Commun. Math. Phys. 140, 399-414 (1991)

Quantum Group A_{∞}

Serge Levendorskii¹ and Yan Soibelman²

¹ Rostov Institute for National Economy, SU-344798 Rostov-on-Don, USSR

² Rostov State University, SU-344006 Rostov-on-Don, USSR

Received January 15, 1991

Abstract. The quantum groups gl_{∞} and A_{∞} are constructed. The representation theory of these algebras is developed and the universal *R*-matrix is presented.

0.1. The Lie algebra gl_{∞} and its extension A_{∞} play an important role in the theory of nonlinear equations [DJKM]. They are of interest as an example of Kac-Moody-Lie algebras of infinite type [K, FF]. Therefore it is natural to ask: what are the quantum analogues of these algebras in the sense of the quantum groups theory of Drinfeld [D1]? The answer is trivial for $gl_{\infty} = \lim_{n \to \infty} gl_n$, but this is not the case for A_{∞} . Some non-triviality is due tot the fact

that there is no Lie algebra gl_{∞} in the quantum group case [we have the quantized universal enveloping algebra $U_h(gl_{\infty})$ only]. Hence one must analyse the completion of gl_{∞} and the central extension of the corresponding algebra \overline{gl}_{∞} in terms of $U_h(gl_{\infty})$ only. Moreover we need the Hopf Algebra structure in $U_h(A_{\infty})$. This is essential in the case h = 0 already, because, for example, the well-known KP hierarchy is related to the equations for the orbit of highest vector in $L(\Lambda_0) \otimes L(\Lambda_0)$ where $L(\Lambda_0)$ is the basic representation of A_{∞} [K, Chap. 14]. For the same reason we want to obtain $U_h(A_{\infty})$ as the quasitriangular topological Hopf algebra [D1].

The purpose of the paper is to construct $U_h(gl_{\infty})$ and $U_h(A_{\infty})$ as quasitriangular topological Hopf algebras and investigate the representation theory of these algebras. Some results along this lines have been obtained by Hayashi in [H]. Note that there are no constructions of $U_h(gl_{\infty})$ and $U_h(A_{\infty})$ as quantum groups in his paper.

0.2. Let us describe the contents. In Sect. 1 we construct the Hopf algebra $U_h(gl_{\infty})$. This is the quantum analogue of gl_{∞} . The representations of $U_h(gl_{\infty})$ in the spaces of sequences and (quantum) semi-infinite forms are given in Sect. 2. The Hopf algebra $U_h(A_{\infty})$ (and some related algebras) is constructed in Sect. 3. This construction is more complicated than in the non-quantum case [K]. The representation theory of $U_h(A_{\infty})$ is presented in Sect. 4. Our class

of representations is the same as in [FF, Chap. 3]. For example, we construct the representations in the space of quantum semifinite forms and in the space of the usual semifinite forms. The vertex operators for $U_h(A_{\infty})$ is constructed also. In the last section, Sect. 5 we construct the universal quantum *R*-matrix for $U_h(A_{\infty})$ and the related quantum analogue of Casimir operator [D2].

0.3. Concluding remarks. We deal with algebras and modules over formal power series $\mathbb{C}[[h]]$. It is easy to see that all the results of Sect. 1-4 remain true for fixed $h \notin \pi i \mathbb{Q}$.

We can't construct the embedding of Hopf algebras $U_h(A_n^{(1)}) \rightarrow U_h(A_\infty)$. This differs strikingly from the case h = 0. Still, this embedding exists in certain representation space (cf. [H, Sect. 6]).

0.4. We wish to express our thanks to V. Drinfeld for useful discussions.

1. The P.B.W. Basic for $U_{\rm h}(gl_{\infty})$

1.1. Definition. Let $\mathbb{C}[[h]]$ be the ring of formal power series in h. $U_h(gl_{\infty})$ denotes the Hopf algebra, which is a topologically free module over $\mathbb{C}[[h]]$ (complete in *h*-adic topology), with generators $\{X_{i,i+1}, X_{i+1,i}, E_{ii}\}_{i \in \mathbb{Z}}$ and fundamental relations

$$[E_{ii}, E_{jj}] = 0, (1.1)$$

$$[E_{ii}, X_{j,j+1}] = (\delta_{ij} - \delta_{i,j+1}) X_{j,j+1},$$

$$[E_{ii}, X_{j+1,j}] = (-\delta_{ij} + \delta_{i,j+1}) X_{j+1,j},$$
(1.2)

$$[X_{i,i+1}, X_{j+1,j}] = \delta_{ij} \frac{q^{H_{i,i+1}} - q^{-H_{i,i+1}}}{q - q^{-1}}, \qquad (1.3)$$

where $H_{ij} = E_{ii} - E_{jj}, q = \exp(h/2)$

$$[X_{i,i+1}, X_{j,j+1}] = 0, \quad |i-j| > 1,$$

$$X_{i,i+1}^{2} X_{j,j+1} - (q^{2} + 1 + q^{-2}) X_{i,i+1} X_{j,j+1} X_{i,i+1} + X_{j,j+1} X_{i,i+1}^{2} = 0,$$

$$|i-j| = 1,$$

(1.4)

the formulae (1.4) with pairs of indices (i + 1, i), (j + 1, j)substituted for pairs (i, i + 1), (j, j + 1). (1.5)

The coproduct map is defined on generators by

$$\Delta E_{ii} = E_{ii} \otimes 1 + 1 \otimes E_{ii},$$

$$\Delta X_{i,i+1} = X_{i,i+1} \otimes q^{+H_{i,i+1/2}} + q^{-H_{i,i+1/2}} \otimes X_{i,i+1},$$

$$\Delta X_{i+1,i} = X_{i+1,i} \otimes q^{+H_{i,i+1/2}} + q^{-H_{i,i+1/2}} \otimes X_{i+1,i},$$
(1.6)

and the counit ε and the antipode S are defined by

$$\varepsilon(E_{ii}) = \varepsilon(X_{i,i+1}) = \varepsilon(X_{i+1,i}) = 0,$$

$$S(E_{ii}) = -E_{ii}, \quad S(X_{i,i+1}) = -q X_{i,i+1}, \quad S(X_{i+1,i}) = -q^{-1} X_{i+1,i}.$$
(1.7)

1.2. The adjoint representation ad: $U_h(gl_{\infty}) \to \text{End } U_h(gl_{\infty})$ is given by $ad_a(x) = \Delta(a) \circ (x)$, where $(a \otimes b) \circ x = axS(b)$. Starting with the opposite coproduct Δ' and the related antipode S', we obtain another adjoint action ad'. We introduce the new generators $E_{i,i+1} = X_{i,i+1} \cdot q^{-H_{i,i+1}/2}$, $F_{i,i+1} = X_{i+1,i} \cdot q^{H_{i,i+1}/2}$ and define the quantum analogues of root vectors by induction: for i < j - 1,

$$E_{ij} = \operatorname{ad}_{E_{i,i+1}}(E_{i+1,i}), \quad F_{ij} = \operatorname{ad}'_{F_{i,i+1}}(F_{i+1,j}).$$
 (1.8)

From (1.8), (1.7), (1.2) it follows that

$$E_{ij} = [E_{i,i+1}, E_{i+1,j}]_q, \quad F_{ij} = [F_{i,i+1}, F_{i+1,j}]_q, \tag{1.9}$$

where $[A, B]_q = AB - qBA$, and

$$[E_{kk}, E_{ij}] = (\delta_{ki} - \delta_{kj}) E_{ij}, \quad [E_{kk}, F_{ij}] = (-\delta_{ki} + \delta_{kj}) F_{ij}.$$
(1.10)

In the next subsections we state and prove the communication relations for root vectors.

1.3. Theorem. Let i < j < k < m. Then

$$[E_{ij}, E_{kk}]_q = E_{ik}, (1.11)$$

$$[E_{ik}, E_{jk}]_{q^{-1}} = 0, \quad [E_{ij}, E_{ik}]_{q^{-1}} = 0, \tag{1.12}$$

$$[E_{ik}, E_{jm}] = (q^{-1} - q) E_{im} E_{jk}, \qquad (1.13)$$

$$[E_{ij}, E_{km}] = 0, \quad [E_{im}, E_{jk}] = 0, \tag{1.14}$$

formulae
$$(1.11)-(1.14)$$
 with the letter F substituted
for the letter E. (1.15)

Proof. Formulae (1.11)–(1.14) were proved in [R] and (1.15) is their consequence since linear Cartan involution ω_0 defined on generators by

$$\omega_0(h) = h, \quad \omega_0(E_{ii}) = -E_{ii}, \quad \omega_0(X_{i,i+1}) = -X_{i+1,i}, \quad \omega_0(X_{i+1,i}) = -X_{i,i+1}$$

extends to Hopf algebra isomorphism, $\omega_0: (U_h(gl_\infty), \delta) \to (U_h(gl_\infty), \Delta')$ and

$$\omega_0(E_{ij}) = (-1)^{j-i} F_{ij}, \quad \omega_0(F_{ij}) = (-1)^{j-i} E_{ij}.$$

Set $K_{i\,i} = q^{H_{i\,j}/2}$.

1.4. Theorem. a) For i < j < k < m,

$$[E_{ij}, F_{km}] = 0, \quad [E_{km}, F_{ij}] = 0.$$
(1.16)

b) For i < j

$$[E_{ij}, F_{ij}] = \frac{(-q^2)^{j-i}}{1-q^2} (K_{ij}^2 - K_{ij}^{-2}).$$
(1.17)

c) For i < j < k < m,

$$[E_{ik}, F_{jk}] = -(-q^2)^{k-j} E_{ij} K_{jk}^{-2}, \qquad (1.18)$$

$$[E_{im}, F_{ij}] = (-q^2)^{j-i} K_{ij}^2 E_{jm}, \qquad (1.19)$$

$$[E_{jm}, F_{im}] = (-q^2)^{m-j} F_{ij} K_{jm}^2, \qquad (1.20)$$

$$[E_{ij}, F_{im}] = -(-q^2)^{j-i} K_{ij}^{-2} F_{jm}, \qquad (1.21)$$

$$[E_{im}, F_{jk}] = [E_{jk}, F_{im}] = 0.$$
(1.22)

Proof. a) (1.16) is an easy consequence of (1.3), (1.9). b) For j - i = 1, (1.17) is just (1.3) and the general case can be proven by induction, use being made of the formulae (1.11), (1.15), (1.10).

c) Formulae (1.18)-(1.22) follows from Theorem 1 and the formulae (1.17), (1.11).

Below now consider the action of the coproduct on root vectors.

1.5. Theorem. For i < j,

$$\Delta(E_{ij}) = E_{ij} \otimes 1 + (1 - q^2) \sum_{i < m < j} E_{im} K_{mj}^{-2} \otimes E_{mj} + K_{ij}^{-2} \otimes E_{ij}, \quad (1.23)$$

$$\Delta(F_{ij}) = 1 \otimes F_{ij} + (1 - q^2) \sum_{i < m < j} F_{mj} \otimes F_{im} K_{mj}^2 + F_{ij} \otimes K_{ij}^2.$$
(1.24)

Proof. Formula (1.23) was proved in [R], and (1.24) follows from (1.23) since $\omega_0: (U_h(gl_{\infty}), \Delta) \to (U_h(gl_{\infty}), \Delta')$ is Hopf algebra isomorphism and $\omega_0(K_{ij}^{-2}) = K_{ij}^2, \omega_0(E_{ij}) = (-1)^{j-i} F_{ij}$.

1.6. Set

$$\tilde{E}_{ij} = \begin{cases} 1, & i \ge j \\ (1-q^2) E_{ij}, & i < j \end{cases}, \quad \tilde{F}_{ij} = \begin{cases} 1, & i \ge j \\ (1-q^2) F_{ij}, & i < j \end{cases}$$

and rewrite (1.23), (1.24) in the more convenient fashion:

$$\Delta(\tilde{E}_{ij}) = \sum_{i \le m \le j} \tilde{E}_{im} K_{mj}^{-2} \otimes \tilde{E}_{mj}, \quad \Delta(\tilde{F}_{ij}) = \sum_{i \le m \le j} \tilde{F}_{mj} \otimes \tilde{F}_{im} K_{mj}^{2}. \quad (1.29)$$

Define the homomorphisms

$$\Delta^{(j)}: U_h(gl_{\infty}) \to U_h(gl_{\infty})^{\otimes (j+1)}$$

by induction:

$$\varDelta^{(1)} = \varDelta, \quad \varDelta^{(j+1)} = (\varDelta \otimes \mathrm{id}^{\otimes j}) \, \varDelta^{(j)} = (\mathrm{id}^{\otimes j} \otimes \varDelta) \, \varDelta^{(j)}, \quad j \ge 1.$$

Due to (1.29)

$$\Delta^{(l)}(\tilde{E}_{ij}) = \sum_{i \le r_1 \le r_2 \le \cdots \le r_l \le j} \tilde{E}_{ir_1} K_{r_1j}^{-2} \otimes \tilde{E}_{r_1r_2} K_{r_2j}^{-2} \otimes \cdots \otimes \tilde{E}_{r_lj}, \quad (1.30)$$

$$\Delta^{(l)}(\tilde{F}_{ij}) = \sum_{i \le r_1 \le r_2 \le \cdots \le r_l \le j} \tilde{F}_{r_l j} \otimes \tilde{F}_{r_{l-1} r_l} K_{r_l j}^2 \otimes \cdots \otimes \tilde{F}_{i r_1} K_{r_1 j}^2, \quad (1.31)$$

and due to (1.6)

$$\Delta^{(l)}(E_{ii}) = E_{ii} \otimes 1^{\otimes l} + 1 \otimes E_{ii} \otimes 1^{\otimes (l-1)} + \dots + 1^{\otimes l} \otimes E_{ii}, \quad (1.32)$$

$$\Delta^{(l)}(K_{ij}^p) = K_{ij}^p \otimes \cdots \otimes K_{ij}^p.$$
(1.33)

1.7. Set for $i < j E_{ji} = F_{ij}$ and introduce in \mathbb{Z}^2 , the ordering as follows: 1) if i < j, l < k, r < s, then

2) let r' < s', r < s; then

and

$$(r', s') < (r, s)$$
 iff $r' > r$ or $r' = r$ and $s' > s$
 $(s', r') > (s, r)$ iff $r' > r$ or $r' = r$ and $s' > s$.

402

1.8. Theorem. The set of ordered monomials

$$E^n = \prod_{(i, j) \in \mathbb{Z}^2} E^{n_{ij}}_{ij}$$

with finitely many non-zero exponents $n_{ij} \in \mathbb{Z}_+$ form a basis in $\mathbb{C}[[h]]$ -module $U_h(gl_{\infty})$.

Proof is essentially the same as that for $U_h(sl(n))$ in [R, Theorems 1.3-1.5] being used.

2. The Representations of $U_h(gl_{\infty})$ in $(\overline{\mathbb{C}}_{-}^{\infty})_h$ and in $\Lambda_{(s),h}^{\infty}$

2.1. Definition. Let A be an algebra and $\mathbb{C}[[h]]$ -module. Let V be topologically free $\mathbb{C}[[h]]$ -module. Then a $\mathbb{C}[[h]]$ -module homomorphism $\varrho: A \to \text{End } V$ is called a representation of A in V provided ϱ is continuous in the h-adic topology.

2.2. Definition. $\overline{\mathbb{C}}_{-}^{\infty}$ denotes the vector space of sequences $(u_i)_{i \in \mathbb{Z}}$ with finitely many non-zero u_i for i > 0. We consider $\overline{\mathbb{C}}_{-}^{\infty}$ as a topological vector space, the fundamental system of neighbourhoods of zero being $\{V^r | r \in \mathbb{Z}\}$, where

$$V^r = \{ u \mid u_i = 0 \text{ for } i > -r \}.$$

 \mathbb{C}^{∞} denotes the subspace consisting of $\{u_i\}$ with finitely many non-zero u_i . It's evident that \mathbb{C}^{∞} is dense in $\overline{\mathbb{C}}^{\infty}_{-}$.

2.3. Let l_{ij} denote the matrix which is 1 in (i, j) entry and zero everywhere else. Such matrices act in $\overline{\mathbb{C}}^{\infty}_{-}$ and we can define the representation of $U_h(gl_{\infty})$ in $\overline{\mathbb{C}}^{\infty}_{-} \otimes \mathbb{C}[[h]] = (\overline{\mathbb{C}}^{\infty}_{-})_h$ by

$$\pi(X_{i,i+1}) = l_{i,i+1}, \quad \pi(X_{i+1,i}) = l_{i+1,i}, \quad \pi(E_{ii}) = l_{ii}.$$

By (1.9) for i < j,

$$\pi(E_{ij}) = q^{(j-i)/2} l_{ij}, \quad \pi(E_{ji}) = (-1)^{j-i-1} q^{3(j-i)/2-1} \cdot l_{ji},$$

and by (1.30)-(1.32) the representation in $(\overline{\mathbb{C}}_{-}^{\infty})^{\otimes (l+1)} \otimes \mathbb{C}[[h]]$ is given by

$$\pi^{(l+1)}(E_{ii}) = l_{ii} \otimes 1^{\otimes l} + 1 \otimes l_{ii} \otimes 1^{\otimes (l-1)} + \dots + 1^{\otimes l} \otimes l_{ii}, \tag{2.1}$$

$$\pi^{(l+1)}(E_{ij}) = q^{(j-i)/2} \sum_{r} (q^{-1} - q)^{\mu(r)-1} \hat{l}_{ir_1} \otimes \hat{l}_{r_1 r_2} \otimes \cdots \otimes \hat{l}_{r_l j}, \qquad (2.2)$$

$$\pi^{(l+1)}(E_{ji}) = (-1)^{j-i-1} q^{3(j-i)/2-1} \sum_{r} (q-q^{-1})^{\mu(r)-1} \hat{l}_{jr_l} \otimes \hat{l}_{r_lr_{l-1}} \otimes \cdots \otimes \hat{l}_{r_1i},$$
(2.3)

where $\hat{l}_{ps} = I$ for p = s, $\hat{l}_{ps} = l_{ps}$ otherwise, and $\mu(r)$ is the number of $\hat{l}_{ps} \neq I$ in summand of (2.2), (2.3), l_{ij} are the matrix units.

2.4. Let $\{f_i\}$ be the standard basis in \mathbb{C}^{∞} . Denote by $\Lambda_{(s),h}^{\infty}$ the $\mathbb{C}[[h]]$ -module generated by all expressions of the form $u_0 \wedge u_{-1} \wedge u_{-2} \wedge \cdots$, where $u_i \in \mathbb{C}^{\infty}$ and $u_{-i} = f_{-i+s}$ for sufficiently large *i*, the following identification being assumed: if i < j then

$$\cdots \wedge f_i \wedge f_j \wedge \cdots = -q^{-1} \cdots \wedge f_j \wedge f_i \wedge \cdots.$$
(2.4)

(2.9)

If we start with expressions $u = u_0 \wedge u_{-1} \wedge \cdots \wedge u_{-l}$, where $u_j \in \mathbb{C}^{\infty}$, then we get the definition of the $\mathbb{C}[[h]]$ -module $\Lambda_h^{l+1}(\mathbb{C}^{\infty})$.

2.5. Define the action $\hat{\pi}_{(s)}$: $U_h(gl_{\infty}) \to \text{End } \Lambda^{\infty}_{(s),h}(\mathbb{C}^{\infty})$ on generators E_{ii}, E_{ij}, E_{ji} (i < j) by

$$\hat{\pi}_{(s)}(E_{ii})\left(u_0 \wedge u_{-1} \wedge \cdots\right) = l_{ii}u_0 \wedge u_{-1} \wedge \cdots + u_0 \wedge l_{ii}u_{-1} \wedge \cdots + \cdots,$$
(2.5)

$$\hat{\pi}_{(s)}(E_{ij}) \left(u_0 \wedge u_{-1} \wedge \cdots \right) = q^{(j-i)/2} \sum_{l \ge 0} \sum_{i \le k_1 \le \cdots \le k_l \le j} (q^{-1} - q)^{\mu(k) - 1} \\ \cdot \hat{l}_{ik_1} u_0 \wedge \hat{l}_{k_1k_2} u_{-1} \wedge \cdots \wedge \hat{l}_{k_lj} u_{-l} \wedge u_{-l-1} \wedge \cdots,$$
(2.6)

$$\hat{\pi}_{(s)}(E_{ij}) (u_0 \wedge u_{-1} \wedge \cdots) = (-1)^{j-i-1} q^{3(j-i)/2-1} \sum_{l \ge 0} \sum_{i \le k_1 \le \cdots \le k_l \le j} (q-q^{-1})^{\mu(k)-1} \hat{l}_{jk_l} u_0 \wedge \hat{l}_{k_lk_{l-1}} u_{-1} \wedge \cdots \wedge \hat{l}_{k_2k_1} u_{-l+1} \wedge \hat{l}_{k_1i} u_{-l} \wedge \cdots.$$
(2.7)

2.6. Theorem. Formulae (2.5)–(2.7) define the representation of $U_h(gl_{\infty})$.

Proof. For a fixed u, in (2.5)–(2.7) there are finitely many non-zero summands. Hence, it suffices to prove that the formulae (2.1)–(2.3) define the representation of $U_h(gl_{\infty})$ in $A_h^{l+1}(\mathbb{C}^{\infty})$. Since the latter formulae define the representation in $\mathbb{C}[[h]] \otimes (\mathbb{C}^{\infty})^{\otimes (l+1)}$, it suffices to show that the subspace in $\mathbb{C}[[h]] \otimes (\mathbb{C}^{\infty})^{\otimes (l+1)}$ generated by the expressions

$$\cdots \otimes f_i \otimes f_j \otimes \cdots + q^{-1} \cdots \otimes f_j \otimes f_i \otimes \cdots, \quad i < j,$$

is stable under all of the E_{kk} , $E_{i,i+1}$, $E_{i+1,i}$. But this is easily verified by straightforward calculations.

2.7. In this subsection we'll simplify the formulae (2.6), (2.7) for $u = f_{i_1} \wedge f_{i_2} \wedge \cdots \wedge f_{i_t} \wedge \cdots$ with $i_1 > i_2 > \cdots$. Denote by $\varkappa(i, j) = \varkappa(i, j, u)$ the number of indices $i_k \in (i, j)$ and note that if $j \neq i_r$ for all r or $i = i_t$ for some t, then all the terms in (2.6) vanish, otherwise all but one of them are zero. Hence, we obtain

$$\hat{\pi}_{(s)}(E_{ij}) u = q^{(j-i)/2} (-q^{-1})^{*(i,j)} \cdots \wedge f_{i_{r-1}} \wedge f_{i_{r+1}} \wedge \cdots \wedge f_i \wedge \cdots, \quad (2.8)$$

the indices on the right-hand side being ordered.

Further, $\hat{\pi}_{(s)}(E_{ij})u = 0$ unless $i = i_r$ for some r and $j \neq i_t$ for all t; of these two conditions hold, then in (2.7) the number of non-zero summands with fixed $\mu = \mu(k)$ is $C_{\mu-1}^{\kappa(j,i)}$, and each non-zero term is of the form

$$(-1)^{j-i-1} q^{3(j-i)/2-1} (q-q^{-1})^{\mu-1} \cdots \wedge l_{j\nu_1} f_{\nu_1} \wedge l_{\nu_1\nu_2} f_{\nu_2} \wedge \cdots \\ \wedge f_{i_{r-1}} \wedge l_{\nu_{\mu-1},i} f_i \wedge f_{i_{r+1}} \wedge \cdots,$$

where $j > v_1 > \cdots > v_{\mu-1} > i$ (and $v_1 = i$ if $\mu = 1$). By using (2.4) we get

 $\hat{\pi}_{(s)}(E_{ji}) u = (-1)^{j-i-1} q^{3(j-i)/2-1} (-q)^{-\varkappa(i,j)} \sum_{\substack{1 \le \mu \le \varkappa(i,j)+1 \\ \cdots < f_{j} \land \cdots \land f_{j} \land \cdots \land f_{i_{r-1}} \land f_{i_{r+1}} \land \cdots = (-1)^{j-i-1}} \cdot q^{3(j-i)/2-1} ((2-q^2)(-q^{-1}))^{\varkappa(i,j)} \cdots \land f_{j} \land \cdots \land f_{i_{r-1}} \land f_{i_{r+1}} \land \cdots.$

the indices on the right-hand side being ordered.

2.8. Define $\Lambda_{(s)}^{\infty}(\mathbb{C}^{\infty})$ as the \mathbb{C} -span of all expressions of the form $u_0 \wedge u_{-1} \wedge u_{-2} \wedge \cdots$ with the identification

$$\cdots \wedge f_i \wedge f_j \wedge \cdots = - \cdots \wedge f_j \wedge f_i \wedge \cdots$$

for $i \leq j$. Next, define the $\mathbb{C}[[h]]$ -module isomorphism $j: \Lambda_{(s),h}^{\infty}(\mathbb{C}^{\infty}) \to \Lambda_{(s)}^{\infty}(\mathbb{C}^{\infty}) \otimes \mathbb{C}[[h]]$ by $f_{i_1} \wedge f_{i_2} \wedge \cdots \wedge \cdots \to f_{i_1} \wedge f_{i_2} \wedge \cdots \wedge \cdots$, and denote by $\varrho_{(s)}$ the usual representation of gl_{∞} in $\Lambda_{(s)}^{\infty}(\mathbb{C}^{\infty})$:

$$\varrho_{(s)}(l_{ij}) u = l_{ij} u_0 \wedge u_{-1} \wedge \cdots + u_0 \wedge l_{ij} u_{-1} \wedge u_{-2} \wedge \cdots$$

Now, if we define

$$K(i,j) = \exp\left(\frac{h}{2} \sum_{i+1 \leq r \leq j-1} l_{rr}\right) \in U(gl_{\infty}) \otimes \mathbb{C}[[h]],$$

then the formulae

$$\pi_s(E_{i\,j}) = \varrho_{(s)}(l_{i\,i}),\tag{2.10}$$

$$\pi_{(s)}(E_{ij}) = q^{(j-i)/2 - 1}(-\varrho_{(s)}(K(i,j)^{-1})\varrho_{(s)}(l_{ij}),$$
(2.11)

$$\pi_{(s)}(E_{ji}) = (-1)^{j-i-1} q^{3(j-i)/2-1} (2 \varrho_{(s)}(K(i,j)^{-1}) - \varrho_{(s)}(K(i,j))) \varrho_{(s)}(l_{ji})$$
(2.12)

define the representation $\pi_{(s)}$: $U_h(gl_{\infty}) \to \operatorname{End}(\Lambda_{(s)}^{\infty} \otimes \mathbb{C}[[h]])$ [see (2.5), (2.8), (2.9)].

3. The Algebras $U_h(g'(A_\infty)), U_h(g(A_\infty))$

3.1. Definition. $U_h(g'(A_\infty))_f$ is the topologically free $\mathbb{C}[[h]]$ -module, complete in *h*-adic topology, and the unital algebra with generators $\{c, E_{ii}, E_{ij}, E_{ji} = F_{ij}\}_{i < j, (i, j) \in \mathbb{Z}^2}$ and relations

- 1) $[c, \text{ everything}] = 0; \quad [E_{ii}, E_{jj}] = 0, \quad \text{all} \quad i, j,$ (3.1)
- 2) formulae (1.10)-(1.15);
- 3) formulae (1.16)-(1.22) with

$$\dot{E}_{ii} = \begin{cases}
E_{ii}, & i > 0 \\
E_{ii} + c, & i \leq 0
\end{cases}, \quad \dot{H}_{ij} = \dot{E}_{ii} - \dot{E}_{jj}, \quad \dot{K}_{ij} = q^{\dot{H}_{ij}}, \\
\text{substituted for } E_{ii}, H_{ij}, K_{ij}.$$
(3.3)

3.2. $U_h(g'(A_\infty))_f$ can be equipped with a Hopf algebra structure, the coproduct being defined on generators by formulae

$$\Delta c = c \otimes 1 + 1 \otimes c, \quad \Delta E_{ii} = E_{ii} \otimes 1 + 1 \otimes E_{ii}$$
(3.4)

and by

formulae (1.23), (1.24) with
$$K_{ij}$$
 substituted for K_{ij} . (3.5)

One easily gets the following analogue of Theorem 1.8.

(3.2)

S. Levendorskii and Y. Soibelman

3.3. Theorem. The set of ordered monomials

$$c^l E^n = c^l \prod_{i, j} E^{n_{ij}}_{ij}$$

with finitely many non-zero exponents $n_{i,i} \in \mathbb{Z}_+$, $l \in \mathbb{Z}_+$ form a basis in the $\mathbb{C}[[h]]$ -module $U_h(g'(A_{\infty}))_f$.

3.4. Set $f' = \bigoplus \mathbb{C} E_{ii}$, define linear functionals $\varepsilon_i \colon h' \to \mathbb{C}$ by $\varepsilon_i(E_{jj}) = \delta_{ij}$ and set $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$, $\mathbb{Q}'_+ = \bigoplus \mathbb{Z}_+ \alpha_i$. Denote by $U_h(n_+)$ (respectively $U_h(n_-)$) the unital subalgebra in $U_h(g'(A_{\infty}))_f$ generated by $\{E_{i,i}\}_{i < i}$ (respectively $\{E_{i,i}\}_{i < i}$). Evidently,

$$U_h(n_{\pm}) = \bigoplus_{\alpha \in \mathbb{Q}'_+} U_h(n_{\pm})_{\pm \alpha},$$

where

$$U_h(n_{\pm})_{\pm \alpha} = \{ x \in U_h(n_{\pm}) \mid [h, x] = \pm \alpha(h) x \ \forall h \in h' \}$$

for $\alpha \neq 0$, and $U_h(n_{\pm})_0 = \mathbb{C}$. By Theorem 3.3, any element $u \in U_h(g'(A_{\infty}))_f$ can be represented as follows:

$$u = \sum_{k \in \mathbb{Z}_+} h^k \sum_{0 \le l \le l(k)} c^l \sum_{\alpha, \beta \in \mathbb{Q}'_+} \sum_{\gamma(k,l) \in \mathbb{Z}_+^{\infty}} \sum_{1 \le l \le l(\beta)} \mathscr{F}_{\alpha,k,l} \prod_i E_{ii}^{\gamma(k,l)_i} \mathscr{E}_{\beta,k,l,l} .$$
(3.6)

Here $\mathscr{F}_{\alpha,k,l} \in U_h(n_-)_{-\alpha}$, $\mathscr{E}_{\beta,k,l,t} \in U_h(n_+)_{\beta}$ and for fixed k, l there are finitely many non-zero summands in (3.6).

To obtain the completed algebra $U_h(g'(A_\infty))$ we replace the sums over (α, β, γ) for the series but impose certain conditions on pairs (α, γ) corresponding to non-zero summands (note that the set of such pairs is uniquely defined by the series u).

3.5. Set for
$$\alpha = \sum_{i} m_i \alpha_i \in \mathbb{Q}'_+, \ \gamma = (\gamma_i) \in \mathbb{Z}^{\infty}_+,$$

$$S(\alpha) = \{i \mid m_i \neq 0\}, \quad S(\gamma) = \{i \mid \gamma_i \neq 0\}, \quad S(\alpha, \gamma) = S(\alpha) \cup S(\gamma).$$

By connecting i, j for |i - j| = 1, we can view $S(\alpha, \gamma)$ as a graph. Denote by $\mathscr{I}(\alpha, \gamma)$ the set of its connected components and set for $p \in \mathbb{Z}_+$,

$$\mathscr{I}(u,p) = \cup \mathscr{I}(\alpha,\gamma),$$

where the union is taken over non-zero summands with $k \leq p$ in (3.6).

For $i \in \mathbb{Z}$ and $p \in \mathbb{Z}_+$ set $Int(u, p, i) = \{I \in \mathscr{I}(u, p) | i \in I\}$. Recall that $\mathscr{E}_{\beta,k,l,t}$ (respectively $\mathscr{F}_{\alpha,k,l}$) are expressed via E_{ii} and $E_{i,i+1}$ (respectively $E_{i+1,i}$, $i \in \mathbb{Z}$, and, for $r \in \mathbb{N}$, define the series u(r) by substituting 0 for all E_{ii} $(i \leq -r \text{ or } i \geq r+1)$ and for all $E_{i,i+1}$, $E_{i+1,i}$, $(|i| \geq r)$.

3.6. Definition. The series u of the form (3.6) is said to belong to $U_h(g'(A_{\infty}))$ provided the following conditions hold

a) for all $p \in \mathbb{Z}_+$, $i \in \mathbb{Z}$ the sets Int(u, p, i) are finite,

b) $u(r) \in U_h(g'(A_\infty))_f$ for all $r \in \mathbb{N}$.

3.7. Definition. Let $\mathscr{I}_{p,i}$ be finite sets of finite integer intervals containing *i* $(i \in \mathbb{Z}, p \in \mathbb{Z}_+)$, and let $r \in \mathbb{N}$.

We say that $u \in U_h(g'(A_\infty))$ belongs to the neighbourhood of zero $V({\{\mathscr{I}_{p,i}\}_{i\in\mathbb{Z}, p\in\mathbb{Z}_+}, r) \text{ provided}}$

a) Int $(u, p, i) \subset \mathscr{I}_{p, i}, \forall p \in \mathbb{Z}_+, \forall i \in \mathbb{Z},$

b) u(r) = 0.

406

3.8. We introduce in $U_h(g'(A_\infty))$ the topology by declaring $\{V(\{\mathscr{I}_{p,i}\}_{i \in \mathbb{Z}, p \in \mathbb{Z}_+}, r)\}$ to be the fundamental system of neighbourhoods of zero.

3.9. Proposition. $U_h(g'(A_\infty))_f \subset U_h(g'(A_\infty))$ densely.

Proof. $u(r) \rightarrow u$ as $r \rightarrow \infty$.

3.10. Theorem. Let $u_i \in U_h(g'(A_{\infty}))$, i = 1, 2, and let $\{u_i^j\}_{j \ge 0} \subset U_h(g'(A_{\infty}))_f$ be a sequence having the limit u_i . Then the sequence $\{u_i^j u_2^j\}$ has the limit, denote it u, in $U_h(g'(A_{\infty}))$ and u is independent of the choice of sequences $\{u_1^j\}, \{u_2^j\}$.

Proof. Write the expression (3.6) for u_i^j and $u^j \stackrel{\text{def}}{=} u_1^j u_2^j$ in the form

$$u_i^j = \sum_k \sum_l \sum_{\alpha,\beta} \sum_{\gamma} \sum_t u_i^j(k,l,\alpha,\beta,\gamma,t), \qquad (3.7)$$

$$u^{j} = \sum_{k} \sum_{l} \sum_{\alpha,\beta} \sum_{\gamma} \sum_{t} u^{j}(k,l,\alpha,\beta,\gamma,t), \qquad (3.8)$$

and fix a tuple $(k, l, \alpha, \beta, \gamma, t)$. From Theorems 1.3, 1.4 and from Definition 3.6 it follows that $u^j(k, l, \alpha, \beta, \gamma, t)$ depends on finitely many summands in (3.7), i = 1, 2. Moreover, the number of these summands is bounded uniformly in *j*. From Definitions 3.7, 3.8, it follows that $u^j(k, l, \alpha, \beta, \gamma, t)$ is independent of *j*, provided *j* is sufficiently large: $u^j(k, l, \alpha, \beta, \gamma, t) = u(k, l, \alpha, \beta, \gamma, t)$ for $j \ge j_0$, where j_0 depends on $(k, l, \alpha, \beta, \gamma, t)$. Hence, $u(k, l, \alpha, \beta, \gamma, t)$ is independent of a choice of sequences $\{u_1^i\}, \{u_2^i\}$. Now we see that the omission of upper indices in (3.8) gives the formula *u*; clearly, it's independent of a choice of sequences.

The close inspection of the above arguments shows that u obeys the conditions of Definition 3.6.

3.11. Let $s \in \mathbb{N}$. Consider a formal series

$$u = \sum_{k \in \mathbb{Z}_{+}} h^{k} \sum_{\substack{0 \leq l_{j} \leq l_{j}(k) \\ (1 \leq j \leq s)}} c^{l_{1}} \otimes \cdots \otimes c^{l_{s}} \sum_{\alpha, \beta \in (\mathbb{Q}'_{+})^{s}} \sum_{\gamma(k, l) \in (\mathbb{Z}_{+}^{\infty})^{t}}$$

$$\cdot \sum_{\substack{1 \leq t_{j} \leq t_{j}(\beta^{1}) \\ (1 \leq j \leq s)}} \mathscr{F}_{\alpha^{1}, k, l} \prod_{i} E_{ii}^{\gamma(k, l)^{\frac{1}{i}}} \mathscr{E}_{\beta^{1}, k, l, t_{1}} \otimes$$

$$\cdots \otimes \mathscr{F}_{\alpha^{s}, k, l} \prod_{j} E_{ii}^{\gamma(k, l)^{s}} \mathscr{E}_{\beta^{s}, k, l, t_{s}}.$$
(3.9)

Non-zero summands of this series determine the set of tuples of pairs $(\alpha, \gamma) = ((\alpha^1, \gamma^1), (\alpha^2, \gamma^2), \dots, (\alpha^s, \gamma^s))$. Set for $1 \leq j \leq s, p \in \mathbb{Z}_+$,

$$\mathscr{I}_{i}(u,p) = \cup \mathscr{I}(\alpha^{j},\gamma^{j}),$$

where the union is taken over non-zero summands with $k \leq p$ in (3.9). For $i \in \mathbb{Z}^s$ and $p \in \mathbb{Z}_+$ set

$$\operatorname{Int}(u, p, i) = \{(I^1, I^2, \dots, I^s) \in \mathscr{I}_1(u, p) \times \dots \times \mathscr{I}_s(u, p) | i_1 \in I^1, \dots, i_s \in I^s\}.$$

For $r \in \mathbb{N}$ define the series u(r) by substituting 0 for all E_{ii} $(i \leq -r \text{ or } i \geq r+1)$ and all $E_{i,i+1}$, $E_{i+1,i}$ $(|i| \geq r)$.

3.12. Definition. The series u of the form (3.9) is said to belong to $U_h(g'(A_\infty))^{\otimes s}$ provided the following conditions hold

a) for every p∈ Z₊, i∈ Z^s the set Int (u, p, i) is finite;
b) u(r)∈ U_h(g'(A_∞))^{⊗s}_f for all r∈ N.

3.13. Definition. Let \mathscr{I}_{p,i_j} be finite sets of finite integer intervals, containing i_j

 $(p \in \mathbb{Z}_+, 1 \leq j \leq s, i_j \in \mathbb{Z}) \text{ and let } r \in \mathbb{N}.$ We say that $u \in U_h(g'(A_\infty))^{\otimes s}$ belongs to the neighbourhood of zero $V(\{\mathscr{I}_{p,i_1} \times \cdots \times \mathscr{I}_{p,i_s}\}, r)$, provided a) $\operatorname{Int}(u, p, i) \subset \mathscr{I}_{p,i_1} \times \cdots \times \mathscr{I}_{p,i_s} \forall i \in \mathbb{Z}^s, \forall p \in \mathbb{Z}_+,$ b) u(r) = 0

b) u(r) = 0.

3.14. We introduce in $U_h(g'(A_\infty))^{\otimes s}$ the topology by declaring $\{V(\{\mathscr{I}_{p,i_1} \times \cdots \times \mathscr{I}_{p,i_s}\}, r\}$ to be the fundamental system of neighbourhoods of zero.

3.15. The analogues of Proposition 3.9 and Theorem 3.10 for $U_h(g'(A_{\infty}))^{\otimes s}$ are obvious.

3.16. Theorem. Let $u \in U_h(g'(A_\infty))$ and let $\{u^j\} \subset U_h(g'(A_\infty))_f$ be a sequence having the limit u.

Then the sequence $\{\Delta(u^j)\} \subset U_h(g'(A_\infty))_f^{\otimes 2}$ has the limit, denote it $\Delta(u)$, in $U_h(g'(A_\infty))^{\otimes 2}$, and it is independent of a choice of a sequence.

Proof is similar to that of Theorem 3.10, use being made of Theorem 1.5.

One can easily state the analogues of Theorem 3.16 for the maps $id \otimes \Delta$, $\Delta \otimes \mathrm{id} : U_h(g'(A_\infty))^{\otimes 2} \to U_h(g'(A_\infty))^{\otimes 3}.$

Since $U_h(g'(A_{\infty}))_f$ is a Hopf algebra, from Theorems 3.10, 3.16 and their analogues the next theorem immediately follows.

3.17. Theorem. $U_h(q'(A_{\infty}))$ is a topological Hopf algebra with the product map

 $U_{\mathbf{h}}(g'(A_{\infty}))^{\otimes 2} \ni u_1 \otimes u_2 \mapsto u \in U_{\mathbf{h}}(g'(A_{\infty})),$

and the coproduct map

$$U_h(g'(A_\infty)) \ni u \mapsto \Delta(u) \in U_h(g'(A_\infty))^{\otimes 2}.$$

3.18. If we set in all constructions of this section c = 0 then we get another Hopf algebra which can be naturally denoted by $U_h(gl_{\infty})$. Note that $U_h(g'(A_{\infty}))$ can be naturally viewed as the central extension of $U_h(\overline{gl}_{\infty})$.

Now we extend $U_h(q'(A_\infty))$ be derivation d.

3.19. Definition. $U_h(g(A_{\infty}))_f$ is a topologically free $\mathbb{C}[[h]]$ -module, complete in *h*-adic topology, and an unital algebra with generators $\{c, d\} \cup \{E_{ij}\}_{i, j \in \mathbb{Z}}$ and relations

1. formulae (3.1)-(3.3);

2. $[d, E_{i,i+1}] = \delta_{i_0} E_{i,i+1}, [d, E_{i+1,i}] = -\delta_{i_0} E_{i+1,i}, [d, c] = 0, [d, E_{ii}] = 0$ all *i*.

 $U_h(g(A_\infty))_f$ can be equipped with a Hopf algebra structure, the coproduct being defined by (3.4), (3.5) and by $\Delta(d) = d \otimes 1 + 1 \otimes d$.

3.20. Now, in the complete analogy with the definition of $U_h(g'(A_\infty))$ we can define the Hopf algebra $U_h(g(A_\infty))$, in the definition of polynomials in c being replaced for polynomials in two variables c, d [see (3.6)].

3.21. Below we shall need the subspaces $\tilde{h}' = h' \oplus \mathbb{C} c \subset U_h(g'(A_\infty))_f \subset U_h(g'(A_\infty)), \tilde{h} = \tilde{h}' \oplus \mathbb{C} d \subset U_h(g(A_\infty))_f \subset U_h(g(A_\infty))$ and the subalgebras

$$U_{h}(b'_{\pm})_{f} \subset U_{h}(g'(A_{\infty}))_{f}, \quad U_{h}(b'_{\pm}) \subset U_{h}(g'(A_{\infty})),$$
$$U_{h}(b_{\pm})_{f} \subset U_{h}(g(A_{\infty}))_{f}, \quad U_{h}(b_{\pm}) \subset U_{h}(g(A_{\infty}))$$

defined in an obvious way.

4. Representations of the Algebras $U_h(g'(A_{\infty})), U_h(g(A_{\infty}))$

4.1. Definition. A representation of the algebra $U_h(g(A_{\infty}))$ in a topologically free $\mathbb{C}[[h]]$ -module \hat{V} is said to be restricted if for a given vector $v = \sum_{i=1}^{n} h^j v_j \in V$

there exist $r_j \in \mathbb{N}$, j = 0, 1, ..., such that for every j vector v_j is killed by the following subspaces:

1. $U_h(n_+)_{\alpha}$ provided $S(\alpha) \notin [-r_j, r_j]$ or $h t \alpha > r_j$,

2. $U_h(n_-)_{-\alpha}$ provided $S(\alpha) \subset (-\infty, -r_j)$ or $ht\alpha > r_j$ or $S(\alpha) \subset (r_{j+1}, +\infty)$, 3. $\mathbb{C} \cdot E_{ii}$ provided $i < -r_j$ or $i > r_j + 1$ [for definitions of $U_h(n_{\pm})_{\pm \alpha}$ and $S(\alpha)$, see 3.3, 3.4].

Restricted representations of the algebras $U_h(g'(A_{\infty}))_f$, $U_h(g'(A_{\infty}))$, $U_h(g(A_{\infty}))_f$ are defined by the same conditions.

4.2. Theorem. a) A restricted representation σ_f of the algebra $U_h(g'(A_{\infty}))_f$ extends uniquely to a restricted representation σ of the algebra $U_h(g'(A_{\infty}))$ and to restricted representation $\tilde{\sigma}$ of the algebra $U_h(g(A_{\infty}))$, the action of d being defined by

$$\tilde{\sigma}(d) = -\sum_{j>0} \sigma_f(E_{jj}).$$
(4.1)

b) A restricted representation $\tilde{\sigma}_f$ of the algebra $U_h(g(A_{\infty}))_f$ extends uniquely to a restricted representation $\tilde{\sigma}$ of the algebra $U_h(g(A_{\infty}))$.

Proof. Evident.

It is clear that every submodule or quotient of a restricted module is restricted, and that the direct sum or tensor product of a finite number of restricted modules is also restricted.

4.3. Example. The formulae

$$\sigma_{(s)}(c) = 1, \quad \sigma_{(s)}(E_{ii}) = \begin{cases} \varrho_{(s)}(l_{ii}), & i > s \\ \varrho_{(s)}(l_{ii}) - I, & i \le s \end{cases}$$
(4.2)

$$\sigma_{(s)}(E_{ij}) = q^{(j-i)/2} q^{\sum_{i+1 \le r \le j-1} \varrho_{(s)}(l_{rr})} \varrho_{(s)}(l_{ij}),$$
(4.3)

$$\sigma_{(s)}(E_{ji}) = (-1)^{j-i-1} q^{3(j-i)/2-1} \left(2 q^{-\sum\limits_{i+1 \leq r \leq j-1} \varrho_{(s)}(l_{rr})} - q^{i+1 \leq r \leq j-1} \varrho_{(s)}(l_{rr}) \right) \varrho_{(s)}(l_{ji}),$$
(4.4)

where i < j, define restricted representations of the algebras $U_h(g'(A_{\infty}))_f$, $U_h(g'(A_\infty))$ in $\Lambda^{\infty}_{(\mathfrak{s})}(\mathbb{C}^{\infty}) \otimes \mathbb{C}[[h]]$ [cf. (2.10)–(2.12)].

4.4. Example. The formulae (4.2)-(4.4) together with formula

$$\sigma_{(s)}(d) = -\sum_{j>0} \sigma_{(s)}(E_{jj})$$

define restricted representations of the algebras $U_h(g(A_{\infty}))_f$, $U_h(g(A_{\infty}))$.

4.5. In what follows the linear functional Λ on $\tilde{h}' = h' \oplus \mathbb{C} c$ is supposed to satisfy the conditions $\Lambda(H_i) \in \mathbb{Z}_+$ and $\Lambda(H_i) > 0$ for finitely many *j*.

The functional Λ_s is defined by conditions

$$\Lambda_s(H_j) = \delta_{sj}, \quad \Lambda_s(c) = 1.$$

4.6. Definition. A $U_h(g'(A_\infty))$ -module V is called a highest weight module with highest weight Λ if there exists a non-zero vector $v \in V$ such that

$$U_h(n_+)v = 0$$
, $h(v) = \Lambda(h)v$ for $h \in \tilde{h'}$.

and $U_h(g'(A_\infty))(v) = V$.

The vector V is called a highest weight vector.

A highest weight module over $U_h(g(A_{\infty}))$ is defined in the similar fashion.

4.7. Example. The representation $\sigma_{(s)}$ of Example 4.3 is a highest weight representation with the highest weight Λ_s , the highest weight vector being $f_s \wedge f_{s-1} \wedge f_{s-2} \wedge \cdots$.

 $f_s \wedge f_{s-1} \wedge f_{s-2} \wedge \cdots$. Denote by $L(\Lambda_s)_h$ the corresponding $U_h(g'(\Lambda_\infty))$ -module and recall that the representation $\tilde{\varrho}_{(s)}$: $U(g'(\Lambda_\infty)) \to \operatorname{End} \Lambda^{\infty}_{(s)}(\mathbb{C}^{\infty})$ defined by $\tilde{\varrho}_{(s)}(c) = 1$,

$$\varrho_{(s)}(l_{ij}) = \begin{cases} \varrho_{(s)}(l_{ij}) - I, & i = j < 0\\ \varrho_{(s)}(l_{ij}) & \text{otherwise} \end{cases}$$

is the classical highest weight representation $L(\Lambda_s)$ with the highest weight Λ_s , the highest weight vector being $f_s \wedge f_{s-1} \wedge f_{s-2} \wedge \cdots$.

Recall also the following classical result [K].

4.7. Theorem. The space of the basic representation $L(\Lambda_0)$ can be identified with the space of polynomials $\mathbb{C}[x_1, x_2, \dots]$ so that $c \mapsto 1$ and

$$\sum_{i,j} u^i v^{-j} E_{ij} \mapsto \frac{u}{u-v} (\Gamma(u,v)-1),$$

where $\Gamma(u, v)$ is the following vertex operator:

$$\Gamma(u,v) = \exp\left(\sum_{j\geq 1} (u^j - v^j) x_j\right) \exp\left(-\sum_{j\geq 1} \frac{1}{j} (u^{-j} - v^{-j}) \frac{\partial}{\partial x_j}\right).$$

Hence, from formulae (4.2)–(4.4) and the definition of the representation $\sigma_{(0)}$ we obtain the following.

4.8. Theorem. The space of the representation $L(\Lambda_0)_h$ over $U_h(g'(\Lambda_{\infty}))$ can be identified with the space $\mathbb{C}[[h]] \otimes \mathbb{C}[x_1, x_2, ...]$ so that $c \mapsto 1$ and

$$\sum_{i,j} u^i v^{-j} \hat{E}_{ij} \mapsto \frac{u}{u-v} (\Gamma(u,v)-1),$$

where for i < j

$$\begin{split} \hat{E}_{ii} &= E_{ii}, \\ \hat{E}_{ij} &= q^{(i-j)/2} \left(-q^{i+1 \le r \le j-1} \hat{E}_{rr} \right) E_{ij}, \\ \hat{E}_{ij} &= (-1)^{j-i-1} q^{1-3(j-i)/2} \left(2 - q^{2} \sum_{i+1 \le r \le j-1} \hat{E}_{rr} \right)^{-1} q^{-\sum_{i+1 \le r \le j-1} \hat{E}_{rr}} \cdot E_{ij}. \end{split}$$

Here $\mathring{E}_{rr} = E_{rr}$ if r > 0, and $\mathring{E}_{rr} = E_{rr} + c$ if $r \leq 0$.

In particular, for $k \in \mathbb{N}$,

$$q^{-k/2} \sum_{i \in \mathbb{Z}} \left(-q^{i+1 \leq r \leq i+k-1} \stackrel{\hat{\mathcal{E}}_{rr}}{\longrightarrow} \right) E_{i,i+k} \mapsto \frac{\partial}{\partial x_k}$$
$$(-1)^{k-1} q^{1-3k/2} \sum_{i \in \mathbb{Z}} \left(2 - q^{2} \stackrel{\sum}{}_{i+1 \leq r \leq i+k-1} \stackrel{\hat{\mathcal{E}}_{rr}}{\longrightarrow} \right)^{-1} q^{-\sum_{i+1 \leq r \leq i+k-1} \stackrel{\hat{\mathcal{E}}_{rr}}{\longrightarrow}} \cdot E_{i+k,i} \mapsto x_k.$$

5. Quantum *R*-Matrices and Quantum Casimir Operators for the Algebras $U_h(g'(A_{\infty})), U_h(g(A_{\infty}))$

5.1. Set for finite set $\{L_{ij}\}_{\substack{1 \leq i \leq s \\ 1 \leq j \leq p}}$ of restricted $U_h(g'(A_{\infty}))_j$ -modules and for $v_{ij} \in L_{ij} \ (1 \leq i \leq s, 1 \leq j \leq p),$ $V(\{L_{ij}, v_{ij}\}) = \{u \in U_h(g'(A_{\infty}))^{\otimes s} \mid u(v_{1j} \otimes \cdots \otimes v_{sj}) = 0, 1 \leq j \leq p\},$

and introduce in $U_h(g'(A_\infty))_f^{\otimes s}$ the topology by declaring $\{V(\{L_{ij}, v_{ij}\})\}$ to be the fundamental system of neighbourhoods of zero. The completion of $U_h(g'(A_\infty))_f^{\otimes s}$ with respect to this topology will be denoted by $U_h(g'(A_\infty))_s^{\otimes s}$. Clearly, $U_h(g'(A_\infty))^{\otimes s} \hookrightarrow U_h(g'(A_\infty))^{\otimes s}$ continuously and the product in $U_h(g'(A_\infty))_f^{\otimes s}$ has the unique continuous extension to the product in $U_h(g'(A_\infty))_s^{\otimes s}$. Also, the maps

 Δ , id $\otimes \Delta$, $\Delta \otimes$ id

have unique continuous extensions to the maps

 $\hat{\varDelta}$, id $\otimes \hat{\varDelta}$, $\hat{\varDelta} \otimes$ id.

In complete analogy with this definition we define $U_h(g(A_\infty))^{\otimes s}$.

5.2. Theorem. a) $U_h(g'(A_\infty))$ is a quasitriangular Hopf algebra, i.e. there exists invertible $R \in U_h(g'(A_\infty))^{\otimes 2}$ such that

$$(\hat{\Delta} \otimes \mathrm{id})(R) = R_{12}R_{23}, \quad (\mathrm{id} \otimes \hat{\Delta})(R) = R_{13}R_{12}, \quad (5.1)$$

$$\hat{\varDelta}'(u) = R\hat{\varDelta}(u)R^{-1}, \quad u \in U_h(g'(A_\infty)).$$
(5.2)

b) The statement a) holds for $U_h(g(A_\infty))$.

5.3. Remark. Writing $R = \sum_{k} R_{k}^{(1)} \otimes R_{k}^{(2)}$, the notation used is $R_{ij} = \sum_{k} 1 \otimes \cdots \otimes R_{k}^{(1)} \otimes \cdots \otimes R_{k}^{(2)} \otimes 1 \otimes \cdots$ with the non-unit factors at *i* and *j* entries.

5.4. Proof of Theorem 5.2. We'll construct an *R*-matrix for $U_h(g(A_\infty))$; the *R*-matrix for $U_h(g'(A_\infty))$ can be obtained from the *R*-matrix for $U_h(g(A_\infty))$ by substituting $-\sum_{j>0} E_{jj}$ for *d* (see Theorem 4.2).

Since $U_h(g(A_{\infty}))_f$ is dense in $U_h(g(A_{\infty}))$, it suffices to construct the *R*-matrix for $U_h(g(A_{\infty}))_f$.

5.5. We'll use the quantum double construction [D1]. Recall that the *R*-matrix is the image of the canonical element from $\mathscr{D}(U_h(b_+))_f \otimes \mathscr{D}(U_h(b_+)_f)^*$ under projection to $U_h(g(A_{\infty}))_f^{\otimes s}$. Here the subalgebra $U_h(b_+)_f \subset U_h(g(A_{\infty}))_f$ is a subalgebra generated by c, d, $\{E_{ij}\}_{i \leq j}$ and the double $\mathscr{D}(A)$ of the Hopf

algebra A is defined in [D1]. We omit the details. The realization of Drinfeld's approach to construction of the *R*-matrix in a finite-dimensional situation can be found in [R] or [Le S], [KR].

5.6. The basis in the $\mathbb{C}[[h]]$ -module $U_h(b_+)_f$ consists of ordered monomials

$$\{\prod_{i,\,j}\,E^{n_{ij}}_{i\,j}\,c^k\,d^l\}$$

with finitely many non-zero exponents. Define linear functionals on $U_h(b_+)_f$ by the following conditions:

> $\langle \eta_{ij}, E_{ij} \rangle = 1$, and = 0 on other monomials; $\langle \xi_c, c \rangle = 1$, and = 0 on other monomials; $\langle \xi_{\star}, d \rangle = 1$, and = 0 on other monomials;

and set $\eta_i = \eta_{i,i+1}$, $\xi_i = \eta_{ii}$. The same arguments as those in [R] give the following formula for the canonical element of $\mathcal{D}(U_h(b_+)_f) \otimes \mathcal{D}(U_h(b_+)_f)^*$

$$R = \prod_{i < j} \exp_{q^{-2}}(E_{ij} \otimes \eta_{ij}) \exp(\sum_{i} E_{ii} \otimes \xi_i + c \otimes \xi_c + d \otimes \xi_d).$$
(5.3)

5.7. Now, to derive from (5.3) the formula for the R-matrix, we have to establish the isomorphism $\varphi: U_h(b_+)_f^0 \to U_h(b_-)_f$. For this purpose we derive commutation relations between $\eta_i, \xi_j, \xi_c, \xi_d$ and compute $\Delta \eta_i, \Delta \xi_j, \Delta \xi_c, \Delta \xi_d$.

5.8. Lemma. a) ξ_i , ξ_j , ξ_c , ξ_d commute for all i, j; b) $[\xi_i, \eta_j] = -\frac{h}{2} (\delta_{ij} - \delta_{i,j+1}) \eta_j,$ c) $[\xi_c, \eta_j] = -\frac{h}{2} \delta_{j0} h_j,$ d) $[\eta_i, \eta_j] = 0$ if |i - j| > 1 and $\eta_i^2 \eta_{i \pm 1} - (q + q^{-1}) \eta_i \eta_{i \pm 1} \eta_i + \eta_{i \pm 1} \eta_i^2 = 0$,

e) $[\eta_i, \eta_{i+1, i}]_q = (1 - q^2) \eta_{i i}$.

The proof is essentially the same as those of Lemma 2 and the corollary following it in [R].

5.9. Lemma. a) $\Delta \xi_i = \xi_i \otimes 1 + 1 \otimes \xi_i$.

$$\Delta \xi_c = \xi_c \otimes 1 + 1 \otimes \xi_c, \quad \Delta \xi_d = \xi_d \otimes 1 + 1 \otimes \xi_d.$$

b) $\Delta \eta_i = \eta_i \otimes 1 + \exp(\xi_i - \xi_{i+1} + \delta_{i0} \xi_d) \otimes \eta_i$.

Proof. a) is immediate.

b) $\delta \eta_j$ takes a non-zero value on $E_{j, j+1} \otimes 1$: $\langle \Delta \eta_j, E_{j, j+1} \otimes 1 \rangle = 1$ and, possibly, on $\prod_i E_{ii}^{n_i} c^l d^k \otimes E_{j, j+1}$:

$$\begin{split} \langle \Delta \eta_j, \prod_i E_{ii}^{n_i} c^l d^k \otimes E_{j,j+1} \rangle &= \langle \eta_j, \prod_i E_{ii}^{n_i} c^l d^k \otimes E_{j,j+1} \rangle \\ &= \langle \eta_j, E_{j,j+1} \prod_i (E_{ii} + \delta_{ij} - \delta_{i,j+1})^{n_i} (E_{ii} + \delta_{j0})^k c^l \rangle \\ &= \delta_{l0} \prod_i (\delta_{ij} - \delta_{ij+1})^{n_i} \delta_{j0}^k. \end{split}$$

Hence,

$$\Delta \eta_j = \eta_j \otimes 1 + \sum_{l,k,n_i} \frac{(\xi_j - \xi_{j+1})^{n_i}}{n_i!} \frac{\xi_d^k}{k!} \otimes \eta_j$$

and b) is proved.

5.10. Lemma 5.8, d) shows that we can set $\varphi(\eta_j) = \lambda_j F_{j,j+1}$, where $\lambda_j \in \mathbb{C}[[h]]$ are invertible. By Lemma 5.8, c) we must set $\varphi(\xi_c) = \frac{h}{2}d$, and since ξ_d commutes with everything, we must have $\varphi(\xi_d) = \lambda_c$ with $\lambda \in \mathbb{C}[[h]]$ invertible. Further, we see that the conditions in Lemma 5.8, b) are satisfied with $\varphi(\xi_i) = \frac{h}{2} E_{ii}$; hence, the equality in Lemma 5.9, b) is satisfied with $\varphi(\xi_d) = \frac{h}{2}c$.

So, it remains to calculate λ_j , but this can be done as in [R]. The result is $\lambda_j = (1 - q^{-2})$, and, from Lemma 5.8, e) we derive easily $\varphi(\eta_{ij}) = (1 - q^{-2}) F_{ij}$. Now we derive from (5.3) the formula for *R*-matrix for $U_h(g(A_\infty))_f$ (and, hence, for $U_h(g(A_\infty)))$:

$$R = \prod_{i < j} \exp_{q^{-2}}((1 - q^{-2}) E_{ij} \otimes E_{ji}) \cdot q^{\sum_{i} E_{ii} \otimes E_{ii} + c \otimes d + d \otimes c}.$$
 (5.4)

Finally, note that (5.4) with $d = -\sum_{j>0} E_{jj}$ gives the formula for the *R*-matrix for $U_k(g'(A_\infty))$.

5.11. Set $\check{\varrho} = \sum_{i} j E_{jj}$. Then the square of the antipode equals to Ad $(e^{h\check{\varrho}})$ and the general formula (valid in any quasitriangular Hopf algebra) give quantum Casimir element [D2]:

$$e^{-hc/2} = e^{-h\check{o}} u, \quad u = \sum_{k} S(R_{k}^{(2)}) R_{k}^{(1)},$$

and the formula for action of the coproduct on it:

$$\Delta(e^{-hc/2}) = (e^{-hc/2} \otimes e^{-hc/2}) (R_{21}R)^{-1}.$$

Using this result one can try to obtain the quantum analogue of the KP hierarchy (see [K, Chap. 14]).

References

- [D1] Drinfeld, V.: Quantum groups. ICM proceedings, pp. 798-820. Berkeley, 1986
- [D2] Drinfeld, V.: On almost cocommutative Hopf algebras. Algebra and analiz 1(2), 30-46 (1989) (in Russian)
- [DJKM] Date, M., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. Publ. RIMS, Kyoto Univ. 18, 1077-1110 (1982)
- [FF] Feigin, B., Fuchs, D.: Representations of the Virasoro algera. In: Representations of infinite-dixmensional Lie groups and Lie algebras. New York: Gordon and Breach 1989
- [J] Jimbo, M.: A q-difference analogue of $U(\mathcal{I})$ and the Yang-Baxter equation. Lett. Math. Phys. 10, 63-67 (1985)
- [H] Hayashi, T.: Q-analogues of Clifford and Weyl algebras Spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys. 127, 129–144 (1990)
- [K] Kac, V.: Infinite dimensional Lie algebras. Cambridge: CUP 1985

- [Le S] Levendorskiĭ, S., Soibelman, Ya.: Some applications of quantum Weyl group. J. Geom. Phys. 7(4), 1-14 (1991)
- [R] Rosso, M.: An analogue of P.B.W. theorem and the universal *R*-matrix for $U_h(sl(N+1))$. Commun. math. Phys. **124**, 307-318 (1989)
- [KR] Kirillov, A., Reshetikhin, N.: q-Weyl group and a multiplicative formula for universal *R*-matrices. Commun. Math. Phys. 134, 421-431 (1990)

Communicated by N.Yu. Reshetikhin

414