Quantum Group \boldsymbol{A}_{∞}

Serge Levendorskiĭ ${ }^{1}$ and Yan Soibelman ${ }^{2}$
${ }^{1}$ Rostov Institute for National Economy, SU-344798 Rostov-on-Don, USSR
${ }^{2}$ Rostov State University, SU-344006 Rostov-on-Don, USSR

Received January 15, 1991

Abstract

The quantum groups $g l_{\infty}$ and A_{∞} are construted. The representation theory of these algebras is developed and the universal R-matrix is presented.

0.1. The Lie algebra $g l_{\infty}$ and its extension A_{∞} play an important role in the theory of nonlinear equations [DJKM]. They are of interest as an example of Kac-Moody-Lie algebras of infinite type [K, FF]. Therefore it is natural to ask: what are the quantum analogues of these algebras in the sense of the quantum groups theory of Drinfeld [D1]? The answer is trivial for $g l_{\infty}=$ $\underset{n}{\lim } g l_{n}$, but this is not the case for A_{∞}. Some non-triviality is due tot the fact that there is no Lie algebra $g l_{\infty}$ in the quantum group case [we have the quantized universal enveloping algebra $U_{h}\left(g l_{\infty}\right)$ only]. Hence one must analyse the completion of $g l_{\infty}$ and the central extension of the corresponding algebra $g l_{\infty}$ in terms of $U_{h}\left(g l_{\infty}\right)$ only. Moreover we need the Hopf Algebra structure in $U_{h}\left(A_{\infty}\right)$. This is essential in the case $h=0$ already, because, for example, the well-known KP hierarchy is related to the equations for the orbit of highest vector in $L\left(\Lambda_{0}\right) \otimes L\left(\Lambda_{0}\right)$ where $L\left(\Lambda_{0}\right)$ is the basic representation of $A_{\infty}[\mathrm{K}$, Chap. 14]. For the same reason we want to obtain $U_{h}\left(A_{\infty}\right)$ as the quasitriangular topological Hopf algebra [D1].

The purpose of the paper is to construct $U_{h}\left(g l_{\infty}\right)$ and $U_{h}\left(A_{\infty}\right)$ as quasitriangular topological Hopf algebras and investigate the representation theory of these algebras. Some results along this lines have been obtained by Hayashi in $[\mathrm{H}]$. Note that there are no constructions of $U_{h}\left(g l_{\infty}\right)$ and $U_{h}\left(A_{\infty}\right)$ as quantum groups in his paper.
0.2. Let us describe the contents. In Sect. 1 we construct the Hopf algebra $U_{h}\left(g l_{\infty}\right)$. This is the quantum analogue of $g l_{\infty}$. The representations of $U_{h}\left(g l_{\infty}\right)$ in the spaces of sequences and (quantum) semi-infinite forms are given in Sect. 2. The Hopf algebra $U_{h}\left(A_{\infty}\right)$ (and some related algebras) is constructed in Sect. 3. This construction is more complicated than in the non-quantum case [K]. The representation theory of $U_{h}\left(A_{\infty}\right)$ is presented in Sect. 4. Our class
of representations is the same as in [FF, Chap. 3]. For example, we construct the representations in the space of quantum semifinite forms and in the space of the usual semifinite forms. The vertex operators for $U_{h}\left(A_{\infty}\right)$ is constructed also. In the last section, Sect. 5 we construct the universal quantum R-matrix for $U_{h}\left(A_{\infty}\right)$ and the related quantum analogue of Casimir operator [D2].
0.3. Concluding remarks. We deal with algebras and modules over formal power series $\mathbb{C}[[h]]$. It is easy to see that all the results of Sect. 1-4 remain true for fixed $h \notin \pi i \mathbb{Q}$.

We can't construct the embedding of Hopf algebras $U_{h}\left(A_{n}^{(1)}\right) \rightarrow U_{h}\left(A_{\infty}\right)$. This differs strikingly from the case $h=0$. Still, this embedding exists in certain representation space (cf. [H, Sect. 6]).
0.4. We wish to express our thanks to V. Drinfeld for useful discussions.

1. The P.B.W. Basic for $\boldsymbol{U}_{\mathrm{h}}\left(\boldsymbol{g} \boldsymbol{l}_{\infty}\right)$

1.1. Definition. Let $\mathbb{C}[[h]]$ be the ring of formal power series in $h . U_{h}\left(g l_{\infty}\right)$ denotes the Hopf algebra, which is a topologically free module over $\mathbb{C}[[h]]$ (complete in h-adic topology), with generators $\left\{X_{i, i+1}, X_{i+1, i}, E_{i i}\right\}_{i \in \mathbb{Z}}$ and fundamental relations

$$
\begin{align*}
{\left[E_{i i}, E_{j j}\right] } & =0 \tag{1.1}\\
{\left[E_{i i}, X_{j, j+1}\right] } & =\left(\delta_{i j}-\delta_{i, j+1}\right) X_{j, j+1} \\
{\left[E_{i i}, X_{j+1, j}\right] } & =\left(-\delta_{i j}+\delta_{i, j+1}\right) X_{j+1, j} \tag{1.2}\\
{\left[X_{i, i+1}, X_{j+1, j}\right] } & =\delta_{i j} \frac{q^{H_{i, i+1}}-q^{-H_{i, i+1}}}{q-q^{-1}} \tag{1.3}
\end{align*}
$$

where $H_{i j}=E_{i i}-E_{j j}, q=\exp (h / 2)$

$$
\begin{gather*}
{\left[X_{i, i+1}, X_{j, j+1}\right]=0, \quad|i-j|>1} \\
X_{i, i+1}^{2} X_{j, j+1}-\left(q^{2}+1+q^{-2}\right) X_{i, i+1} X_{j, j+1} X_{i, i+1}+X_{j, j+1} X_{i, i+1}^{2}=0 \\
|i-j|=1 \tag{1.4}
\end{gather*}
$$

the formulae (1.4) with pairs of indices $(i+1, i),(j+1, j)$ substituted for pairs $(i, i+1),(j, j+1)$.

The coproduct map is defined on generators by

$$
\begin{align*}
\Delta E_{i i} & =E_{i i} \otimes 1+1 \otimes E_{i i} \\
\Delta X_{i, i+1} & =X_{i, i+1} \otimes q^{+H_{i, i+1 / 2}}+q^{-H_{l, i+1 / 2}} \otimes X_{i, i+1} \\
\Delta X_{i+1, i} & =X_{i+1, i} \otimes q^{+H_{i, i+1 / 2}}+q^{-H_{l, i+1 / 2}} \otimes X_{i+1, i} \tag{1.6}
\end{align*}
$$

and the counit ε and the antipode S are defined by

$$
\begin{align*}
\varepsilon\left(E_{i i}\right) & =\varepsilon\left(X_{i, i+1}\right)=\varepsilon\left(X_{i+1, i}\right)=0 \\
S\left(E_{i i}\right) & =-E_{i i}, \quad S\left(X_{i, i+1}\right)=-q X_{i, i+1}, \quad S\left(X_{i+1, i}\right)=-q^{-1} X_{i+1, i} \tag{1.7}
\end{align*}
$$

1.2. The adjoint representation ad: $U_{h}\left(g l_{\infty}\right) \rightarrow$ End $U_{h}\left(g l_{\infty}\right)$ is given by $\mathrm{ad}_{a}(x)$ $=\Delta(a) \circ(x)$, where $(a \otimes b) \circ x=a x S(b)$. Starting with the opposite coproduct Δ^{\prime} and the related antipode S^{\prime}, we obtain another adjoint action ad'. We introduce the new generators $E_{i, i+1}=X_{i, i+1}^{-} \cdot q^{-H_{i, i+1 / 2}}, F_{i, i+1}=X_{i+1, i} \cdot q^{H_{i, i+1 / 2}}$ and define the quantum analogues of root vectors by induction: for $i<j-1$,

$$
\begin{equation*}
E_{i j}=\operatorname{ad}_{E_{i, i+1}}\left(E_{i+1, i}\right), \quad F_{i j}=\operatorname{ad}_{F_{i, i+1}}^{\prime}\left(F_{i+1, j}\right) . \tag{1.8}
\end{equation*}
$$

From (1.8), (1.7), (1.2) it follows that

$$
\begin{equation*}
E_{i j}=\left[E_{i, i+1}, E_{i+1, j}\right]_{q}, \quad F_{i j}=\left[F_{i, i+1}, F_{i+1, j}\right]_{q} \tag{1.9}
\end{equation*}
$$

where $[A, B]_{q}=A B-q B A$, and

$$
\begin{equation*}
\left[E_{k k}, E_{i j}\right]=\left(\delta_{k i}-\delta_{k j}\right) E_{i j}, \quad\left[E_{k k}, F_{i j}\right]=\left(-\delta_{k i}+\delta_{k j}\right) F_{i j} \tag{1.10}
\end{equation*}
$$

In the next subsections we state and prove the communication relations for root vectors.
1.3. Theorem. Let $i<j<k<m$. Then

$$
\begin{align*}
{\left[E_{i j}, E_{k k}\right]_{q} } & =E_{i k}, \tag{1.11}\\
{\left[E_{i k}, E_{j k}\right]_{q^{-1}} } & =0, \quad\left[E_{i j}, E_{i k}\right]_{q^{-1}}=0, \tag{1.12}\\
{\left[E_{i k}, E_{j m}\right] } & =\left(q^{-1}-q\right) E_{i m} E_{j k}, \tag{1.13}\\
{\left[E_{i j}, E_{k m}\right] } & =0, \quad\left[E_{i m}, E_{j k}\right]=0, \tag{1.14}
\end{align*}
$$

formulae (1.11)-(1.14) with the letter F substituted for the letter E.

Proof. Formulae (1.11)-(1.14) were proved in [R] and (1.15) is their consequence since linear Cartan involution ω_{0} defined on generators by
$\omega_{0}(h)=h, \quad \omega_{0}\left(E_{i i}\right)=-E_{i i}, \quad \omega_{0}\left(X_{i, i+1}\right)=-X_{i+1, i}, \quad \omega_{0}\left(X_{i+1, i}\right)=-X_{i, i+1}$
extends to Hopf algebra isomorphism, $\omega_{0}:\left(U_{h}\left(g l_{\infty}\right), \delta\right) \rightarrow\left(U_{h}\left(g l_{\infty}\right), \Delta^{\prime}\right)$ and

$$
\omega_{0}\left(E_{i j}\right)=(-1)^{j-i} F_{i j}, \quad \omega_{0}\left(F_{i j}\right)=(-1)^{j-i} E_{i j}
$$

Set $K_{i j}=q^{H_{i j} / 2}$.
1.4. Theorem. a) For $i<j<k<m$,

$$
\begin{equation*}
\left[E_{i j}, F_{k m}\right]=0, \quad\left[E_{k m}, F_{i j}\right]=0 \tag{1.16}
\end{equation*}
$$

b) For $i<j$

$$
\begin{equation*}
\left[E_{i j}, F_{i j}\right]=\frac{\left(-q^{2}\right)^{j-i}}{1-q^{2}}\left(K_{i j}^{2}-K_{i j}^{-2}\right) \tag{1.17}
\end{equation*}
$$

c) For $i<j<k<m$,

$$
\begin{align*}
{\left[E_{i k}, F_{j k}\right] } & =-\left(-q^{2}\right)^{k-j} E_{i j} K_{j k}^{-2} \tag{1.18}\\
{\left[E_{i m}, F_{i j}\right] } & =\left(-q^{2}\right)^{j-i} K_{i j}^{2} E_{j m} \tag{1.19}\\
{\left[E_{j m}, F_{i m}\right] } & =\left(-q^{2}\right)^{m-j} F_{i j} K_{j m}^{2} \tag{1.20}\\
{\left[E_{i j}, F_{i m}\right] } & =-\left(-q^{2}\right)^{j-i} K_{i j}^{-2} F_{j m} \tag{1.21}\\
{\left[E_{i m}, F_{j k}\right] } & =\left[E_{j k}, F_{i m}\right]=0 . \tag{1.22}
\end{align*}
$$

Proof. a) (1.16) is an easy consequence of (1.3), (1.9).
b) For $j-i=1$, (1.17) is just (1.3) and the general case can be proven by induction, use being made of the formulae (1.11), (1.15), (1.10).
c) Formulae (1.18)-(1.22) follows from Theorem 1 and the formulae (1.17), (1.11).

Below now consider the action of the coproduct on root vectors.
1.5. Theorem. For $i<j$,

$$
\begin{align*}
& \Delta\left(E_{i j}\right)=E_{i j} \otimes 1+\left(1-q^{2}\right) \sum_{i<m<j} E_{i m} K_{m j}^{-2} \otimes E_{m j}+K_{i j}^{-2} \otimes E_{i j} \tag{1.23}\\
& \Delta\left(F_{i j}\right)=1 \otimes F_{i j}+\left(1-q^{2}\right) \sum_{i<m<j} F_{m j} \otimes F_{i m} K_{m j}^{2}+F_{i j} \otimes K_{i j}^{2} \tag{1.24}
\end{align*}
$$

Proof. Formula (1.23) was proved in [R], and (1.24) follows from (1.23) since $\omega_{0}:\left(U_{h}\left(g l_{\infty}\right), \Delta\right) \rightarrow\left(U_{h}\left(g l_{\infty}\right), \Delta^{\prime}\right)$ is Hopf algebra isomorphism and $\omega_{0}\left(K_{i j}^{-2}\right)$ $=K_{i j}^{2}, \omega_{0}\left(E_{i j}\right)=(-1)^{j-i} F_{i j}$.
1.6. Set

$$
\tilde{E}_{i j}=\left\{\begin{array}{ll}
1, & i \geqq j \\
\left(1-q^{2}\right) E_{i j}, & i<j
\end{array}, \quad \tilde{F}_{i j}= \begin{cases}1, & i \geqq j \\
\left(1-q^{2}\right) F_{i j}, & i<j\end{cases}\right.
$$

and rewrite (1.23), (1.24) in the more convenient fashion:

$$
\begin{equation*}
\Delta\left(\tilde{E}_{i j}\right)=\sum_{i \leqq m \leqq j} \tilde{E}_{i m} K_{m j}^{-2} \otimes \tilde{E}_{m j}, \quad \Delta\left(\tilde{F}_{i j}\right)=\sum_{i \leqq m \leqq j} \tilde{F}_{m j} \otimes \tilde{F}_{i m} K_{m j}^{2} \tag{1.29}
\end{equation*}
$$

Define the homomorphisms

$$
\Delta^{(j)}: U_{h}\left(g l_{\infty}\right) \rightarrow U_{h}\left(g l_{\infty}\right)^{\otimes(j+1)}
$$

by induction:

$$
\Delta^{(1)}=\Delta, \quad \Delta^{(j+1)}=\left(\Delta \otimes \mathrm{id}^{\otimes j}\right) \Delta^{(j)}=\left(\mathrm{id}^{\otimes j} \otimes \Delta\right) \Delta^{(j)}, \quad j \geqq 1
$$

Due to (1.29)

$$
\begin{align*}
\Delta^{(l)}\left(\tilde{E}_{i j}\right) & =\sum_{i \leqq r_{1} \leqq r_{2} \leqq \cdots \leqq r_{1} \leqq j} \tilde{E}_{i r_{1}} K_{r_{1} j}^{-2} \otimes \tilde{E}_{r_{1} r_{2}} K_{r_{2} j}^{-2} \otimes \cdots \otimes \tilde{E}_{r_{l} j} \tag{1.30}\\
\Delta^{(l)}\left(\tilde{F}_{i j}\right) & =\sum_{i \leqq r_{1} \leqq r_{2} \leqq \cdots \leqq r_{l} \leqq j} \tilde{F}_{r_{1} j} \otimes{\tilde{r_{r-1}} r_{l}} K_{r_{l} j}^{2} \otimes \cdots \otimes \tilde{F}_{i r_{1}} K_{r_{1} j}^{2} \tag{1.31}
\end{align*}
$$

and due to (1.6)

$$
\begin{gather*}
\Delta^{(l)}\left(E_{i i}\right)=E_{i i} \otimes 1^{\otimes l}+1 \otimes E_{i i} \otimes 1^{\otimes(l-1)}+\cdots+1^{\otimes l} \otimes E_{i i}, \tag{1.32}\\
\Delta^{(l)}\left(K_{i j}^{p}\right)=K_{i j}^{p} \otimes \cdots \otimes K_{i j}^{p} . \tag{1.33}
\end{gather*}
$$

1.7. Set for $i<j E_{j i}=F_{i j}$ and introduce in \mathbb{Z}^{2}, the ordering as follows:

1) if $i<j, l<k, r<s$, then

$$
(j, i)<(l, l)<(k, k)<(r, s)
$$

2) let $r^{\prime}<s^{\prime}, r<s$; then
and

$$
\left(r^{\prime}, s^{\prime}\right)<(r, s) \quad \text { iff } \quad r^{\prime}>r \quad \text { or } \quad r^{\prime}=r \quad \text { and } \quad s^{\prime}>s
$$

$$
\left(s^{\prime}, r^{\prime}\right)>(s, r) \quad \text { iff } \quad r^{\prime}>r \quad \text { or } \quad r^{\prime}=r \quad \text { and } \quad s^{\prime}>s
$$

1.8. Theorem. The set of ordered monomials

$$
E^{n}=\prod_{(i, j) \in \mathbb{Z}^{2}} E_{i j}^{n_{i j}}
$$

with finitely many non-zero exponents $n_{i j} \in \mathbb{Z}_{+}$form a basis in $\mathbb{C}[[h]]$-module $U_{h}\left(g l_{\infty}\right)$.

Proof is essentially the same as that for $U_{h}(s l(n))$ in [R, Theorems 1.3-1.5] being used.

2. The Representations of $U_{h}\left(g l_{\infty}\right)$ in $\left(\overline{\mathbb{C}}_{-}^{\infty}\right)_{h}$ and in $\Lambda_{(s), h}^{\infty}$

2.1. Definition. Let A be an algebra and $\mathbb{C}[[h]]$-module. Let V be topologically free $\mathbb{C}[[h]]$-module. Then a $\mathbb{C}[[h]]$-module homomorphism $\varrho: A \rightarrow$ End V is called a representation of A in V provided ϱ is continuous in the h-adic topology.
2.2. Definition. $\overline{\mathbb{C}}_{-}^{\infty}$ denotes the vector space of sequences $\left(u_{i}\right)_{i \in \mathbb{Z}}$ with finitely many non-zero u_{i} for $i>0$. We consider $\overline{\mathbb{C}}_{-}^{\infty}$ as a topological vector space, the fundamental system of neighbourhoods of zero being $\left\{V^{r} \mid r \in \mathbb{Z}\right\}$, where

$$
V^{r}=\left\{u \mid u_{i}=0 \text { for } i>-r\right\}
$$

\mathbb{C}^{∞} denotes the subspace consisting of $\left\{u_{i}\right\}$ with finitely many non-zero u_{i}. It's evident that \mathbb{C}^{∞} is dense in $\overline{\mathbb{C}}_{-}^{\infty}$.
2.3. Let $l_{i j}$ denote the matrix which is 1 in (i, j) entry and zero everywhere else. Such matrices act in $\overline{\mathbb{C}}^{\infty}$ and we can define the representation of $U_{h}\left(g l_{\infty}\right)$ in $\overline{\mathbb{C}}_{-}^{\infty} \otimes \mathbb{C}[[h]]=\left(\overline{\mathbb{C}}_{-}^{\infty}\right)_{h}$ by

$$
\pi\left(X_{i, i+1}\right)=l_{i, i+1}, \quad \pi\left(X_{i+1, i}\right)=l_{i+1, i}, \quad \pi\left(E_{i i}\right)=l_{i i} .
$$

By (1.9) for $i<j$,

$$
\pi\left(E_{i j}\right)=q^{(j-i) / 2} l_{i j}, \quad \pi\left(E_{j i}\right)=(-1)^{j-i-1} q^{3(j-i) / 2-1} \cdot l_{j i}
$$

and by $(1.30)-(1.32)$ the representation in $\left(\overline{\mathbb{C}}_{-}^{\infty}\right)^{\otimes(l+1)} \otimes \mathbb{C}[[h]]$ is given by

$$
\begin{gather*}
\pi^{(l+1)}\left(E_{i i}\right)=l_{i i} \otimes 1^{\otimes l}+1 \otimes l_{i i} \otimes 1^{\otimes(l-1)}+\cdots+1^{\otimes l} \otimes l_{i i}, \tag{2.1}\\
\pi^{(l+1)}\left(E_{i j}\right)=q^{(j-i) / 2} \sum_{r}\left(q^{-1}-q\right)^{\mu(r)-1} \hat{l}_{i r_{1}} \otimes \hat{l}_{r_{1} r_{2}} \otimes \cdots \otimes \hat{l}_{r_{l} j}, \tag{2.2}\\
\pi^{(l+1)}\left(E_{j i}\right)=(-1)^{j-i-1} q^{3(j-i) / 2-1} \sum_{r}\left(q-q^{-1}\right)^{\mu(r)-1} \hat{l}_{j r_{l}} \otimes \hat{l}_{r_{l} r_{l-1}} \otimes \cdots \otimes \hat{l}_{r_{1} i}, \tag{2.3}
\end{gather*}
$$

where $\hat{l}_{p s}=I$ for $p=s, \hat{l}_{p s}=l_{p s}$ otherwise, and $\mu(r)$ is the number of $\hat{l}_{p s} \neq I$ in summand of (2.2), (2.3), $l_{i j}$ are the matrix units.
2.4. Let $\left\{f_{i}\right\}$ be the standard basis in \mathbb{C}^{∞}. Denote by $\Lambda_{(s), h}^{\infty}$ the $\mathbb{C}[[h]]$-module generated by all expressions of the form $u_{0} \wedge u_{-1} \wedge u_{-2} \wedge \cdots$, where $u_{i} \in \mathbb{C}^{\infty}$ and $u_{-i}=f_{-i+s}$ for sufficiently large i, the following identification being assumed: if $i<j$ then

$$
\begin{equation*}
\cdots \wedge f_{i} \wedge f_{j} \wedge \cdots=-q^{-1} \cdots \wedge f_{j} \wedge f_{i} \wedge \cdots \tag{2.4}
\end{equation*}
$$

If we start with expressions $u=u_{0} \wedge u_{-1} \wedge \cdots \wedge u_{-l}$, where $u_{j} \in \mathbb{C}^{\infty}$, then we get the definition of the $\mathbb{C}[[h]]$-module $\Lambda_{h}^{l+1}\left(\mathbb{C}^{\infty}\right)$.
2.5. Define the action $\hat{\pi}_{(s)}: U_{h}\left(g l_{\infty}\right) \rightarrow$ End $\Lambda_{(s), h}^{\infty}\left(\mathbb{C}^{\infty}\right)$ on generators $E_{i i}, E_{i j}$, $E_{j i}(i<j)$ by

$$
\begin{align*}
& \hat{\pi}_{(s)}\left(E_{i i}\right)\left(u_{0} \wedge u_{-1} \wedge \cdots\right)=l_{i i} u_{0} \wedge u_{-1} \wedge \cdots+u_{0} \wedge l_{i i} u_{-1} \wedge \cdots+\cdots, \tag{2.5}\\
& \hat{\pi}_{(s)}\left(E_{i j}\right)\left(u_{0} \wedge u_{-1} \wedge \cdots\right)=q^{(j-i) / 2} \sum_{l \leqq 0} \sum_{i \leqq k_{1} \leqq \cdots \leqq k_{l} \leqq j}\left(q^{-1}-q\right)^{\mu(k)-1} \\
& \cdot \hat{l}_{i k_{1}} u_{0} \wedge \hat{l}_{k_{1} k_{2}} u_{-1} \wedge \cdots \wedge \hat{l}_{k_{l} j} u_{-l} \wedge u_{-l-1} \wedge \cdots, \tag{2.6}\\
& \hat{\pi}_{(s)}\left(E_{i j}\right)\left(u_{0} \wedge u_{-1} \wedge \cdots\right)=(-1)^{j-i-1} q^{3(j-i) / 2-1} \sum_{l \leqq 0} \sum_{i \leqq k_{1} \leqq \cdots \leqq k_{l} \leqq j} \\
& \quad \cdot\left(q-q^{-1}\right)^{\mu(k)-1} \hat{l}_{j k_{l}} u_{0} \wedge \hat{l}_{k_{l} k_{l-1}} u_{-1} \wedge \cdots \wedge \hat{l}_{k_{2} k_{1}} u_{-l+1} \wedge \hat{l}_{k_{1} i} u_{-l} \wedge \cdots \tag{2.7}
\end{align*}
$$

2.6. Theorem. Formulae (2.5)-(2.7) define the representation of $U_{h}\left(g l_{\infty}\right)$.

Proof. For a fixed u, in (2.5)-(2.7) there are finitely many non-zero summands. Hence, it suffices to prove that the formulae (2.1)-(2.3) define the representation of $U_{h}\left(g l_{\infty}\right)$ in $\Lambda_{h}^{l+1}\left(\mathbb{C}^{\infty}\right)$. Since the latter formulae define the representation in $\mathbb{C}[[h]] \otimes\left(\mathbb{C}^{\infty}\right)^{\otimes(l+1)}$, it suffices to show that the subspace in $\mathbb{C}[[h]] \otimes\left(\mathbb{C}^{\infty}\right)^{\otimes(l+1)}$ generated by the expressions

$$
\cdots \otimes f_{i} \otimes f_{j} \otimes \cdots+q^{-1} \cdots \otimes f_{j} \otimes f_{i} \otimes \cdots, \quad i<j
$$

is stable under all of the $E_{k k}, E_{i, i+1}, E_{i+1, i}$. But this is easily verified by straightforward calculations.
2.7. In this subsection we'll simplify the formulae (2.6), (2.7) for $u=f_{i_{1}} \wedge f_{i_{2}}$ $\wedge \cdots \wedge f_{i_{t}} \wedge \cdots$ with $i_{1}>i_{2}>\cdots$. Denote by $\chi(i, j)=\chi(i, j, u)$ the number of indices $i_{k} \in(i, j)$ and note that if $j \neq i_{r}$ for all r or $i=i_{t}$ for some t, then all the terms in (2.6) vanish, otherwise all but one of them are zero. Hence, we obtain

$$
\begin{equation*}
\hat{\pi}_{(s)}\left(E_{i j}\right) u=q^{(j-i) / 2}\left(-q^{-1}\right)^{x(i, j)} \cdots \wedge f_{i_{r-1}} \wedge f_{i_{r+1}} \wedge \cdots \wedge f_{i} \wedge \cdots \tag{2.8}
\end{equation*}
$$

the indices on the right-hand side being ordered.
Further, $\hat{\pi}_{(s)}\left(E_{i j}\right) u=0$ unless $i=i_{r}$ for some r and $j \neq i_{t}$ for all t; of these two conditions hold, then in (2.7) the number of non-zero summands with fixed $\mu=\mu(k)$ is $C_{\mu-1}^{\alpha(j, i)}$, and each non-zero term is of the form

$$
\begin{gathered}
(-1)^{j-i-1} q^{3(j-i) / 2-1}\left(q-q^{-1}\right)^{\mu-1} \cdots \wedge l_{v_{1}} f_{v_{1}} \wedge l_{v_{1} v_{2}} f_{v_{2}} \wedge \cdots \\
\wedge f_{i_{r-1}} \wedge l_{v_{\mu-1}, i} f_{i} \wedge f_{i_{r+1}} \wedge \cdots,
\end{gathered}
$$

where $j>v_{1}>\cdots>v_{\mu-1}>i$ (and $v_{1}=i$ if $\mu=1$).
By using (2.4) we get

$$
\begin{gather*}
\hat{\pi}_{(s)}\left(E_{j i}\right) u=(-1)^{j-i-1} q^{3(j-i) / 2-1}(-q)^{-x(i, j)} \sum_{1 \leqq \mu \leqq x(i, j)+1} \\
\cdot C_{\mu}^{x(i, j)}\left(1-q^{2}\right)^{\mu-1} \cdots \wedge f_{j} \wedge \cdots \wedge f_{i_{r-1}} \wedge f_{i_{r+1}} \wedge \cdots=(-1)^{j-i-1} \\
\cdot q^{3(j-i) / 2-1}\left(\left(2-q^{2}\right)\left(-q^{-1}\right)\right)^{x(i, j)} \cdots \wedge f_{j} \wedge \cdots \wedge f_{i_{r-1}} \wedge f_{i_{r+1}} \wedge \cdots \tag{2.9}
\end{gather*}
$$

the indices on the right-hand side being ordered.
2.8. Define $\Lambda_{(s)}^{\infty}\left(\mathbb{C}^{\infty}\right)$ as the \mathbb{C}-span of all expressions of the form $u_{0} \wedge$ $u_{-1} \wedge u_{-2} \wedge \cdots$ with the identification

$$
\cdots \wedge f_{i} \wedge f_{j} \wedge \cdots=-\cdots \wedge f_{j} \wedge f_{i} \wedge \cdots
$$

for $i \leqq j$. Next, define the $\mathbb{C}[[h]]$-module isomorphism $j: \Lambda_{(s), h}^{\infty}\left(\mathbb{C}^{\infty}\right) \rightarrow$ $\Lambda_{(s)}^{\infty}\left(\mathbb{C}^{\infty}\right) \otimes \mathbb{C}[[h]]$ by $f_{i_{1}} \wedge f_{i_{2}} \wedge \cdots \wedge \cdots \rightarrow f_{i_{1}} \wedge f_{i_{2}} \wedge \cdots \wedge \cdots$, and denote by $\varrho_{(s)}$ the usual representation of $g l_{\infty}$ in $\Lambda_{(s)}^{\infty}\left(\mathbb{C}^{\infty}\right)$:

$$
\varrho_{(s)}\left(l_{i j}\right) u=l_{i j} u_{0} \wedge u_{-1} \wedge \cdots+u_{0} \wedge l_{i j} u_{-1} \wedge u_{-2} \wedge \cdots
$$

Now, if we define

$$
K(i, j)=\exp \left(\frac{h}{2} \sum_{i+1 \leqq r \leqq j-1} l_{r r}\right) \in U\left(g l_{\infty}\right) \otimes \mathbb{C}[[h]],
$$

then the formulae

$$
\begin{align*}
\pi_{s}\left(E_{i j}\right) & =\varrho_{(s)}\left(l_{i i}\right), \tag{2.10}\\
\pi_{(s)}\left(E_{i j}\right) & =q^{(j-i) / 2-1}\left(-\varrho_{(s)}\left(K(i, j)^{-1}\right) \varrho_{(s)}\left(l_{i j}\right),\right. \tag{2.11}\\
\pi_{(s)}\left(E_{j i}\right) & =(-1)^{j-i-1} q^{3(j-i) / 2-1}\left(2 \varrho_{(s)}\left(K(i, j)^{-1}\right)-\varrho_{(s)}(K(i, j))\right) \varrho_{(s)}\left(l_{j i}\right) \tag{2.12}
\end{align*}
$$

define the representation $\pi_{(s)}: U_{h}\left(g l_{\infty}\right) \rightarrow \operatorname{End}\left(\Lambda_{(s)}^{\infty} \otimes \mathbb{C}[[h]]\right)$ [see (2.5), (2.8), (2.9)].

3. The Algebras $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right), U_{h}\left(g\left(A_{\infty}\right)\right)$

3.1. Definition. $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$ is the topologically free $\mathbb{C}[[h]]$-module, complete in h-adic topology, and the unital algebra with generators $\left\{c, E_{i i}, E_{i j}, E_{j i}=\right.$ $\left.F_{i j}\right\}_{i<j,(i, j) \in \mathbb{Z}^{2}}$ and relations

1) $[c$, everything $]=0 ; \quad\left[E_{i i}, E_{j j}\right]=0$, all i, j,
2) formulae (1.10)-(1.15);
3) formulae (1.16)-(1.22) with

$$
\begin{gather*}
\stackrel{\circ}{E}_{i i}=\left\{\begin{array}{l}
E_{i i}, \quad i>0 \\
E_{i i}+c, \quad i \leqq 0
\end{array} \quad \stackrel{\circ}{H}_{i j}=\stackrel{\circ}{E}_{i i}-\stackrel{\circ}{E}_{j j}, \quad \stackrel{\circ}{K}_{i j}=q^{\AA_{i, ~}},\right. \\
\text { substituted for } E_{i i}, H_{i j}, K_{i j} . \tag{3.3}
\end{gather*}
$$

3.2. $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$ can be equipped with a Hopf algebra structure, the coproduct being defined on generators by formulae

$$
\begin{equation*}
\Delta c=c \otimes 1+1 \otimes c, \quad \Delta E_{i i}=E_{i i} \otimes 1+1 \otimes E_{i i} \tag{3.4}
\end{equation*}
$$

and by

$$
\begin{equation*}
\text { formulae (1.23), (1.24) with } \stackrel{\circ}{K}_{i j} \text { substituted for } K_{i j} \text {. } \tag{3.5}
\end{equation*}
$$

One easily gets the following analogue of Theorem 1.8.
3.3. Theorem. The set of ordered monomials

$$
c^{l} E^{n}=c^{l} \prod_{i, j} E_{i j}^{n_{i j}}
$$

with finitely many non-zero exponents $n_{i j} \in \mathbb{Z}_{+}, l \in \mathbb{Z}_{+}$form a basis in the $\mathbb{C}[[h]]-$ module $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$.
3.4. Set $f^{\prime}=\oplus \underset{i}{\oplus} \mathbb{C} E_{i i}$, define linear functionals $\varepsilon_{i}: h^{\prime} \rightarrow \mathbb{C}$ by $\varepsilon_{i}\left(E_{j j}\right)=\delta_{i j}$ and set $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}, \mathbb{Q}_{+}^{\prime}=\underset{i}{\oplus} \mathbb{Z}_{+} \alpha_{i}$. Denote by $U_{h}\left(n_{+}\right)$(respectively $U_{h}\left(n_{-}\right)$) the unital subalgebra in $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$ generated by $\left\{E_{i j}\right\}_{i<j}$ (respectively $\left.\left\{E_{j i}\right\}_{i<j}\right)$. Evidently,

$$
U_{h}\left(n_{ \pm}\right)=\underset{\alpha \in \mathbb{Q}_{+}^{\prime}}{\oplus} U_{h}\left(n_{ \pm}\right)_{ \pm \alpha}
$$

where

$$
U_{h}\left(n_{ \pm}\right)_{ \pm \alpha}=\left\{x \in U_{h}\left(n_{ \pm}\right) \mid[h, x]= \pm \alpha(h) x \forall h \in h^{\prime}\right\}
$$

for $\alpha \neq 0$, and $U_{h}\left(n_{ \pm}\right)_{0}=\mathbb{C}$. By Theorem 3.3, any element $u \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$ can be represented as follows:

$$
\begin{equation*}
u=\sum_{k \in \mathbb{Z}_{+}} h^{k} \sum_{0 \leqq l \leqq l(k)} c^{l} \sum_{\alpha, \beta \in \mathbb{Q}_{+}^{\prime}} \sum_{\gamma(k, l) \in \mathbb{Z}_{+}^{\infty}} \sum_{1 \leqq t \leqq t(\beta)} \mathscr{F}_{\alpha, k, l} \prod_{i} E_{i i}^{\gamma(k, l)_{t}} \mathscr{E}_{\beta, k, l, t} \tag{3.6}
\end{equation*}
$$

Here $\mathscr{F}_{\alpha, k, l} \in U_{h}\left(n_{-}\right)_{-\alpha}, \mathscr{E}_{\beta, k, l, t} \in U_{h}\left(n_{+}\right)_{\beta}$ and for fixed k, l there are finitely many non-zero summands in (3.6).

To obtain the completed algebra $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ we replace the sums over (α, β, γ) for the series but impose certain conditions on pairs (α, γ) corresponding to non-zero summands (note that the set of such pairs is uniquely defined by the series u).
3.5. Set for $\alpha=\sum_{i} m_{i} \alpha_{i} \in \mathbb{Q}_{+}^{\prime}, \gamma=\left(\gamma_{i}\right) \in \mathbb{Z}_{+}^{\infty}$,

$$
S(\alpha)=\left\{i \mid m_{i} \neq 0\right\}, \quad S(\gamma)=\left\{i \mid \gamma_{i} \neq 0\right\}, \quad S(\alpha, \gamma)=S(\alpha) \cup S(\gamma)
$$

By connecting i, j for $|i-j|=1$, we can view $S(\alpha, \gamma)$ as a graph. Denote by $\mathscr{I}(\alpha, \gamma)$ the set of its connected components and set for $p \in \mathbb{Z}_{+}$,

$$
\mathscr{I}(u, p)=\cup \mathscr{I}(\alpha, \gamma),
$$

where the union is taken over non-zero summands with $k \leqq p$ in (3.6).
For $i \in \mathbb{Z}$ and $p \in \mathbb{Z}_{+}$set $\operatorname{Int}(u, p, i)=\{I \in \mathscr{I}(u, p) \mid i \in I\}$.
Recall that $\mathscr{E}_{\beta, k, l, t}$ (respectively $\mathscr{F}_{\alpha, k, l}$) are expressed via $E_{i i}$ and $E_{i, i+1}$ (respectively $\left.E_{i+1, i}\right), i \in \mathbb{Z}$, and, for $r \in \mathbb{N}$, define the series $u(r)$ by substituting 0 for all $E_{i i}(i \leqq-r$ or $i \geqq r+1)$ and for all $E_{i, i+1}, E_{i+1, i},(|i| \geqq r)$.
3.6. Definition. The series u of the form (3.6) is said to belong to $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ provided the following conditions hold
a) for all $p \in \mathbb{Z}_{+}, i \in \mathbb{Z}$ the sets $\operatorname{Int}(u, p, i)$ are finite,
b) $u(r) \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$ for all $r \in \mathbb{N}$.
3.7. Definition. Let $\mathscr{I}_{p, i}$ be finite sets of finite integer intervals containing i $\left(i \in \mathbb{Z}, p \in \mathbb{Z}_{+}\right)$, and let $r \in \mathbb{N}$.

We say that $u \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ belongs to the neighbourhood of zero $V\left(\left\{\mathscr{I}_{p, i}\right\}_{i \in \mathbb{Z}, p \in \mathbb{Z}_{+}}, r\right)$ provided
a) $\operatorname{Int}(u, p, i) \subset \mathscr{I}_{p, i}, \forall p \in \mathbb{Z}_{+}, \forall i \in \mathbb{Z}$,
b) $u(r)=0$.
3.8. We introduce in $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ the topology by declaring $\left\{V\left(\left\{\mathscr{I}_{p, i}\right\}_{i \in \mathbb{Z}, p \in \mathbb{Z}_{+}}, r\right)\right\}$ to be the fundamental system of neighbourhoods of zero.
3.9. Proposition. $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f} \subset U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ densely.

Proof. $u(r) \rightarrow u$ as $r \rightarrow \infty$.
3.10. Theorem. Let $u_{i} \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right), i=1,2$, and let $\left\{u_{i}^{j}\right\}_{j \geqq 0} \subset U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$ be a sequence having the limit u_{i}. Then the sequence $\left\{u_{1}^{j} u_{2}^{j}\right\}$ has the limit, denote it u, in $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ and u is independent of the choice of sequences $\left\{u_{1}^{j}\right\},\left\{u_{2}^{j}\right\}$.

Proof. Write the expression (3.6) for u_{i}^{j} and $u^{j} \stackrel{\text { def }}{=} u_{1}^{j} u_{2}^{j}$ in the form

$$
\begin{align*}
& u_{i}^{j}=\sum_{k} \sum_{l} \sum_{\alpha, \beta} \sum_{\gamma} \sum_{t} u_{i}^{j}(k, l, \alpha, \beta, \gamma, t), \tag{3.7}\\
& u^{j}=\sum_{k} \sum_{l} \sum_{\alpha, \beta} \sum_{\gamma} \sum_{t} u^{j}(k, l, \alpha, \beta, \gamma, t), \tag{3.8}
\end{align*}
$$

and fix a tuple $(k, l, \alpha, \beta, \gamma, t)$. From Theorems 1.3, 1.4 and from Definition 3.6 it follows that $u^{j}(k, l, \alpha, \beta, \gamma, t)$ depends on finitely many summands in (3.7), $i=1,2$. Moreover, the number of these summands is bounded uniformly in j. From Definitions 3.7, 3.8, it follows that $u^{j}(k, l, \alpha, \beta, \gamma, t)$ is independent of j, provided j is sufficiently large: $u^{j}(k, l, \alpha, \beta, \gamma, t)=u(k, l, \alpha, \beta, \gamma, t)$ for $j \geqq j_{0}$, where j_{0} depends on ($k, l, \alpha, \beta, \gamma, t$). Hence, $u(k, l, \alpha, \beta, \gamma, t)$ is independent of a choice of sequences $\left\{u_{1}^{j}\right\},\left\{u_{2}^{j}\right\}$. Now we see that the omission of upper indices in (3.8) gives the formula u; clearly, it's independent of a choice of sequences.

The close inspection of the above arguments shows that u obeys the conditions of Definition 3.6.
3.11. Let $s \in \mathbb{N}$. Consider a formal series

$$
\begin{align*}
u= & \sum_{k \in \mathbb{Z}_{+}} h^{k} \sum_{\substack{0 \leqq l_{j \leq} \leqq l_{j}(k) \\
(1 \leqq j \leqq s)}} c^{l_{1}} \otimes \cdots \otimes c^{l_{s}} \sum_{\alpha, \beta \in\left(\mathbb{Q}^{\prime}+\right)^{s}} \sum_{\gamma(k, l) \in\left(\mathbb{Z}_{+}^{\infty}\right) t} \\
& \cdot \sum_{\substack{1 \leqq t_{j} \leqq t_{j}\left(\beta^{1}\right) \\
(1 \leqq j \leqq s)}} \mathscr{F}_{\alpha^{1}, k, l} \prod_{i} E_{i i}^{\gamma(k, l)^{1}} \mathscr{E}_{\beta^{1}, k, l, t_{1}} \otimes \\
& \cdots \otimes \mathscr{F}_{\alpha^{s}, k, l} \prod_{i} E_{i i}^{\gamma(k, l)_{i}^{s}} \mathscr{E}_{\beta^{s}, k, l, t_{s}} .
\end{align*}
$$

Non-zero summands of this series determine the set of tuples of pairs $(\alpha, \gamma)=$ $\left(\left(\alpha^{1}, \gamma^{1}\right),\left(\alpha^{2}, \gamma^{2}\right), \ldots,\left(\alpha^{s}, \gamma^{s}\right)\right)$. Set for $1 \leqq j \leqq s, p \in \mathbb{Z}_{+}$,

$$
\mathscr{I}_{j}(u, p)=\cup \mathscr{I}\left(\alpha^{j}, \gamma^{j}\right),
$$

where the union is taken over non-zero summands with $k \leqq p$ in (3.9).
For $i \in \mathbb{Z}^{s}$ and $p \in \mathbb{Z}_{+}$set

$$
\operatorname{Int}(u, p, i)=\left\{\left(I^{1}, I^{2}, \ldots, I^{s}\right) \in \mathscr{I}_{1}(u, p) \times \cdots \times \mathscr{I}_{s}(u, p) \mid i_{1} \in I^{1}, \ldots, i_{s} \in I^{s}\right\}
$$

For $r \in \mathbb{N}$ define the series $u(r)$ by substituting 0 for all $E_{i i}(i \leqq-r$ or $i \geqq r+1)$ and all $E_{i, i+1}, E_{i+1, i}(|i| \geqq r)$.
3.12. Definition. The series u of the form (3.9) is said to belong to $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes s}$ provided the following conditions hold
a) for every $p \in \mathbb{Z}_{+}, i \in \mathbb{Z}^{s}$ the set $\operatorname{Int}(u, p, i)$ is finite;
b) $u(r) \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right){ }_{f}^{\otimes s}$ for all $r \in \mathbb{N}$.
3.13. Definition. Let $\mathscr{I}_{p, i_{j}}$ be finite sets of finite integer intervals, containing i_{j} ($p \in \mathbb{Z}_{+}, 1 \leqq j \leqq s, i_{j} \in \mathbb{Z}$) and let $r \in \mathbb{N}$.

We say that $u \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes s}$ belongs to the neighbourhood of zero $V\left(\left\{\mathscr{I}_{p, i_{1}} \times \cdots \times \mathscr{I}_{p, i_{s}}\right\}, r\right)$, provided
a) $\operatorname{Int}(u, p, i) \subset \mathscr{I}_{p, i_{1}}^{p, i_{s}} \times \cdots \times \mathscr{I}_{p, i_{s}} \forall i \in \mathbb{Z}^{s}, \forall p \in \mathbb{Z}_{+}$,
b) $u(r)=0$.
3.14. We introduce in $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes s}$ the topology by declaring $\left\{V\left(\left\{\mathscr{I}_{p, i_{1}} \times \cdots\right.\right.\right.$ $\left.\left.\times \mathscr{I}_{p, i_{s}}\right\}, r\right\}$ to be the fundamental system of neighbourhoods of zero.
3.15. The analogues of Proposition 3.9 and Theorem 3.10 for $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes s}$ are obvious.
3.16. Theorem. Let $u \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ and let $\left\{u^{j}\right\} \subset U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$ be a sequence having the limit u.

Then the sequence $\left.\left\{\Delta\left(u^{j}\right)\right\} \subset U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)\right)_{f^{2}}^{2}$ has the limit, denote it $\Delta(u)$, in $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes 2}$, and it is independent of a choice of a sequence.
Proof is similar to that of Theorem 3.10, use being made of Theorem 1.5.
One can easily state the analogues of Theorem 3.16 for the maps id $\otimes \Delta$, $\Delta \otimes$ id: $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes 2} \rightarrow U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes 3}$.

Since $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$ is a Hopf algebra, from Theorems 3.10, 3.16 and their analogues the next theorem immediately follows.
3.17. Theorem. $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ is a topological Hopf algebra with the product map

$$
U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes 2} \ni u_{1} \otimes u_{2} \mapsto u \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right),
$$

and the coproduct map

$$
U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right) \ni u \mapsto \Delta(u) \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes 2}
$$

3.18. If we set in all constructions of this section $c=0$ then we get another Hopf algebra which can be naturally denoted by $U_{h}\left(\overline{g l}_{\infty}\right)$. Note that $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ can be naturally viewed as the central extension of $U_{h}\left(\overline{g l_{\infty}}\right)$.

Now we extend $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ be derivation d.
3.19. Definition. $U_{h}\left(g\left(A_{\infty}\right)\right)_{f}$ is a topologically free $\mathbb{C}[[h]]$-module, complete in h-adic topology, and an unital algebra with generators $\{c, d\} \cup\left\{E_{i j}\right\}_{i, j \in \mathbb{Z}}$ and relations

1. formulae (3.1)-(3.3);
2. $\left[d, E_{i, i+1}\right]=\delta_{i_{0}} E_{i, i+1},\left[d, E_{i+1, i}\right]=-\delta_{i_{0}} E_{i+1, i},[d, c]=0,\left[d, E_{i i}\right]=0$ all i.
$U_{h}\left(g\left(A_{\infty}\right)\right)_{f}$ can be equipped with a Hopf algebra structure, the coproduct being defined by (3.4), (3.5) and by $\Delta(d)=d \otimes 1+1 \otimes d$.
3.20. Now, in the complete analogy with the definition of $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ we can define the Hopf algebra $U_{h}\left(g\left(A_{\infty}\right)\right)$, in the definition of polynomials in c being replaced for polynomials in two variables c, d [see (3.6)].
3.21. Below we shall need the subspaces $\tilde{h}^{\prime}=h^{\prime} \oplus \mathbb{C} c \subset U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f} \subset$ $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right), \tilde{h}=\tilde{h^{\prime}} \oplus \mathbb{C} d \subset U_{h}\left(g\left(A_{\infty}\right)\right)_{f} \subset U_{h}\left(g\left(A_{\infty}\right)\right)$ and the subalgebras

$$
\begin{array}{ll}
U_{h}\left(b_{ \pm}^{\prime}\right)_{f} \subset U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}, & U_{h}\left(b_{ \pm}^{\prime}\right) \subset U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right) \\
U_{h}\left(b_{ \pm}\right)_{f} \subset U_{h}\left(g\left(A_{\infty}\right)\right)_{f}, & U_{h}\left(b_{ \pm}\right) \subset U_{h}\left(g\left(A_{\infty}\right)\right)
\end{array}
$$

defined in an obvious way.

4. Representations of the Algebras $\boldsymbol{U}_{\boldsymbol{h}}\left(\boldsymbol{g}^{\prime}\left(\boldsymbol{A}_{\infty}\right)\right), \boldsymbol{U}_{\boldsymbol{h}}\left(\boldsymbol{g}\left(A_{\infty}\right)\right)$

4.1. Definition. A representation of the algebra $U_{h}\left(g\left(A_{\infty}\right)\right)$ in a topologically free $\mathbb{C}[[h]]$-module V is said to be restricted if for a given vector $v=\sum_{j \geq 0} h^{j} v_{j} \in V$ there exist $r_{j} \in \mathbb{N}, j=0,1, \ldots$, such that for every j vector v_{j} is killed by the following subspaces:

1. $U_{h}\left(n_{+}\right)_{\alpha}$ provided $S(\alpha) \nsubseteq\left[-r_{j}, r_{j}\right]$ or $h t \alpha>r_{j}$,
2. $U_{h}\left(n_{-}\right)_{-\alpha}$ provided $S(\alpha) \subset\left(-\infty,-r_{j}\right)$ or $h t \alpha>r_{j}$ or $S(\alpha) \subset\left(r_{j+1},+\infty\right)$,
3. $\mathbb{C} \cdot E_{i i}$ provided $i<-r_{j}$ or $i>r_{j}+1$ [for definitions of $U_{h}\left(n_{ \pm}\right)_{ \pm \alpha}$ and $S(\alpha)$, see 3.3, 3.4].

Restricted representations of the algebras $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}, \quad U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$, $U_{h}\left(g\left(A_{\infty}\right)\right)_{f}$ are defined by the same conditions.
4.2. Theorem. a) A restricted representation σ_{f} of the algebra $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$ extends uniquely to a restricted representation σ of the algebra $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ and to restricted representation $\tilde{\sigma}$ of the algebra $U_{h}\left(g\left(A_{\infty}\right)\right)$, the action of d being defined by

$$
\begin{equation*}
\tilde{\sigma}(d)=-\sum_{j>0} \sigma_{f}\left(E_{j j}\right) \tag{4.1}
\end{equation*}
$$

b) A restricted representation $\tilde{\sigma}_{f}$ of the algebra $U_{h}\left(g\left(A_{\infty}\right)\right)_{f}$ extends uniquely to a restricted representation $\tilde{\sigma}$ of the algebra $U_{h}\left(g\left(A_{\infty}\right)\right)$.
Proof. Evident.
It is clear that every submodule or quotient of a restricted module is restricted, and that the direct sum or tensor product of a finite number of restricted modules is also restricted.
4.3. Example. The formulae

$$
\begin{align*}
& \sigma_{(s)}(c)=1, \quad \sigma_{(s)}\left(E_{i i}\right)=\left\{\begin{array}{ll}
\varrho_{(s)}\left(l_{i i}\right), & i>s \\
\varrho_{(s)}\left(l_{i i}\right)-I, & i \leqq s
\end{array},\right. \tag{4.2}\\
& \sigma_{(s)}\left(E_{i j}\right)=q^{(j-i) / 2} q^{i+1 \leq r \leq j-1} \varrho_{(s)}\left(l_{r r}\right) \varrho_{(s)}\left(l_{i j}\right), \tag{4.3}\\
& \sigma_{(s)}\left(E_{j i}\right)=(-1)^{j-i-1} q^{3(j-i) / 2-1}\left(2 q^{-\sum_{i+1 \leq \leq \leq j-1} \varrho_{(s)}\left(l_{r r}\right)}-q^{i+1 \leq \leq \leq j-1} \sum_{\varrho_{(s)}\left(l_{r r}\right)}\right) \varrho_{(s)}\left(l_{j i}\right), \tag{4.4}
\end{align*}
$$

where $i<j$, define restricted representations of the algebras $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$, $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ in $\Lambda_{(s)}^{\infty}\left(\mathbb{C}^{\infty}\right) \otimes \mathbb{C}[[h]][$ cf. (2.10)-(2.12)].
4.4. Example. The formulae (4.2)-(4.4) together with formula

$$
\sigma_{(s)}(d)=-\sum_{j>0} \sigma_{(s)}\left(E_{j j}\right)
$$

define restricted representations of the algebras $U_{h}\left(g\left(A_{\infty}\right)\right)_{f}, U_{h}\left(g\left(A_{\infty}\right)\right)$.
4.5. In what follows the linear functional Λ on $\tilde{h}^{\prime}=h^{\prime} \oplus \mathbb{C} c$ is supposed to satisfy the conditions $\Lambda\left(H_{j}\right) \in \mathbb{Z}_{+}$and $\Lambda\left(H_{j}\right)>0$ for finitely many j.

The functional Λ_{s} is defined by conditions

$$
\Lambda_{s}\left(H_{j}\right)=\delta_{s j}, \quad \Lambda_{s}(c)=1
$$

4.6. Definition. A $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$-module V is called a highest weight module with highest weight Λ if there exists a non-zero vector $v \in V$ such that

$$
U_{h}\left(n_{+}\right) v=0, \quad h(v)=\Lambda(h) v \quad \text { for } h \in \tilde{h}^{\prime} .
$$

and $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)(v)=V$.
The vector V is called a highest weight vector.
A highest weight module over $U_{h}\left(g\left(A_{\infty}\right)\right)$ is defined in the similar fashion.
4.7. Example. The representation $\sigma_{(s)}$ of Example 4.3 is a highest weight representation with the highest weight Λ_{s}, the highest weight vector being $f_{s} \wedge f_{s-1} \wedge f_{s-2} \wedge \cdots$.

Denote by $L\left(\Lambda_{s}\right)_{h}$ the corresponding $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$-module and recall that the representation $\varrho_{(s)}: U\left(g^{\prime}\left(A_{\infty}\right)\right) \rightarrow$ End $\Lambda_{(s)}^{\infty}\left(\mathbb{C}^{\infty}\right)$ defined by $\tilde{\varrho}_{(s)}(c)=1$,

$$
\varrho_{(s)}\left(l_{i j}\right)= \begin{cases}\varrho_{(s)}\left(l_{i j}\right)-I, & i=j<0 \\ \varrho_{(s)}\left(l_{i j}\right) & \text { otherwise },\end{cases}
$$

is the classical highest weight representation $L\left(\Lambda_{s}\right)$ with the highest weight Λ_{s}, the highest weight vector being $f_{s} \wedge f_{s-1} \wedge f_{s-2} \wedge \cdots$.

Recall also the following classical result $[\mathrm{K}]$.
4.7. Theorem. The space of the basic representation $L\left(\Lambda_{0}\right)$ can be identified with the space of polynomials $\mathbb{C}\left[x_{1}, x_{2}, \ldots\right]$ so that $c \mapsto 1$ and

$$
\sum_{i, j} u^{i} v^{-j} E_{i j} \mapsto \frac{u}{u-v}(\Gamma(u, v)-1)
$$

where $\Gamma(u, v)$ is the following vertex operator:

$$
\Gamma(u, v)=\exp \left(\sum_{j \geqq 1}\left(u^{j}-v^{j}\right) x_{j}\right) \exp \left(-\sum_{j \geqq 1} \frac{1}{j}\left(u^{-j}-v^{-j}\right) \frac{\partial}{\partial x_{j}}\right) .
$$

Hence, from formulae (4.2)-(4.4) and the definition of the representation $\sigma_{(0)}$ we obtain the following.
4.8. Theorem. The space of the representation $L\left(\Lambda_{0}\right)_{h}$ over $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ can be identified with the space $\mathbb{C}[[h]] \otimes \mathbb{C}\left[x_{1}, x_{2}, \ldots\right]$ so that $c \mapsto 1$ and

$$
\sum_{i, j} u^{i} v^{-j} \hat{E}_{i j} \mapsto \frac{u}{u-v}(\Gamma(u, v)-1),
$$

where for $i<j$

$$
\begin{aligned}
& \hat{E}_{i i}=E_{i i}, \\
& \hat{E}_{i j}=q^{(i-j) / 2}\left(-q^{i+1 \leq r \leq j-1} \hat{E}_{r r}\right) E_{i j}, \\
& \hat{E}_{i j}=(-1)^{j-i-1} q^{1-3(j-i) / 2}\left(2-q^{2} \sum_{i+1 \leq r \leq j-1} \dot{E}_{r r}\right)^{-1} q^{-\sum_{i+1 \leq r \leq j-1} \dot{E}_{r r}} \cdot E_{i j} .
\end{aligned}
$$

Here $\stackrel{\circ}{E}_{r r}=E_{r r}$ if $r>0$, and $\stackrel{\circ}{E}_{r r}=E_{r r}+c$ if $r \leqq 0$.

In particular, for $k \in \mathbb{N}$,

$$
\begin{gathered}
q^{-k / 2} \sum_{i \in \mathbb{Z}}\left(-q^{i+1 \leq r \leq i+k-1} \dot{E}_{r r}\right) E_{i, i+k} \mapsto \frac{\partial}{\partial x_{k}} \\
(-1)^{k-1} q^{1-3 k / 2} \sum_{i \in \mathbb{Z}}\left(2-q^{2} \sum_{i+1 \leq r \leq i+k-1} \dot{E}_{r r}\right)^{-1} q^{-\sum_{i+1 \leq \leq \leq i+k-1} \dot{E}_{r r}} \cdot E_{i+k, i} \mapsto x_{k} .
\end{gathered}
$$

5. Quantum R-Matrices and Quantum Casimir Operators for the Algebras $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right), U_{\boldsymbol{h}}\left(\boldsymbol{g}\left(A_{\infty}\right)\right)$

5.1. Set for finite set $\left\{L_{i j}\right\}_{\substack{1 \leqq i \leq s \\ 1 \leqq j \leqq p}}$ of restricted $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}$-modules and for $v_{i j} \in L_{i j}(1 \leqq i \leqq s, 1 \leqq j \leqq p)$,

$$
V\left(\left\{L_{i j}, v_{i j}\right\}\right)=\left\{u \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes s} \mid u\left(v_{1 j} \otimes \cdots \otimes v_{s j}\right)=0,1 \leqq j \leqq p\right\}
$$

and introduce in $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}^{\otimes s}$ the topology by declaring $\left\{V\left(\left\{L_{i j}, v_{i j}\right\}\right)\right\}$ to be the fundamental system of neighbourhoods of zero. The completion of $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)_{f}^{\otimes s}$ with respect to this topology will be denoted by $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes s}$. Clearly, $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes s} \hookrightarrow U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes s}$ continuously and the product in $\left.U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)\right)^{\otimes s}$ has the unique continuous extension to the product in $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes s}$. Also, the maps

$$
\Delta, \quad \operatorname{id} \otimes \Delta, \quad \Delta \otimes \mathrm{id}
$$

have unique continuous extensions to the maps

$$
\hat{\Delta}, \quad \operatorname{id} \otimes \hat{\Delta}, \quad \hat{\Delta} \otimes \mathrm{id}
$$

In complete analogy with this definition we define $U_{h}\left(g\left(A_{\infty}\right)\right)^{\otimes s}$.
5.2. Theorem. a) $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ is a quasitriangular Hopf algebra, i.e. there exists invertible $R \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)^{\otimes 2}$ such that

$$
\begin{gather*}
(\hat{\Delta} \otimes \mathrm{id})(R)=R_{12} R_{23}, \quad(\mathrm{id} \otimes \hat{\Delta})(R)=R_{13} R_{12} \tag{5.1}\\
\hat{\Delta}^{\prime}(u)=R \hat{\Delta}(u) R^{-1}, \quad u \in U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right) \tag{5.2}
\end{gather*}
$$

b) The statement a) holds for $U_{h}\left(g\left(A_{\infty}\right)\right)$.
5.3. Remark. Writing $R=\sum_{k} R_{k}^{(1)} \otimes R_{k}^{(2)}$, the notation used is $R_{i j}=\sum_{k} 1 \otimes \cdots$ $\otimes R_{k}^{(1)} \otimes \cdots \otimes R_{k}^{(2)} \otimes 1 \otimes \cdots$ with the non-unit factors at i and j entries.
5.4. Proof of Theorem 5.2. We'll construct an R-matrix for $U_{h}\left(g\left(A_{\infty}\right)\right)$; the R-matrix for $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$ can be obtained from the R-matrix for $U_{h}\left(g\left(A_{\infty}\right)\right)$ by substituting $-\sum_{j>0} E_{j j}$ for d (see Theorem 4.2).

Since $U_{h}\left(g\left(A_{\infty}\right)\right)_{f}$ is dense in $U_{h}\left(g\left(A_{\infty}\right)\right)$, it suffices to construct the R matrix for $U_{h}\left(g\left(A_{\infty}\right)\right)_{f}$.
5.5. We'll use the quantum double construction [D1]. Recall that the R-matrix is the image of the canonical element from $\mathscr{D}\left(U_{h}\left(b_{+}\right)\right)_{f} \otimes \mathscr{D}\left(U_{h}\left(b_{+}\right)_{f}\right)^{*}$ under projection to $U_{h}\left(g\left(A_{\infty}\right)\right)_{f}^{\otimes s}$. Here the subalgebra $U_{h}\left(b_{+}\right)_{f} \subset U_{h}\left(g\left(A_{\infty}\right)\right)_{f}$ is a subalgebra generated by $c, d,\left\{E_{i}\right\}_{i \leqq j}$ and the double $\mathscr{D}(A)$ of the Hopf
algebra A is defined in [D1]. We omit the details. The realization of Drinfeld's approach to construction of the R-matrix in a finite-dimensional situation can be found in [R] or [Le S], [KR].
5.6. The basis in the $\mathbb{C}[[h]]$-module $U_{h}\left(b_{+}\right)_{f}$ consists of ordered monomials

$$
\left\{\prod_{i, j} E_{i j}^{n_{i j}} c^{k} d^{l}\right\}
$$

with finitely many non-zero exponents. Define linear functionals on $U_{h}\left(b_{+}\right)_{f}$ by the following conditions:

$$
\begin{array}{rlrl}
\left\langle\eta_{i j}, E_{i j}\right\rangle & =1, & \text { and }=0 & \\
\text { on other monomials; } \\
\left\langle\xi_{c}, c\right\rangle & =1, & \text { and }=0 & \\
\text { on other monomials; } \\
\left\langle\xi_{d}, d\right\rangle & =1, & \text { and }=0 & \\
\text { on other monomials; }
\end{array}
$$

and set $\eta_{i}=\eta_{i, i+1}, \xi_{i}=\eta_{i i}$. The same arguments as those in [R] give the following formula for the canonical element of $\mathscr{D}\left(U_{h}\left(b_{+}\right)_{f}\right) \otimes \mathscr{D}\left(U_{h}\left(b_{+}\right)_{f}\right)^{*}$

$$
\begin{equation*}
R=\prod_{i<j} \exp _{q^{-2}}\left(E_{i j} \otimes \eta_{i j}\right) \exp \left(\sum_{i} E_{i i} \otimes \xi_{i}+c \otimes \xi_{c}+d \otimes \xi_{d}\right) \tag{5.3}
\end{equation*}
$$

5.7. Now, to derive from (5.3) the formula for the R-matrix, we have to establish the isomorphism $\varphi: U_{h}\left(b_{+}\right)_{f}^{0} \rightarrow U_{h}\left(b_{-}\right)_{f}$. For this purpose we derive commutation relations between $\eta_{i}, \xi_{j}, \xi_{c}, \xi_{d}$ and compute $\Delta \eta_{i}, \Delta \xi_{j}, \Delta \xi_{c}, \Delta \xi_{d}$.
5.8. Lemma. a) $\xi_{i}, \xi_{j}, \xi_{c}, \xi_{d}$ commute for all i, j;
b) $\left[\xi_{i}, \eta_{j}\right]=-\frac{h}{2}\left(\delta_{i j}-\delta_{i, j+1}\right) \eta_{j}$,
c) $\left[\xi_{c}, \eta_{j}\right]=-\frac{h}{2} \delta_{j 0} h_{j}$,
d) $\left[\eta_{i}, \eta_{j}\right]=0$ if $|i-j|>1$ and $\eta_{i}^{2} \eta_{i \pm 1}-\left(q+q^{-1}\right) \eta_{i} \eta_{i \pm 1} \eta_{i}+\eta_{i \pm 1} \eta_{i}^{2}=0$,
e) $\left[\eta_{i}, \eta_{i+1, j}\right]_{q}=\left(1-q^{2}\right) \eta_{i j}$.

The proof is essentially the same as those of Lemma 2 and the corollary following it in [R].
5.9. Lemma. a) $\Delta \xi_{i}=\xi_{i} \otimes 1+1 \otimes \xi_{i}$,

$$
\Delta \xi_{c}=\xi_{c} \otimes 1+1 \otimes \xi_{c}, \quad \Delta \xi_{d}=\xi_{d} \otimes 1+1 \otimes \xi_{d}
$$

b) $\Delta \eta_{j}=\eta_{j} \otimes 1+\exp \left(\xi_{j}-\xi_{j+1}+\delta_{j 0} \xi_{d}\right) \otimes \eta_{j}$.

Proof. a) is immediate.
b) $\delta \eta_{j}$ takes a non-zero value on $E_{j, j+1} \otimes 1:\left\langle\Delta \eta_{j}, E_{j, j+1} \otimes 1\right\rangle=1$ and, possibly, on $\prod_{i} E_{i i}^{n_{i}} c^{l} d^{k} \otimes E_{j, j+1}$:

$$
\begin{aligned}
& \left\langle\Delta \eta_{j}, \prod_{i} E_{i i}^{n_{i}} c^{l} d^{k} \otimes E_{j, j+1}\right\rangle=\left\langle\eta_{j}, \prod_{i} E_{i i}^{n_{i}} c^{l} d^{k} \otimes E_{j, j+1}\right\rangle \\
& \quad=\left\langle\eta_{j}, E_{j, j+1} \prod_{i}\left(E_{i i}+\delta_{i j}-\delta_{i, j+1}\right)^{n_{i}}\left(E_{i i}+\delta_{j 0}\right)^{k} c^{l}\right\rangle \\
& \quad=\delta_{l 0} \prod_{i}\left(\delta_{i j}-\delta_{i j+1}\right)^{n_{i}} \delta_{j 0}^{k}
\end{aligned}
$$

Hence,

$$
\Delta \eta_{j}=\eta_{j} \otimes 1+\sum_{l, k, n_{i}} \frac{\left(\xi_{j}-\xi_{j+1}\right)^{n_{i}}}{n_{i}!} \frac{\xi_{d}^{k}}{k!} \otimes \eta_{j}
$$

and b) is proved.
5.10. Lemma $5.8, \mathrm{~d})$ shows that we can set $\varphi\left(\eta_{j}\right)=\lambda_{j} F_{j, j+1}$, where $\lambda_{j} \in \mathbb{C}[[h]]$ are invertible. By Lemma $5.8, \mathrm{c})$ we must set $\varphi\left(\xi_{c}\right)=\frac{h}{2} d$, and since ξ_{d} commutes with everything, we must have $\varphi\left(\xi_{d}\right)=\lambda_{c}$ with $\lambda \in \mathbb{C}[[h]]$ invertible. Further, we see that the conditions in Lemma 5.8, b) are satisfied with $\varphi\left(\xi_{i}\right)=\frac{h}{2} E_{i i}$; hence, the equality in Lemma $5.9, \mathrm{~b})$ is satisfied with $\varphi\left(\xi_{d}\right)=\frac{h}{2} c$.

So, it remains to calculate λ_{j}, but this can be done as in $[\mathrm{R}]$. The result is $\lambda_{j}=\left(1-q^{-2}\right)$, and, from Lemma 5.8, e) we derive easily $\varphi\left(\eta_{i j}\right)=\left(1-q^{-2}\right) F_{i j}$.

Now we derive from (5.3) the formula for R-matrix for $U_{h}\left(g\left(A_{\infty}\right)\right)_{f}$ (and, hence, for $\left.U_{h}\left(g\left(A_{\infty}\right)\right)\right)$:

$$
\begin{equation*}
R=\prod_{i<j} \exp _{q^{-2}}\left(\left(1-q^{-2}\right) E_{i j} \otimes E_{j i}\right) \cdot q^{\sum_{i} E_{i} \otimes E_{i i}+c \otimes d+d \otimes c} \tag{5.4}
\end{equation*}
$$

Finally, note that (5.4) with $d=-\sum_{j>0} E_{j j}$ gives the formula for the R-matrix for $U_{h}\left(g^{\prime}\left(A_{\infty}\right)\right)$.
5.11. Set $\check{\varrho}=\sum_{i} j E_{j j}$. Then the square of the antipode equals to $\operatorname{Ad}\left(e^{h \check{\varrho}}\right)$ and the general formula (valid in any quasitriangular Hopf algebra) give quantum Casimir element [D2]:

$$
e^{-h c / 2}=e^{-h \check{\varrho}} u, \quad u=\sum_{k} S\left(R_{k}^{(2)}\right) R_{k}^{(1)},
$$

and the formula for action of the coproduct on it:

$$
\Delta\left(e^{-h c / 2}\right)=\left(e^{-h c / 2} \otimes e^{-h c / 2}\right)\left(R_{21} R\right)^{-1}
$$

Using this result one can try to obtain the quantum analogue of the KP hierarchy (see [K, Chap. 14]).

References

[D1] Drinfeld, V.: Quantum groups. ICM proceedings, pp. 798-820. Berkeley, 1986
[D2] Drinfeld, V.: On almost cocommutative Hopf algebras. Algebra and analiz 1(2), 30-46 (1989) (in Russian)
[DJKM] Date, M., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. Publ. RIMS, Kyoto Univ. 18, 1077-1110 (1982)
[FF] Feigin, B., Fuchs, D.: Representations of the Virasoro algera. In: Representations of infinite-dixmensional Lie groups and Lie algebras. New York: Gordon and Breach 1989
[J] Jimbo, M.: A q-difference analogue of $U(\mathscr{I})$ and the Yang-Baxter equation. Lett. Math. Phys. 10, 63-67 (1985)
[H] Hayashi, T.: Q-analogues of Clifford and Weyl algebras - Spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys. 127, 129-144 (1990)
[K] Kac, V.: Infinite dimensional Lie algebras. Cambridge: CUP 1985
[Le S] Levendorskiĭ, S., Soibelman, Ya.: Some applications of quantum Weyl group. J. Geom. Phys. 7(4), 1-14 (1991)
[R] Rosso, M.: An analogue of P.B.W. theorem and the universal R-matrix for $U_{h}(s l(N+1))$. Commun. math. Phys. 124, 307-318 (1989)
[KR] Kirillov, A., Reshetikhin, N.: q-Weyl group and a multiplicative formula for universal R-matrices. Commun. Math. Phys. 134, 421-431 (1990)

Communicated by N. Yu. Reshetikhin

