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Abstract. We compute the entropy h,, ,(ay) in the sense of Connes, Narnhofer and
Thirring of Bogoliubov automorphisms o, of the CAR-algebra with respect to
invariant quasifree states w, with 0 < A <1 having pure point spectrum.

1. Introduction

In their recent paper [3] Connes, Narnhofer, and Thirring extended the definition
of entropy for automorphisms of finite von Neumann algebras studied in [4] to
the case of automorphisms of C*-algebras invariant with respect to a given state.
In the present paper we shall compute this for Bogoliubov automorphisms of the
CAR-algebra with respect to invariant quasifree states. Recall, for more details see
Sect. 4, that if H is a complex Hilbert space and f — a(f) is a representation of H
in the CAR-algebra «/(H) satisfying the canonical anticommutation relations then
each unitary operator U on H defines a Bogoliubov automorphism o of </(H)
by ay(a(f))=a(Uf). If AeB(H) satisfies 0< A <1 and AU =UA, then oy is
invariant with respect to the (gauge invariant) quasifree state w, defined by A. In
the case 4 =11, i.e. w, is the unique tracial state t© on «/(H), then the entropy
h(ay) is the same as that of the extension of «y to the GNS-representation of ¢
as defined in [4]. A. Connes suggested to us that the formula for the entropy
should be

1 2n
o) =52 { U)o, 0

where m(U) is the multiplicity function of the absolutely continuous part U, of U,
a conjecture which initiated the present work. More generally, if U, acts on the
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subspace H, of H we can write H, as a direct integral
Ha = f® H@de
T

with df the Lebesgue measure on the unit circle T. Correspondingly, the operator
A commuting with U decomposes on H, by the formula

A, = A|H, = [® A(0)db.
T

Let n denote the real function on [0, 1] defined by 5(0) =0, #(t) = —tlogt, te(0,1].
Then if A has pure point spectrum we shall prove the formula

1 2n
ho (o) =5 g Tr (n(A4(9)) + n(1 — A(6)))do, @

where Tr denotes the usual trace on B(H,).

For general A we leave it as an open problem whether (2) is true. It is implicit
in (2) that the entropy is unaffected by the singular part of U. We shall in particular
show that if the spectral measure of U is singular with respect to Lebesgue measure
than h,(ay) = 0 for all ay-invariant states .

In addition to giving a formula for the entropy of a large class of automorphisms
and invariant states (2) also yields an example of entropy in a more technically
complicated situation than in previous calculations [1,2, 3,4, 7]. Namely in those
cases the computation is based on the existence of a natural maximal abelian
subalgebra which is globally invariant under the automorphism. In the case of
Bogoliubov automorphisms we cannot in general expect this.

The proof of (2) is divided into five sections. The first, Sect. 2, contains a
characterization of the Lebesgue integral on the circle by its properties on a class
of functions which in our applications will be multiplicity functions of unitary
operators with Lebesgue spectral measures. In Sect. 3 we prove some basic general
results on entropy that will be needed in the sequel following closely the theory
developed in [3]. In Sect. 4 we study the canonical anticommutation relations in
more detail and develop the basic techniques on entropy in the case of quasifree
states and Bogoliubov automorphisms. In Sect. 5 we consider the case when the
spectral measure of U has nonzero singular part. In particular we show (2) in the
simple case when the multiplicity function of the Lebesgue part of U is constant
on a finite number of arcs of rational length. Then the proof is completed in Sect. 6,
first for the case when A is a scalar operator, in which case the characterization
in Sect. 2 is used, and then in the general case.

2. Lebesgue Measure on the Circle

In this section we show a result on the Lebesgue measure on the circle, which will
be used to give the formula for the entropy of Bogoliubov automorphisms with
respect to quasifree states defined by scalar operators.

Let % be the additive semigroup of functions f:T—- {0} UIN which are
measurable with respect to Lebesgue measure df on T = {zeC:|z| = 1}. For further
use we denote by 1 the constant function equal to 1 to T and by T,:4 —» % (ncIN)
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the map
(TN =}, f2)

zeT
= p

Let u:¢ —R™ — the nonnegative reals — which satisfies the following conditions:
(i) u(nl)=n,ne{0} UIN.
(i) f=g=uf)= g
(i) f; 7 f=u(f;) 7 u(f), jeN.
(iv) W(T,f)=nu(f).
V) w(f)=wmg) if f and g are equal a.e. (with respect to Lebesgue measure).
In our applications ¢ will consist of multiplicity functions of unitaries and u
will be a scalar multiple of the entropy of the corresponding Bogoliubov
automorphism.

Theorem 2.1. Let u:4 —»R™* be a map satisfying conditions (1)—(v) above. Then we
have

1 2n
=— | fdé.
=511
The proof of this fact will be divided onto a few lemmas. We use the notation

1
= df.
di=5-d

Lemma 2.2. Given ¢ >0 there is 6 >0 such that if fe¥, f =1, and if
2n
[ - f)di<s
0

then u(f)>1—e.
Proof. Assume to the contrary that there are f,€%, f, <1, such that
f@—faisio,
and u(f,) £1—¢, nelN. Let
g, = inf f,e¥.

k=n

We have
fA—g)dis Y (A~ f)dA<2-107",
kzn
and ¢g,=< f. 9, 7 g with g equal to 1 almost everywhere. Hence u(f,)= u(g,),
gy 7~ 1(g)- Thus p(g) = p(1) = 1, contradicting u(f,)=1—e 0O

Lemma 2.3. Given ¢ >0 there is 0 > 0 such that the following holds. If f €% satisfies
T,f = pll almost everywhere (p,qelN), and ge¥ satisfies g < f and

[gdiz (1 —8)] fda,
then we have

wo)z(1—e)f fda
(0 depends only on &).
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Proof. Since d1 is the Haar measure | T,fdA = q | fdA, and by (iv) w(T, f) = nu(f),
we may replace f and g by T,f and T,g respectively. So what must be proved is
that there is 6 > 0 depending only on ¢ such that whenever g < p1l for some peN and

fgdiz(1—d)p,

wg) = (1 —¢p.

Using (iv) this follows from Lemma 2.2 and the fact that there is g, €% such that
g1s1and Tyg,=9g. O

then we have

Lemma 2.4. Let ge¥ be upper semicontinuous. Then we have

u(g) = [ gda.

Proof. Let g, =g A (nl). Since g, » g it will be sufficient to prove the lemma for
the g,’s, .. we may assume g is bounded, say g < nll. Lete > 0. Let X, = g~ ([ k, o0)).
Then X, is compact. It is easily seen that there are g,€IN and an open set ¥, o X
such that the boundary of Y, is contained in the set

{eZnis/qk:l Ss=qp, SEN},

and A(Y,)(1 —8) < A(X,),0 being as in Lemma 2.3. Let g, be the characteristic
function xy, of Y,, and let

f=Y tw 9=41.92->4n
1<k=n

Then f 2g, T,f = p1 for some pelN, and
(1—=90)f fdi < [gdi,
so that by Lemma 2.3.
wg)Z (1 —e)f fdiz(1—e)fgdA.
On the other hand

_1 _P_ 1
M(g)éu(f)—au(qu)—q—ffdlé1_5Igd/1~

Since ¢ > 0 is arbitrary and we may choose J < ¢ it follows that

wg)=Jgdr. O

Proof of Theorem. By general measure theory there is a sequence (f,) in %,
f1 £ f, <+ such that the f,’s are upper semicontinuous, and if g =lim, f, then
g = f almost everywhere. Thus we have

[ fdi=[gdi=1im | f,di=limu(f,) = ue)=uf) O

3. Some General Entropy Results

We collect in this section entropy results which do not involve quasifree states,
and which are more or less direct consequences of the theory developed in [3].
To fix our notation we recall the definitions in [3].
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Let A be a unital C*-algebra, C,,...,C, finite dimensional C*-algebras, and
7;:C;— U a unital completely positive map, j = 1,..., k. Let ¢ be a state on U and
P:A — B a unital positive map of U into a finite dimensional abelian C*-algebra
B such that there is a state y on B for which ycP = ¢. If p,,..., p, are the minimal
projections in B then there are states ¢;, i=1,...,r, of W such that

PO)= 3. oilps, xeL m
Since po P = o,
@ = .; H(P)o; @

is ¢ written as a convex combination of the ¢;. In the notation of [3]

=Y up)S(el ),

where S(¢@|g;) is the relative entropy of the two states ¢ and ¢;, see [3,6,9]. The
entropy defect s,(P) is given by

5,(P) = S(u) —&,(P),

where S(u) = Z (p;)log u(p;) is the entropy of p.

Let B;, j= 1 .,k, be a C*-subalgebra of B and E;:B—B; a p-invariant
conditional expectatlon. Then the quadruple (B, E;, P, p) is called an abelian model
for (A, @,y4,...,7x), and its entropy is defined to be

k

k
S(l"' \% B})_ '=Zl su(pj)’

j=1
where p; = E;oPoy;:C;— B;. The sup of the entropies of all such abelian models
is denoted by

H(p('))h'”,’yk)‘

If a is a g-invariant automorphism of % let y:C — U be a unital completely positive
map of a finite dimensional C*-algebra C, and denote by

.1 _
h%a(?) = len;EH,,,(y,aoy,,“,a" 1°)’)~

The entropy of a with respect to ¢ is
hy(o) = sup h,, ,(y).
Y

In the above discussion we have implicitly assumed that the state u is faithful.
We shall use this assumption explicitly in the proof of our next lemma. But the
reader should have no great difficulties in extending the proof to the possible
situation of a nonfaithful u.

Lemma 3.1. Let ¢ be a pure state on the unital C*-algebra N, and suppose o is a
@-invariant automorphism of . Then h,(x) =

Proof Let notation be as above with (B, E;, P, u) as the given abelian model. Since
u is faithful and P is given by (1) it follows from (2) that ¢, = ¢ for all i since ¢ is
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pure. Thus P(x) = ¢(x)1 and therefore p;(y) = ¢°y;(y)1,j=1,..., k. Consequently
e,(p;) =0, and so s,(p;) = S(u|B;). Thus the entropy for the abelian model is

S< v ) ZS(mB)<o
H(p(yls'-"yk):()'

Since this holds for all choices of y’s, h,(2) =0. []

Lemma 3.2. Let A be a C*-algebra, ¢ a state, and o a @-invariant automorphism.
Suppose #B is a C*-subalgebra of W such that there is an expectation E:U— %
satisfying @°E = ¢, and «E = Ea. Then o|% is an automorphism of % and

hy (| B) < hy(@).

Proof. If C is a finite dimensional C*-algebra and y:C — U is completely positive
then Ea"y = a"Ey, so by [3, Proposition II1.6(b)] and the assumption ¢E = ¢,

H,(Ey,aEy,...,a*"'Ey) = H(Ey, Eay,..., Ea*"'y) S H (y, 0y, ..., " 1p).

Thus we have

whence

hw;alw(Ey) é h(p,a(’)));
proving the lemma, as it is obvious that «(#)=%4. [

Lemma 3.3. Let U be a C*-algebra, ¢ a state, and o a @-invariant automorphism
of . For each jeN let A; be a C*-subalgebra of A and E;: A —W; an expectation
such that oE; = E;a. Suppose W, = W, < --- is increasing such that

(i) A= ( U ¥, > , norm closure.

(i) E;4 \E;=E;E;,, =E;,jeN.
(iii) E —id pointwise-norm.
Then oz(?Ij is an automorphism of W; for jeN and

h(p(a) é h_m h(p(almj)
If moreover @°E; = ¢ for all j then
h () = lim h (o] ;).

Proof. Since aE;= E;a, a|U;cAut(2;) for all j. Let C be a finite dimensional
C*-algebra, d = dim C, and suppose y:C — U is a completely positive map. Since
E;—id, the identity map on ¥, positive in norm and C is finite dimensional, E;y —y
in norm. Furthermore we have

PE;j=(p0)E;=(pEj)a,
so that a is @E;-invariant for all j. Let
&= ”Eﬂ’—)’”-
Then ¢;—0 as j— co. By [3, Proposition IV.3] we have
|Hy(E;p, 0Ey, ..., o T E jy) — H,(y, a,..., o~ 19)| < 6ke;(5 + log (1 + de; 1)),
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whence, letting k — oo,
B (Es7) = hy )] < 68;(5 + log (1 + dej ). 3)
Let 6 >0 and choose C and y such that if h(a) < 00

Ihq)(a) - hq),a(')))l < 5a
and if h,(a) = o0, h, ,(y) = n. By (3) we have for this choice of y

g (E13) = @) < [y (E9) — B a9)] + ,5) = (@)
<6¢;(5 +log(1 +de; 1))+,
when h,(x) < o, whence
ho(o| W) = by oy (E7) > hy(@) — 6e;(5 + log (1 + dej ) — 0.
If h,(®)=oco we similarly obtain h,(a|%;)=n— 6¢;(3+log(1 +de; !)). Since
6¢;(3 + log(1 4+ dej '))—0 as j— co, we have
lim b, (| ;) = k() — 6.
Since ¢ is arbitrary the first conclusion of the lemma follows.

If pE;=¢ for all j then the converse inequality h¢(a)gl_i-n—1h¢(alﬁj) is a
consequence of Lemma 3.2. []

One of the challenging open problems concerning noncommutative entropy is
whether it is additive on tensor product, i.e. is

hyeu(@® B) = hy(2) + hy(B)?
We next show the easy half of this problem.

Lemma 3.4. Let N and N” be two C*-algebras with states ¢’ and ¢" respectively.
Let o and o" be ¢’ and ¢"-invariant automorphisms of W and N". Then

By 0@ @ ") Z hyr(o) + hop (@),

Proof. Let (W, ¢’,7") be given with an abelian model (B, E, P', ;i') and subalgebras
Bj with Ej the y'-invariant expectation of B’ onto Bj. Assume we have a similar
setup for (A", ", y"). Since relative entropy and entropy of states are additive on

k
tensor products we have additivity of ¢,,S(u),s,. We may assume B'= V B,
k : k i=1
B"=V B{,and so B®B"= V B:® B. Thus
i1 =

1= 13

13

S(ﬂl ®‘un

k
V B® B§’> =S(u)+S(u").
i=1

It follows easily that the entropy of the tensor product of the abelian model for
(WRU, o' ®", (&) oy ®(")ey”, j=0,...,k— 1) is the sum of the entropies of
the two abelian models for A’ and A" respectively. Taking sup over all tensor
product abelian models as above we get

Hy (v oy, (@) 1) + Hoe (", 0y, (@) 71y, 4)
However, to get

Hypp(t ®7,(@ @) ®Y"),.... (o« @)1y ®7")) ©)
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we take the sup over a larger family of abelian models. Thus the expression in (5)
is greater than that in (4). Similarly, taking the sup of all possible y’s the conclusion
of the lemma follows. []

4. Bogoliubov Automorphisms and Quasifree States

Let H be a complex Hilbert space. The CAR-algebra o/ (H) over H is a C*-algebra
with the property that there is a linear map f — a(f) of H into «/(H) whose range
generates «/(H) as a C*-algebra and satisfying the canonical anticommutation
relations

a(f)a(g)* + alg)*a(f) = (f.9)1, f,g€H,
a(f)alg) + a(g)a(f) =0,

where (-,°) is the inner product on H, and 1 is the unit of o/(H). f0< A< 1is an
operator on H then the quasifree state w, on A(H) is defined by its values on
products of the form a(f,)*---a(f,)*a(g,)--a(g,,) given by

wA(a(fn)* T a(fl)*a(gl)' : a(gm)) = 5nm det((Agi’ f;)) (1)

If U is a unitary operator on H then U defines an automorphism « of «/(H),
called a Bogoliubov automorphism (or quasifree or one-particle automorphism)
determined by

ayla(f)) = a(Uf).

If U and 4 commute it is an easy consequence of the above definition of w, that
oy is w4-invariant. More generally if T is a contraction on H commuting with 4
then there is a unique unital completely positive map a;:o/(H)— &/ (H) such that
ar(a(f)) = a(Tf), and w0 = w,, see [S]. If P is a projection commuting with A
then «, is an expectation of «/(H) onto «/(PH).

We shall mostly be concerned with the case when 4 has pure point spectrum,
say (fu),n 1S an orthonormal basis for H such that Af,=4,f,,nelN. Define

l'CCllI'SlVCly VO - 1 V n 1 —za(fl a(f)) e(lni - a(fn)a(fn) e(ln% = a(fn) Vn—l

ey =V,_.a(f,)*, €5 = a( f,, a(f,). Then the (e{?:i = 1,2) form a complete set of
2x2 matrlx units generating a factor M,(C), of type I 2 and for distinct n, m e{}

and e commute. It follows in particular that </ (H) =~ ® M,(C), and that w,, is
a product state, w, = ® w,,, with respect to this tensor product factorization,

where w; is the state on M ,(C) given by

w,1<<a b)) —(1—Na+id
c d

The Begoliubov automorphism o« _ , is w 4-invariant for all quasifree states w ,.
Its fixed point algebra is denoted by «/(H), and is the even CAR-algebra. It is
generated by even products of a(f)’s and a(g)*’s. &/(H) is the direct sum of .«/(H),
and the spectral subspace of —1 for o_,. If H=H, ® H, then

A (H,). = 4 (H,) o/ (H),
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because operators a(f), feH,, and a(g)¥,geH,, anticommute, where a* denotes
a* or a. Thus even products of the a(g)*’s will commute with a(f)*. Thus for each
finite even dimensional subspace K, of H, the C*-algebra generated by .«(K,)
and «/(H,), is isomorphic to «/(K,)® «/(H,),. Since &/(H,) is the norm closure
of the union of such /(K,)’s it follows from the uniqueness of the tensor product
norm that the C*-algebra generated by «/(H,) and «/(H,), is isomorphic to

o (H)® A (H,),.
Let A=A, ® A4,,A,€B(H,;),0<A; =< 1. Then
wAld(Hﬂ@d(Hz)e=wAl|M(H1)®wAz|d(H2)e- 2

Indeed, in (1) let m =n and use the anticommutation relations to rearrange the
factors in the defining equation (1) so that f,,...,fi€H{, fis15--->fn€H,,
gis--»Gi€HY, 14 q,...,9,€H,. Since (Ag;, f;) =0 if one of g; and f; is in H, and
the other in H,, the matrix ((4g;, f;)) is a block matrix

(((Algi’fj)) 0 >
0 ((4,9;, f)) ’

where ((4,9;, f;)) is a k x I matrix and ((4,9;, f;)) and (n — k) x (n — I) matrix. The
determinant of this matrix is zero unless k=1, a fact easily verified by induction.
If k =1 the determinant equals the product

@ 4,(a(fi)* --a(f)*alg,) - a(g)) @ 4,(a(fa)* - alfir ) g+ 1) -~ algn)),

from which (2) follows.

Suppose next U, is a unitary operatoron H;,i=1,2.If feH,, U, @U,f=U, f
with obvious identification of f and f@0. Thus ay,gy,(a(f))=ay,(a(f)) and
similarly for geH,. If f,,..., f,eH,g4,...,gnEH, We have, with # as before,

“Un@l/z(ljla l'ja(gj ) l—la(Ulfi)#l__la(Uzgj)#
=y, <H a(fi)#>“uz<n a(gj)#>'

J
It fcllows that
%y, ou,| #(H)® 4 (H,), = %y, IM(H1)®aU2|M(H2)E'

Lemma4.1. Let H=H, ® H,,0 = A; <1 be an operator on H,, and U, be a unitary
operator on H;,i=1,2. Suppose A;U;=U;A;,i=1,2. Then we have

ha)A‘@Az(aUl@Uz) g th‘(aul).

Proof. Let E:o/(H,®H,)—/(H,)® 4 (H,), be the expectation E=4(id +a,q _,),
1 denoting the identity on both H, and H,. Since 1@® — 1 commutes with
A @Ay, 0,61 1S Wy, g 4,-invariant, as is E. Thus by Lemmas 3.2 and 3.4 we have

Mo o0 (Ov,002) 2 P o0 00, A (H1) @ 4 (H)),)
=ho, 00.0u, @y, |Z(H)® 4 (H,),)
2 hy,,(o0y, | #(H,)) + h,, (0y,| (H,).)
2 h,, 0y, |(Hy)). O
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Remark 4.2. We remark for later use that it follows from the discussion preceding
the lemma that if H = H,,J finite, then «/(H), > Q) #(H,)., and if U= P U,
ieJ ieJ ieJ
is unitary and 4 = @ A4, satisfies 0 < 4 £ 1, then
ieJ

@ 4

@&f(Hi)e = @(wA.W(Hi)e)
and

® S (H)), = ®(°‘U,»|~Q¢(Hi)e)~

ieJ ieJ

Ay

Furthermore, if G is the group of unitaries U= U; with U;= + 1, then
ieJ
E=27°4J %" AdU is an w,-invariant expectation of «/(H) onto (X) «/(H,),.

UeG ieJ
Each unitary operator U is a direct sum U =U,® U, with U, acting on a

Hilbert space H, and U, on H,; U, has spectral measure absolutely continuous
with respect to Lebesgue measure df on the circle T while U, has spectral measure
singular with respect to df. U, is called the absolutely continuous part of U and
U, the singular part. We shall in the sequel use the notation m(U) to denote the
multiplicity function of U, i.e. m(U)=m(U,) in our notation.

Lemma 4.3. Let U and V be unitary operators and A€[0, 1]. Then we have, identifying
A and A1,

() If there is a unitary operator W such that V.=WUW ~! then h, (ay) = h,, (ay).
(ii) If U and V have the same singular parts and m(U)Zm(V), then h,, (oy) Z h, (ay).

Proof. (i) is obvious, cf. [3, VILS5].

(i) The assumption on U and V means that up to unitary equivalence we may
assume V is the restriction of U to a reducing subspace, so that (ii) follows from
Lemma 4.1. [

Lemma 4.4. Let (U,) be a sequence of unitary operators and U a unitary operator,
all with Lebesgue spectrum. Suppose (m(U ,)) is an increasing sequence with pointwise
limit m(U). Then (h,,(0y,)) is an increasing sequence and

hw;(au) = le hw;(aU,.)‘

Proof. Since the singular part of each unitary n question is zero the assumption

on the multiplicity functions implies that we may assume U lives on a Hilbert

space H and U, = U|H,, where H, < H, ., = H are reducing subspaces for U for
a0

all neN, and H = U H,. Thus the lemma follows from Lemmas 3.2 and 3.4 and

n=1
the fact that the projections onto the H, define expectations on .«/(H) satisfying
the conditions in the lemmas. [J

We conclude this section with the computation of h,, ,(a) in some simple cases.

Lemma 4.5. Forie{l,...,r} let H; be an infinite dimensional separable Hilbert space
with identity 1; and let U; be a unitary operator on H; such that for each i there are
p:eN and a common qeN for all i, such that U? is unitarily equivalent to V?, where

V is a bilateral shift operator of multiplicity 1. Let U= (P U; and let A= P c;1,
i=1 i=1
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with c;e[0,1]. Then we have the formula

hout) =7 3 piS(@,)=a7" T, pilte) +n(1 = <))

Furthermore, the same formula holds for the restrictions of w, and ay to o/(H),.

Proof. Let (fy)..z b€ an orthonormal basis for H; such that Vf, = fi; ., and let

N=‘d([fll"'"flpp"':frl’"'5frp,.])’

where [f},..., f,»] denotes the subspace spanned by the vectors f1,..., f,.. Since
Af, = ¢ fu we can write N as a tensor product

N= ® M, (),

r
where p= ), p;, and from our previous discussion
i=1

wA1N=(_(i>2)lwc,>®---®(é>2)lwc,>-

The subspaces

UL f11s-- f,p,])-@V"”‘([fm »JipD)

for keZ are mutually orthogonal since V is a bilateral shift and the spaces H; are
left invariant. Furthermore the subspaces span H = (P H;. Thus the algebras
i=1

(xyq)*(N) generate /(H), and their even parts are pairwise commuting. The
diagonals in the algebras M,(C,) appearing in the definition of N lie in the
centralizer of the corresponding ., hence in the centralizer of w . Furthermore,
they lie in «/(H), as follows from the construction of the M,(C),. If N, is the
algebra generated by N,ayq(N),...,(0ye)* "' (N) it thus follows from [3, Corollary
VIILS8] that

1
1 Hoas 0pa(N), .., o) (V) = S(wAlNk)

Hence we have
ha)A,auq(N) = i=Zl piS(wc,')‘

To complete the argument let for each nelN,

M, =V (@/(N).
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Then (M,) is an increasing sequence of finite dimensional subalgebras of .o (H)
with dense union. Then by [3, Theorem VII.4]

th(aU‘l) = llm th,auq(Mn)' (3)
Now the C*-algebra generated by M,,ay(M,),...,(ay.)*” }(M,) equals the one

generated by (ay.)(N), —n< j<n+k—1. Our previous argument with N and
the diagonals in the M,(C); shows that [3, Corollary VIIL.8] implies

H, (M, 044(M,,),...,(0ga)* " 1(M,)) = (2n + k)S(4|N),
and this holds also for H,,  , and M, </ (H),. We conclude that
th,auq(Mn) = S(wA[N)9
and hence from (3) h,, ,(¢ys) = S(w 4| N). Thus it follows from [3, VIILS] that

1 1
h,, (ay) = ahw,,(“uq) =- '2:1 p:iS(@c,). 4
Finally, since the diagonals in the M,(C); lie in o/(H), we get the inequality
1 r
th!d(H)e(aUld(H)e) ga ) piS(w,,).

The opposite inequality follows from (4) and Lemma 3.2. [

Lemma 4.6. Let U be a unitary operator on H with Lebesgue spectrum consisting of
disjoint arcs exp(2ni[a;,b;]) such that b;—a;= %,pj,qelN, with jeJ =IN. Let
H; = I*(exp(2ni[a;, b;])) considered as a subspace of I*(T,d6), and write U = C—D U;

jeJ
with U;= U|H;. Suppose U; has constant finite multiplicity n;, and let 0 < A;< 1
act on H; and commute with U;. Writing U;=V;® --- @ V; (n; times) we assume

nj
A;= k(_—Bl cjxlj, where 1; is the identity on the space on which V; acts. Let B; denote

the diagonal n; x n; matrix

Then A;= B;®1;, and we have the formula

he,(0y) = Z’ (bj - aj)TrnJ- (’7(Bj) +n(1 — By)),

Jje.
where Tr, is the usual trace on M, (C). Furthermore, the same formula holds for the
restrictions of w, and oy to /(H),.
Proof. We first assume J is finite, say J = {1,...,r}. We may write
U=(Vi®---dV)d---d(V,®:--DV,)
— — e

ny ny

A= 1 1, @@y, )P D11, - Dy, 1)
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Now V4 is a bilateral shift of multiplicity p;. Thus by Lemma 4.5

ho i)=Y =L Y S(o.,)
=149 1=1

Q|

Il
-
|=

[
]
-
LS}

L Tr,,(n(B;) + n(1 — B;))

(bj— a;) Tr,, (n(B;) + n(1 — By)).

-

J

If J is infinite we may assume J = IN. Let W, = @ U;. Then W,A = AW,, so if

r i=1
0, is the orthogonal projection of H onto (P H; then the expectations E, of </ (H)
j=1

onto &/ @ H j> defined by Q, satisfying the conditions of Lemma 3.3, cf. [5].
j=1
Thus by Lemma 3.3 the proof is complete. []

5. The Case of Singular Spectrum

In this section we study the case when the unitary operator U has a nontrivial
singular part U;. The main result shows that if U=U,@® U, with U, as in
Lemma 4.6 then h, (xy) = h, (2y,) with 4 as in that lemma. We first prove an
operator theoretic lemma.

Lemma 5.1. Let U be a unitary operator on H with spectral measure singular with
respect to Lebesgue measure. Let P be a finite rank orthogonal projection onto a
subspace of H, and let ¢ > 0 be given. Then there is ko€IN such that for each integer
k = kg there is a finite rank projection Q, with the properties

() I(1—QYU*P| <s, for 0<s<k.

(i) dim Q, < k.

Proof. Since the spectral measure of U is a singular and P has finite rank there
is a set ¢ = T such that the following hold for given § > 0:

(@) 6=0,00,U---Uay, where g;(1 < j < N)are arcs, g;={exp (i0):a; S0 < f;}
such that 0o, <, S, <f, < Lay<fy<2m.

(b) Nmax(8;—a;) <.

(c) If E(o) is the spectral projection of U for the set ¢ then |[(1 — E(0))P| < 6.

Indeed, since the spectral measure of U is singular it is immediate that (a), (c),
and the condition ) (8, — ;) < é can be satisfied. To get (b) it suffices to substitute
the o; by arcs of almost the same length.

For a number M >0 consider the MN arcs ¢, ;,...,0yp . Obtained by
subdividing each o; into M arcs of equal length. Let E(g; /) be the corresponding
spectral projections of U, which are pairwise orthogonal. Let then %), be the
subspace

MN
Fy= (;Bl E(o; »)P(H).
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We have dim %'y, £ MN dim P. If fe P(H) and | f || = 1, then we have with 0;€0; »,
that the distance

2

AU, Zu) <

MN
) lojsE(aj,M)f - Uf
j=

MN
22 Zl e E(a; ) f — U°E(0;0) f > + 2| UE(0) f — U*f |I?

MN
=2 _Z (€1 = U")E(0;,m)|* | E(0j,00) f II* + 262
<2 max (€1~ UY)E(o;u)]* +26%

On the other hand
[(€"*1 — U®*)E(o;p) | £ sup |€* —z°|

z€0j, M

< (lengtho; 4)'s
<— -
= M 1 <J<MN (Bj—ay)

< )
MN’

S(S 2 5 1/2
s < -
d(Uf,fKM):<2<MN) +26 )
Sﬁ—S5—+\/§5.
- MN

Since this estimate is uniform in fePH, || f || = 1, we have actually proved that for
Q the orthogonal projection onto & ,; we have

I —QUP| <J(—+1)5

dimQ < MNdimP.

This gives

and

Given k let us take Q, to be the orthogonal projection onto %', and with ¢
as in the statement of the lemma, let

_ ek
" | NdimP |

Then dim Q, < ¢k. On the other hand

25,V/2 +1)0=y/2 +
[ )
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k
ek
2N dim P N

(Zdl::nP N 1)5

%

+1]9

é

<e,

ek

N amp

2 1, so that I: Jg 1, and

Ndim P

€
dim P ’
\/2<2 m + 1>
3
Thus choosing ¢ sufficiently small and then
Ndim P
ko = [1 + ;m }

it follows that Q, chosen as above satisfies the conditions of the lemma. [

o<

Before we show that the singular part does not affect the entropy, we digress
for a moment to show that if U has singular spectrum the entropy of a; taken
with respect to any state ¢ such that ooy = ¢, is zero. In addition to being a
result of more general type its proof will make the proof of the lemma following
it more transparent.

Theorem 5.2. Let U be a unitary operator on H with spectral measure singular with
respect to the Lebesque measure. Let ¢ be a state on &/ (H) such that oy is p-invariant.
Then h,(oy) = 0.

Proof. Let P be an orthogonal projection in B(H) of finite rank. Let j:P(H)— H
be the inclusion map. Then there are, see [5] unital completely positive maps

o;: o/ (P(H))—> o/ (H) with aya(f)) = a(jf),
a,:/(H)— o (P(H)) with oy (a(f))=a(pf).
If P, ~ 1 is a sequence of such projections then with j,:P,(H)— H the inclusion,
%;,°%p, > 1d )
in the pointwise-norm topology. By [3, Theorem V.2]
th(au) = ll:ﬂ h(p,uu(aj,,)a

where
h — 1 1 k—1
oau (%) = ,(1‘32 EH“’(“’" Oy, .oy O 1 0Lj).

Whence it suffices to show

By e (@) = 0.
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Let P be as above. Since dim P < oo, given 6 > 0 there is # > 0 such that if
W,,W,:P(H)— H are isometries with | W, — W, | <, then, see [5]
llotwr, — o, Il <6,

where oy (a(f)) = a(Wf). Let Q, be as in Lemma 5.1. Denote by pol(Q, U*| P(H))
the partial isometry W, appearing in the polar decomposition

O U°|P(H) = W,|(Q, U*| P(H))|.
Let W, = U*| P(H). Since
|UP—Q,UP||<e if 0=s<k,
we can easily infer
| U*| P(H) — pol (Q, U*| P(H)) || < 3e,

if ¢ <3, which we shall assume. Thus, choosing ¢ <g we have for k = k,,

| ots1 peery — Oporcgicvs pay | < 6 for 0<s=k

By [3, Proposition 1V.3] there is for given y > 0 and & > 0, k,eIN such that if k = k,,
and Q, are as in Lemma 5.1 then

H (o, 050, ..., 00 to) S kyt + H oy (Aporigujps - - - » Epol@ut* - 1y)- 1
If we let v:Q,(H)— H be the inclusion map then
Opol(Quj) = % ° %pol (Quj)s
whence by [3, Proposition I11.6(a) and 6(c)]
Hw(apol(ij), ceey apol (QrU*~ 11)) é Hq,(av, N Otv) = H(p(av). (2)
On the other hand by [3,111.4]
H(p(av) = S((poav),
where @ea, is a state on #/(Q,(H)), a C*-algebra of dimension less than 2*. Thus
H,(a,) <log2* =kelog2.
Hence by (1) and (2)
1
EH(,,(ocj,ocuaj, oy o) Sy +elog2.
Since y and ¢ are arbitrary, h,, . (2;)=0. [

Lemma 5.3. Let U be a unitary operator on H with absolutely continuous part U,
acting on H, and singular part U, acting on H,. Let A= A,® A, commute with
U=U,®U,,0< A< 1. Assume A, and U, are as in Lemma 4.6. Then h, (oy) =
h,, (2y,) is given by the formula in Lemma 4.6. Furthermore the same hold for the
restrictions to «/(H),.

Proof. As in the proof of Lemma 4.6 we may restrict attention to the case when
the spectrum of U, consists of a finite number of disjoint arcs. Furthermore if the



Bogoliubov Automorphisms of CAR-algebra 537

multiplicity of U, on one of the arcs is infinite then both sides of the formula are
infinite, hence we may assume each multiplicity is finite.

If we can prove the lemma for U, and A, as in Lemma 4.5 the general case
follows from that case just as Lemma 4.6 followed from Lemma 4.5. So we assume

U, =@U- with U?= V", where V is bilateral shift of multiplicity 1, and

A, = @c, :» ¢;€[0,1]. Let X be as in the proof of Lemma 4.5. Thus X has an

orthonormal basis

{fll""’flpx""’ﬁ‘l""’frp.-}’
where fy€H;, Vfy = fiw+1) To simplify notation let W = U¥, so that

W=W,@W, W,=Ul=@V" W,=U".
i=1

For nelN let
X,= V Wix.
j=-n
Then () X,isdensein H,. Choose an increasing sequence (Y,,) of finite dimensional

n=0
subspaces of H; with union dense in H,. Then | ) X,®Y, is dense in H, so by
[3, Theorem VIL4] ’
he (aw)=limh,, , ((X,DY,))

We use notation similar to that used in the proof of Theorem 5.2. Let
jX,.:Xn—'Ha’ j)',.: Yn_>Ha’ jn =jX,.®jY,.:Xn® Yn_'H
be the inclusion maps, and let
o (X, A (H,) <L (H)

IXn
etc. be the inclusion maps of the corresponding algebras. Fix nelN and let P be
the orthogonal projection onto Y,. Let ¢ >0 and k,eNN, and Q, for k =k, be as
in Lemma 5.1. Then

I Waix,® Wiy, — Waix,®pol(Q Wijy ), 1=m<=k,
is small, so we can by [3, Proposition IV.3] assume

H, (0, 0wyl ' 0, ) S ke Hop (0, 6raiigyiy > OwE Yy @poliouht™ Yy,

Let v:Q,(H,)— H, be the inclusion, and let i,: X, - X, be the identity map. Then we
have
oy = Oyym

™ @Ol QW ™y ) i, ®0° %, ®pol @ Wy,

It follows from [3 Proposition I11.6(a)] that

Ho (%, @poiiguy.)r > 0wk~ iy @poligywh™ )
<Hw,4( iy, ®0 9aw" l!x @p)

k—1
= HwA( IXn @U’aW,,@l OCJX @ o‘WHQI X @v)’
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where 1 is the identity on H,. We may as in [3] identity % g with M, = (X, P
Q.(Hy)). Then the last expression in the above inequality becomes
HwA(Mm aWa@ 1 (Mn)’ R 9“%";20 1s (Mn))

k—1
LetZ = @ WiX,. We may assume Z has even dimension, so </(Z) is a factor.

Then Z has an orthonormal basis of elgenvectors for A4, so w, factors between
&/(Z) and its relative commutant «/(Z) in /(H). Let M = o/(Z® Q,(H,)). Then
A2 "M = A(Q,(H,)). Since also /(Z) is the tensor product with w4 a product
state of 2n + k copies of &/(X) we have, since dim .«/(Q,(H,)) < 2%,

S(w, M) =(2n + k)S(w 4] L (X)) + S(w 4| L(Z) " M)
S (2n+ k)S(w 4| (X)) + kelog 2.

Since M contains the algebra generated by M,,ap,e1,(M,),..., 0. 6,.(M,), it
follows from [3, Lemma VIIIL.1] that

H, (M, ay. 01 (M,),....d. 51.(M,) < (2n + k)S(w 4| (X)) + kelog 2.
We thus have, going back in the proof

1 2n+k

k—1
EH(OA( aWu},,’ < O aj,,) é &+

S(w 4| (X)) + elog 2.

We therefore conclude that

h ;) S S(w 4| (X)),

WA ,aw(
whence
th(aW) g S(wA | "Q{(X))a

and therefore

1 1
ho 4 (00) = 7 ho A(0w) S p S(w 4] 4(X)).
Now from the proof of Lemma 4.5 we have
1
b () = S0, (X)),

By Lemma 4.1 h, (y,) £ h,, ,(oy), hence they are equal, completing the proof of
the lemma for h,, (o).

To see that the entropy is the same for the restriction to the even algebra «/(H),
we know by Lemmas 3.1 and 4.1 and the first part that

By ety Ou, | L (H)o) S by, oy (20| A (H),)
g th((XU)
=h,, (og,).

But by Lemma 4.6 h,, |y (%v, | <(H),) = h,, (ay,), completing the proof for the
restrictions to the even algebra. []
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6. The Entropy Formula

We prove two formulas. When the quasifree state is of the form w, we first express
the entropy by the multiplicity function of U. Then we prove the general formula
when A has pure point spectrum. Recall that we use the notation m(U) to denote
the multiplicity function of the absolutely continuous part U, of U. To express
the formulas we use direct integral theory as described in the introduction based
on U,.

Theorem 6.1. With U a unitary operator on the Hilbert space H and 0 <1< 1, we
have

1 27
h,, (o) = E(ﬂ(/l) +n(1—4) (f) m(U(0))d6.

Proof 1f A=0 or 1 then w, is a pure state, see e.g. [8], so h,, (¢y) = 0 by Lemma 3.1.
Since n(4)+n(1 —1)=0 when A€{0,1} the formula holds in this case. Assume
0 <4< 1. Since by [3, VIL5] h, (o) = In|h,,(ay), it follows from Lemmas 4.3, 4.4
and 4.5 that all the conditions of Theorem 2.1 are satisfied. Thus the formula holds
when U has Lebesgue spectrum.

Let now U=U,® U, be the decomposition of U into absolutely continuous
and singular parts acting on H, and H, respectively. Let ¢ > 0 be given. By measure
theory there is a unitary V with Lebesgue spectrum on H, such that its multiplicity
function satisfies

m(V)= ¥ dtx, z m(U), (1)
=
where X ; is an arc of the form exp (2mi[a;, b;]) with b; — g; rational, and
2n 2n
[ m(U(9))d0 + &> | m(V(6))do. )
[ 0

We then have, by the first paragraph of the proof and Lemmas 4.1, 4.3, 5.3 in that
order
1 2n
5, A +n(1—2)) (I) m(U(0))d6 = h,,,(ay,)
sh,, (0,00,
<h,(veu,)
=h, A(“V)

1 2n
= 2—(71(/1) +n(1 —2)) [ m(V(6))do
us 0
1 2n
< 2—(11(1) +n(l — /1))[ j m(U(6))d0 + e].
T 0
Since ¢ is arbitrary the formula follows. [

We use direct integral as described in the introduction. If A commutes with
U=U,®U,then A=A,® A,. We have

A, = [®A(6)d6
T
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with A(6)eB(H,), where H, = 0 if m(U(0)) = 0. Suppose A has pure point spectrum,
so that

A=Y e,

jeJ
with J finite or countably infinite, and (e;) as an orthogonal family of projections
with sum 1, and 0 £ 4; < 1. Denote by

We denote by Tr the usual trace on B(H,). Writing e; = [®¢;(6)d6, and c(2) = n(4) +
n(1 — 1) we have

Tr(c(A(6))) = Y. c(4;) Tr(e;(0)) = Y c( 4;)m(U ;(6)).
Thus the following lemma is immediate from Theorem 6.1.

Lemma 6.2. With the above notation and assumptions we have
1 2n
2 h,, ()= 7 [ Tr(n(A(8)) + n(1 — A(6)))do.
j€r " T o

Theorem 6.3. Let 0 < A <1 be an operator with pure point spectrum acting on H.
Let U be a unitary operator on H commuting with A. Then we have

h, (ow) = —fTr (1(A(9)) + (1 — A(6)))d0.

Proof. If A= z Aze; the projections p,= Z e; define expectations on /(H)
=1

satisfying the condltlons of Lemma 3.3. Hence to show the formula we may assume
A has finite spectrum.
By Lemma 6.2 it suffices to show

hmA(“u) = z} h%(au,-),
Jje

where A = Z Aje;,J finite. Let o/(H), be the even algebra. An inspection of the

proof of Theorem 6.1 shows that the results used in the proof all hold for w,|.2/(H),
and oy| </ (H),. We thus have

h,, (| 4 (H),) = h, (ay).
We therefore have, using Lemma 3.2 and Remark 4.2 together with Lemma 3.4,
th(aU) g th(aUlM(H)e)
2 Y h, (xy] o/ (e;H))
Jje
= h, (o)
jeJ !
It therefore remains to show the converse inequality. For this we may assume

the absolutely continuous part U, of U acts as a multiplication operator on a
subset X of the circle T, and that H,= [*(X,d6) considered as a subspace of
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L*(T,df). We first consider the case when m(U) is bounded. Thus

N
m(U) = Zl nxx,»

where X, = m(U)™(n). Since A4 has finite spectrum we can subdivide each X, into
a disjoint union of Borel sets X,, on which A(0) is constant, i.c. has same finite
spectrum counted with multiplicity. Thus we have

A,=@D[® 40)d0 = DA, ®1,,

nr Xnr n,r

where 1,, is the identity on L*(X,,,,d0).

Let ¢ > 0 be given. Choose Y,, = X, a closed set, and choose open sets O,, > Y,
which are disjoint and with each O, a finite union of arcs of the form exp (2=i[a;, b;])
with b; — a; rational and the size of O,, to be determined below.

Let P,, be the orthogonal projection of LX(T,d6) onto L*(Y,,,d#), and let

e= (—DP,,,.

Let V, be the unitary multiplication operator on H, =L2<U 0, de) with

nr

multiplicity function
m(V,) = Zr NXOnr
and let
V=V,eU,.
Define A by A =4,® A,, where
4= P4, ®1,,,

where 1, is the identity on L*(0,,,d6). Then we have Ae = Ae and Ve = Ue, and
furthermore by Theorem 6.1 and Lemma 6.2

hw;(aV) = z hcuA]( Vj )7

where V; = V|e;(H), since V and A satisfy the assumptions of Lemma 4.6.
We now make our choice of the size of the 0,,’s, namely we choose them so
close to the Y,,’s that

ha, (@) <h,, (0pe),) + €2 A

where (Ue); = Ue|e;(H). This can be done since A has finite spectrum, Ue = Ve,
and the theorem is true for V. We thus have

th(OCUe@ u) = th(avae@ us)
<h,(w,eu,) (by Lemma 4.1)
= h,; (ay,) (by Lemma 5.3)
= ;hwlj(an) (by Lemma 6.2)
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< Z(hwlj(ave),) + 82—1)
J

<Yh, () +e (by Lemma 4.1).
j J

This holds for all ¢ >0, so we conclude
h, A(%e@ u) = 2,: h, AJ(“U,)'

The projections e can be constructed to form an increasing sequence when & \ 0.
Since each e commutes with A it defines an w, invariant expectation on «/(H), so
by Lemma 3.3 we have

th(du) = EI_EI(.} th(aUe@ Us)7

hence we have h, (ay) < Zhw’1 (xy,), as we wanted to show, proving the theorem

when U, has bounded spéctrum.

In the general case let Py be the projection of H, onto the spectral subspace
where m(U) < N. Then Py ~ 1 as N — co. Since the theorem holds for { | Py by the
first part of the proof it follows again from Lemma 3.3 that it holds for U. [
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