uh(g (Aj))®s. Also, the maps

A, id(g)J, A® id

have unique continuous extensions to the maps

A, id ® A, A® id.

In complete analogy with this definition we define ^(gO^))^.

5.2. Theorem, a) Uh(g'(A^)) is a quasitήangular Hopf algebra, i.e. there exists
invertίble R e Uh(g'(A^))^2 such that

(A®id)(R) = Rί2R23, (id®A)(R) = R,3Rί2, (5.1)

Δ'(u) = RΔ(u)R-\ ueUh(g'(AJ). (5.2)

b) The statement a) holds for Uh(g(AOQ)).

5.3. Remark. Writing R = Σ R(l) ® ^k2), the notation used is Rt , = Σ 1 ® - - -
k k

® R(k} ® '" ® ^12) ® 1 ® ' ' ' with the non-unit factors at / and j entries.

5.4. Proof of Theorem 5.2. We'll construct an ^-matrix for Uh(g(Aao)); the
^-matrix for Uh(g'(A^)) can be obtained from the ^-matrix for Uh(g(A^)} by
substituting — Σ £jj for rf (see Theorem 4.2).

Since Uh(g(Aao))f is dense in ^(^(^4^)), it suffices to construct the R-
matrixfor Uh(g(AOD))f.

5.5. We'll use the quantum double construction [Dl]. Recall that the ^-matrix
is the image of the canonical element from £& (Uh(b +)) f ® & (Uh(b +) f)* under
projection to Uh(g(AσQ))®s. Here the subalgebra Uh(b+)f c Uh(g(Aao))f is a
subalgebra generated by c, d, {Eij}i^j and the double Sf(A) of the Hopf



412 S. Levendorskiϊ and Y. Soibelman

algebra A is defined in [Dl]. We omit the details. The realization of Drinfeld's
approach to construction of the ^-matrix in a finite-dimensional situation can
be found in [R] or [Le S] , [KR] .

5.6. The basis in the <C[ [A]] -module Uh(b+)f consists of ordered monomials

{l\E?yckd1}
ij

with finitely many non-zero exponents. Define linear functionals on Uh(b+)f by
the following conditions :

(ηij9 Eijy = 1, and =0 on other monomials;

<ξ c 5c> = 15 and =0 on other monomials;

<ξd,d> — 1> and = 0 on other monomials;

and set ηt = ^,,,+1, & = ηa The same arguments as those in [R] give the follow-
ing formula for the canonical element of @(Uh(b+)f) (x) @(Uh(b+)f)*

R=Π exp^Etj ® ηtj) exp(Σ Eit ® ξi + c ® ξc + d® ζd). (5.3)
i<j i

5.7. Now, to derive from (5.3) the formula for the J^-matrix, we have to estab-
lish the isomorphism φ: Uh(b+)f -> Uh(b-)f. For this purpose we derive com-
mutation relations between ηt, ξj9 ξc, ξd and compute Aηh Δξj9 Aξc, Aξd.

5.8. Lemma, a) ξi9 ξj9 ζC9 ξd commute for all ij;

= Q ίf\ί-j\>\ andηfηi±1-(q + q-ΐ}ηiηi±1ηi + ηi±1ηf = 0,

The proof is essentially the same as those of Lemma 2 and the corollary
following it in [R] .

5.9. Lemma, a) A ξt = ξt (x) 1 + 1 (g) ξi9

b) Δηj = Y\J® 1 + Qxp(ξj - ξj+i + δjQξd)

Proof, a) is immediate.
b) δr\j takes a non-zero value on Ej j+ί (x) 1 : (Δηj9 E3 j+1 (x) 1> = 1 and, possi-
bly, on Π Eft cl dk ® EjJ+ ! :

δj0)
k
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Hence,

ι,k,m lϊi k.

and b) is proved.

5.10. Lemma 5.8, d) shows that we can set φ(ηj) = λ j F j t j + ί 9 where A/eC[[/*]]

are invertible. By Lemma 5.8, c) we must set φ (ξc) = -d, and since ξd commutes

with everything, we must have φ(ξd) = λc with λ e <C[[h]] invertible. Further, we

see that the conditions in Lemma 5.8, b) are satisfied with φ(ξt) = - Eii9 hence,
h

the equality in Lemma 5.9, b) is satisfied with φ(ξd) = - c.

So, it remains to calculate λj9 but this can be done as in [R]. The result is
λj = (1 — q~2), and, from Lemma 5.8, e) we derive easily φ(r]ij) = (1 — q~2) Ftj.

Now we derive from (5.3) the formula for ^-matrix for Uh(g(A00))f (and,
hence, for Uh(g(Aao))):

_ , τ ,,. __^^ _ ^ _ x V E:.® E.; + c ® d + d® c , _ .,
R= Π.expβ-2((l -q 2}Eij®Eji)-qί . (5.4)

Finally, note that (5.4) with d = — Σ ^/ j gives the formula for the ^-matrix
for Uh(g'(AJ}. ^>0

5.11. Set ρ = ΣJEjj Then the square of the antipode equals to Ad(ehe) and

the general formula (valid in any quasitriangular Hopf algebra) give quantum
Casimir element [D2]:

k

and the formula for action of the coproduct on it:

A (e~hc/2) = (e-hcl2 ® e'hcl2} (R21 R)'1.

Using this result one can try to obtain the quantum analogue of the KP
hierarchy (see [K, Chap. 14]).
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