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Abstract. An explanation of the appearance of quantum groups in chiral WZNW
models is given. Invariance of the theory under quantum group action is
discussed.

1. Introduction

Recent developments of various approaches to conformal field theory have led to a
deep understanding of the properties of rational conformal field theories (RCFTs).
It was shown [1] that monodromy properties of conformal blocks in the WZNW
model defines braiding matrices which are closely related to the theory of quantum
groups [2]. A category-theoretic point of view on conformal field theory developed
by Moore and Seiberg [3] gives evidence that these two subjects, RCFT and the
theory of quantum groups are very similar. On the other hand, E. Witten [4]
introduced a universal language both for the conformal field theory and integrable
lattice models, where the quantum group plays a key role. But until now, the above
observation i.e., coincidence of monodromy properties of conformal blocks in
SU(ή) WZW model with braiding matrices of Uq(sl(ή)) has been rather mysterious
and in need of a conceptual explanation.

In this paper we'll give an explanation of the appearance of JR-matrices in
conformal field theory and discuss the meaning of invariance of the theory under
the quantum group. Our idea is based on the geometric approach to the conformal
field theory [5-7]. The main point of our interpretation is that in the chiral WZNW
model the dynamics of the element of the loop group, g(x), completely defines the
theory and therefore the quantum group must appear at the classical level as a
corresponding Poisson-Lie group, which acts on the Poisson bracket relations of
the loop group element. g(x) itself after quantization contains vertex operators of
the theory (see, i.e., [6,8]) and thus quantization of the above Poisson brackets [or,
the same, quantum exchange algebra for g(x)] must describe the monodromy
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properties of conformal blocks. It means that first we need to define the Poisson
bracket on the loop space, i.e.,{g(x)f g(y)}.

It was shown in [7] that the geometric quantization of the "model space" for
the Kac-Moody and the Virasoro groups reproduces the chiral part of RCFT.
The construction of the model space is based on the Kirillov-Kostant 2-form Ω on
the coadjoint orbit of the Lie group G. If the point of the coadjoint orbit is
parametrized by the group element, then the 2-form Ω defines a degenerate
symplectic structure on the group itself, thus it gives multivalued Poisson brackets
on group elements. But field theory (i.e., the case of the infinite dimensional Lie
group) is defined not only by the Lagrangian which is equal to d~ ιΩ, but also by
the boundary conditions on the input fields. Therefore we must specify the
boundary conditions on the field g(x), i.e., we can fix the values of several matrix
elements at x = 0 and x = 2π. In Sect. 2 of this paper we explain that the "right"
choice of boundary conditions guarantees the univaluedness of the Poisson
brackets for the elements of the loop group, but at the same time it breaks the
"isotopic symmetry" of the theory. The Jacobi identity on {g(x) ®g(y)} and the
choice of natural boundary conditions will lead us to r-matrix Poisson brackets.
We'll discuss two types of boundary condition, which, as will be demonstrated in
Sect. 3, are related to IRF and vertex pictures of the quantum theory. In one case
we'll get an r-matrix which satisfies the classical Yang-Baxter equation, in another,
the corresponding r-matrix depends on quasi-momentum and it is very similar to the
well-known r-matrix of [9] it satisfies the classical YB equation in the IRF picture.
These two r-matrices are closely related to each other in our approach, because the
corresponding boundary conditions are related to a linear differential equation
and thus there must be a linear relation between g(x) in these two pictures (see
below Sect, lb; this linear transformation is similar to one introduced by Babelon
[10] in Liouville theory [9,11]. This is not mysterious, because, as was shown in
[6,12], Liouville theory is a Drinfeld-Sokolov Hamiltonian reduction from
SL(2, R) Kac-Moody theory and in particular the Poisson brackets of input field
F(x):F(x)eΌiϊίS1

i defined by the gravitational WZ action is of r-matrix nature
with SL(2) r-matrix) [7]. At the quantum level this linear transformation
corresponds to the relation between IRF and vertex pictures [13,14]. At the end of
Sect. 2, we discuss the action of the Poisson-Lie group and one possible
interpretation of the invariance of the theory under Poisson-Lie group.

In Sect. 3 we quantize the classical exchange algebra using the free field
parametrization of the chiral WZNW model of [7, 8]. Instead of the r-matrix
Poisson brackets we will have a quantum exchange algebra which is of .R-matrix
form. The quantum JR-matrix corresponds to that of SLq(2) with deformation

parameter g=exp ——- . Each column of the quantum matrix g(x) is in a

representation of the Kac-Moody group realized in bosonic modules with spin \
but with different "charges" in Feigin-Fuchs-Dotsenko-Fateev language. We
explain that the quantum group acts in the row of the matrix g(x), i.e., between the
columns - in the space of several copies of the representation of the Kac-Moody
group, with different charges. In this sense these two objects, the Kac-Moody
group and the quantum group, are simultaneously represented in the loop group
element g(x). [The generalization to the case of any spin is straightforward; we
can write the matrix elements of g(x) in the spin j representation as symmetric



Quantum Groups and WZNW Models 355

polynomials of the matrix elements of spin ig(x).] After the quantization, in the
case of the compact group (the non-compact case is similar to the Virasoro one in
[7]), the theory contains a finite number of Kac-Moody representations (so-called
"integrable representations"), which correspond in our approach to the quantiz-
ation of quasi-momentum; at the same time there is a quantum group spin,
therefore in the corresponding RCFT only a finite number of quantum group
representations are present for q a root of unity. At the end of Sect. 3 the relation
between the generators of the quantum exchange algebra and the Kac-Moody
generators is discussed.

In Sect. 4 the quantum group is derived as a right-hand symmetry of the
WZNW model. It is shown that the currents defined in Sect. 3 are invariant under
the action of the quantum group.

2. Poisson-Lie Group in Classical WZW Model

Poisson-Lie group is a classical analog of a quantum group. Therefore it is quite
natural to expect its appearance in the classical chiral WZW theory, where instead
of the quantum exchange algebra we have to deal with the Poisson brackets and
symplectic structures. In the present approach it is easy to consider the general case
of SL(ή) without any technical problems.

a) Poisson Brackets in SL(n) WZW Model

It is known that the Kirillov-Kostant 2-form Ω on the coadjoint orbit of the Kac-
Moody group is closely related to the WZW model. More precisely, d~1Ω written
in group variables exactly coincides with the WZW Lagrangian:

da = Ω=^dxΊr{g-ίdgd(g-1dg)}, (1)

where K is the central charge of the Kac-Moody algebra d = —, x e S1, g e LG. The
OX

restriction of Ω on the matrices g(x) with fixed monodromy properties g~1(0)g(2π)
= M = const defines the nondegenerate symplectic structure on the correspond-
ing coadjoint orbit and thus defines the Poisson brackets of the linear functions
on the orbit; i.e., for currents

{J\x\ J\y)} = 2n(fabcJc(x)δ(x -y)- Kδabδ'(x - y)). (2)

Here Ja(x) = Tr {JTa}, J = Kdg g " \ and T* are generators of the Lie group G [in
this section G = SL{ήf]. On the loop group itself the 2-form Ω is degenerate, i.e., in
the case of boundary conditions g " 1(0)g(2π) = M it doesn't contain the differentials
along H, where H is a Cartan subgroup, defined by M.

In this section we give two types of the construction of the Poisson brackets on
the loop group, or the same, construction of nondegenerate symplectic structures
on LG, which are naturally related to the WZNW model. These two versions
correspond to different choices of boundary conditions on the element of loop
group g(x). Before describing the boundary conditions let us give a formal inverse
of the symplectic form Ω, which is given by the multivalued Poisson bracket

^ e ( x - y ) + X), (3)
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where C = Γα(g)Tα and X is some constant matrix, the anulator of the symplectic
form; it must be defined from the boundary conditions. On the other hand, it means
that the value of X is related to the additional term in Ω, which is necessary to intro-
duce when we have imposed the boundary condition on g.

The formal relation (3) is easy to get from the 2-form Ω. Here we must use the
scheme

Ω=±dξaΩabdξb => {ξ\ ξb} = (Ω-ψ. (4)

But in our case the coordinates ξ = g(x) aren't independent (detg = 1, g e SL(n)) and
therefore it is convenient to consider g(x) e GL+(n), det g > 0, g = λg, where λ e R +.
Then

Ω(g) = Ω(g) + ^ 7 d(logλ)δ[dOogλjβdx. (5)
4π o

Now in the 2-form Ω(g) the coordinates gtJ are independent and we can use (4):

with Xβn=— X1J1 is constant matrix, the anulator of Ω. It follows from the
factorization property of Ω [Eq. (5)], that

= {gyM, gkiiy)}λ(x)λ{y) + giJ(x)gkι(y) Wxλ A(y)}. (7)

Poisson bracket for λ is defined from Eq. (5),

{λ{x\ λ{y)} = - ~ λ(x)λ(y)ε(x - y). (8)

Now from Eqs. (6), (7), and (8), it follows that {gj/x), gkιiy)} acquires the form:

{gij{χ\ gkι(y)} = -

or in tensor notation

{g(χ)fg(y)} = - | - g(χ)®g(y)[(P- i

where P is a permutation matrix P̂ J = (5[(5j and the traceless combination

P- - / ® J coincides with Casimir operator C = Ta®Ta = P- -I®I. Thus Pois-
n n

son brackets of g(x) are given by the multivalued expression Eq. (3). Let us mention
that the main part of Eq. (3) is right invariant, i.e., it is invariant under the
transformation g(x)^>g(x) -h,heG, but the presence of the anulator X can break
this symmetry.

Now let us calculate the matrix X in the case of the "initial-final" boundary
condition:

gmn(0) = 0; n>m,

gwn(2π) = 0; n<m.
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There are two conditions that we must check: 1. the constraints (10) must be
first-class; 2. the Jacobi identity. It is easy to show that condition 1 is equivalent to:

?γ=o, n>ι.

This equation defines X up to diagonal elements, but these terms are irrelevant,
because they can be absorbed by the corresponding redefinition of g. Thus we have
from Eq. (11)

= Σ (T.a®Ta-Ta®T_a), (12)
0

Σ
α>0

where summation in Eq. (12) is over positive roots of SL(ri) and T0L = Eij (ί<j).
Finally, the Poisson bracket for the case of boundary conditions in Eq. (10),
acquires the form:

^ ( y - x ) ] , (13)

where

(14)

Ht is a basis in Cartan subalgebra. r + and r ~ are the solution of the classical Yang-

Baxter equation r+ — r~ =2C; X = — - — .

Let us mention that Poisson bracket (13) is left-invariant, but not right-
invariant. The reason is that 2-form Ω is degenerate on the loop space; boundary
condition (10) makes it nondegenerate but noninvariant.

b) Free Field Variables in WZW Model

Recently a useful method for the treatment of Kac-Moody algebra, so-called
bosonization, was introduced [15, 6, 8, 16-18]. In this parametrization the
Lagrangian of the WZW model is quadratic and the currents of the Kac-Moody
algebra are polynomials of free fields; these free fields are "Darboux" variables for
the symplectic form Ω [6,8]. For simplicity, we consider the case of SL(2); the
general case of SL(ή) can be investigated using [8]. The classical exchange algebra
(13) for the case of SL(2) using the free field parametrization of g [6,8] first was
obtained by Block [19] (see also the appendix in [7]).

The classical action in the WZW model is defined by the 2-form Ω as W(g) = J α
= \d~1Ω. It was shown in [6,8] that the action can be written in "Darboux"
variables as

W{g) = - ^ J ίdφdφ + ωdχ]dx, (15)



358 A. Alekseev and S. Shatashvili

where the element of the loop group g(x) in terms of free bosonic fields φ, ω, χ
acquires the form: . x . . x . N

1 0\ e~* 0\/l ψ\

'-{x lAo Wlo l) (16)

with the condition dip = ωe2φ. Quantum action differs from the classical one (15) by
the renormalization of the kinetic term for φ:

Wq(g) = - JL J [(K + 2)dφdφ + Kωdχ]dx (17)

which is a consequence of the anomaly of the measure in the path integral (see [8]).
(We discuss the quantum case in Sect. 3.) We can introduce boundary condition
different from (10) by fixing the monodromy matrix Jί{t) = g~1(Q,t)g{2n,t). The
case of constant M corresponds to the coadjoint orbit whereas the case where Jί(t)
is considered as a dynamical variable corresponds to the so-called "model space"
[7]. Let us assume that the monodromy matrix M is diagonal:

v :)•
This means then that we have the following properties for the free fields

χ(2π) = χ(0),

f2π) = 0(0) + 2πm, (19)

ω(2π) = ω(0),

where m= — logM. One can obtain that the zero mode φ0 of
2π

is in the kernel of the symplectic form because it is presented in the action only as
a total derivative

ΔS(φQ)=-K\mdφQ.

It means that the corresponding orbit is LG/H, where G = SL(2) and H is maximal
torus - i.e. the Cartan subgroup of SL(2) acting from the right-hand side.

It is easy to extend the symplectic 2-form Ω on the space of matrices with any
diagonal monodromy by the addition of the term

Q) = - 2KdmdφQ (20)

which corresponds to the natural Poisson bracket

{φ(xχφ(n)}=-^ε(x-y). (21)

Now we have the Poisson brackets for the variables gj/x) with diagonal
monodromy; these "Darboux" variables are

(22)
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with non-trivial Poisson brackets
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1

X'

Let us give an expression for the field ψ(x) in terms of canonical variables;

(23)

ψ(x) = •\φ)e2<t'(z)dz + J ω{z)e2<Hz)dz

or

(24)

(240

where we mean that xeR1 and the fields ω, χ, φ are given by (22). The integral in
(24') corresponds to the screening operator in the Feigin-Fuchs-Dotsenko-Fateev
approach. In our consideration they appeared naturally as components of the field
g(x) in the Gauss expansion (16).

Now, using the simple relations (23), (24) it is easy to show that

= - ^ g(x)®g(y)(r+(M)θ(x-y) + (25)

where

+ 1

2

r-(Af)=^
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Note that r = —Pr+P. Compared to (13), r+(r ) now depends on quasi-momen-
tum M which has nontrivial Poisson brackets with the matrix elements of
g(x); therefore the Jacobi identity for (25) doesn't coincide with the classical
YB equation. This type of r-matrix first appeared in the Liouville theory [9]. Let
us mention that in the limit M-»oo relation (25) acquires the form (13) and now
ψ(x) is given by

(26)
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which is also the solution of equation dψ = ωe2φ but with the boundary condition
τ/;(0) = 0. For this limit the Poisson brackets (25) in the free field parametrizations
previously were calculated by Block [19]. The limit M-»oo corresponds to the

"initial-final" boundary condition (10). In the notation g= I 11 the quasi-
\c dj

periodicity condition acquires the form

b(2π) = M 6(0), c(2π) = M ~λ c(0)

and fc(0)->0, c(2π)->0. As it follows from the Gauss expansion, g(x) is linear in
variable ψ(x); thus there must exist a linear transformation which gives the relation
between the matrix elements of g(x) in these two pictures, corresponding to the
boundary conditions (10) and (18) (compare with [10]).

Let us mention that the Poisson brackets (25) are invariant under the
transformation g(x)-+g(x) K where heH is a, constant diagonal matrix. The
generator of this transformation is m = logM. Right-hand symmetry under the
whole group G is broken; the reason is the choice of diagonal monodromy.

c) Poisson-Lie Group and Symplectic Structure on the Loop Space

Now we would like to describe a nice trick which allows us to preserve the right-
hand symmetry. We consider the transformation g(x)->g(x) h, where heH but
with the assumption that on the copy of the group SL(ή) some Poisson structure is
defined. The condition of invariance of the brackets {g(x)?g()0} uniquely defines
the Poisson brackets for h [20],

h®g(y) h} = {g(χ)®g(y)}h®h + g(χ)®g(y) {K h}. (27){gW hg(y) h} = {g(χ)g(y)}h®h + g(χ)®

From Eq. (27) and (13) we get the expression for {ftfft},

4π
(28)

where r = r+ or r~ (r + — r~ =2C and commutes with h®h). The quadratic Poisson
algebra is known as a Sklyanin algebra [21]. The group G with the Poisson
brackets (28) is called a Poisson-Lie group and it is the classical analog of a
quantum group [in our case SLq(nJ].

Formally it is possible to define the symplectic structure on the whole loop
group SLK(2) [generalization to SLκ(ή) seems to be trivial] with any boundary
condition. We already have the Poisson brackets (13) with g(0) lower triangular
and g(2π) upper triangular. Let us consider the object g(x) h = g(x), h e SL(ή). Now
g(x) is a matrix with any monodromy and takes value in the whole loop group. But
for each g from the loop group there are many representations like

g = g(x)'h = g@@-ιh = g'(x)h' (29)

with g'(x) obeying the same boundary conditions. This means that Poisson
structure on h must be invariant under h-^Q)h, where 2 is a diagonal matrix; [this
property is present in (28) because * ±
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For the case n = 2 the group element h in terms of Darboux variables acquires
the form

h=(x y

x = ep, y = eq, z = ρeq, and ί = e~ p (l+ρe β ) with symplectic structure

ω= dpdq. From ίp, q} = — —— it follows that
n 2K

( 3 0 )

{χ,ή ^yz, {y,z}o.

It is easy to check that det h = xy — zt is an anulator of the brackets (30) and thus we
can impose det/z = 1. Another anulator is the parameter ρ. Transformation h->@h
means that

ep^>ep@, eq^>eq@, Q->@~2Q. (31)

ω is invariant under (31) and therefore we can choose ρ' = Q) ~ 2ρ = 1 thus ρ can be
excluded from all expressions. Finally, we have the symplectic structure on the
whole loop space, i.e., on the space of matrices g(x) with any boundary condition:

For the theory defined by this structure the symmetry (27) is ordinary symmetry.

3. Quantum Exchange Relations

In the quantum case we must consider the commutation relations defined by the
quantum action (17). Our consideration is based on the operator language, which
can be easily rewritten on the path integral approach.

a) Exchange Algebra for a and b

(a b
In general, the matrix elements α, b, c, and d of the loop group element g = .

are ill defined; they contain free operators at coincident points [see (16)]. But the
operators a and b are well-defined for the spin \ representation of the Kac-Moody
group [we'll consider the case of SL(2); generalization to SL(n) is straightforward] :

M. — 1

(32)

ω(z)e2φ{z)dz.
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I Let us mention that after the Drinfeld-Sokolov reduction [6,12] these operators

2\fa
are exactly the vertex operators in minimal model with oc+ = -^±=:

γK + 2
K=p/q — 2. I Operator e~φ(x) we understand as normal ordered in the oscillator

picture for φn and φ-n. We use the simple exchange relation for the exponents of
the free fields

e«Φ(χ)eβΦ(y) = eβΦ(y)eaΦ(χ) [qTβ(χ -y) + q~ ~*~θ(y - x)], (33)

1/2, (34)

2πi
with q =

Thus we have for the first row in g(x):

V(x)Vτ(y)= V(y)Vτ(x) lR+(M)θ(x-y) + R-(M)θ(y-x)l, (35)

where V{x)= f**j\ Vτ(x) = (a(x\b(x)l R-=(R+Γ\ and1

jqm 0 0 0 \
a112 — a~1/2

(M-M)(qM-(qMy) qW-q"

(q^M-q-^M-1)2 q M q^M-q'^M'1

\θ 0 0 q112/

Dynamical considerations using the path integral approach of [7] show that M is
quantized in the case of S 1/(2) :M = qι, where / is a spin of the Kac-Moody algebra.
The non-compact case SL(2) we think can be treated similar to the Virasoro group,
as in [7]. Thus after the replacement M-+q\ R+ in (35) coincides with the 6/
symbols (up to normalization) in the category theory of SLq(2) [22]. The general
picture looks as follows: spin of the state |ρ> is defined by

then

MV+\Qy = q1'2V+M\Q} = ql+1l2V+\Qy,
(36)

where V+—b, F_ —a. It seems that V+ and F_ are components of "3/-symbols" for

the Kac-Moody algebra, where pairs of indices I ,), I „ 1 are realized in

L R+ in (35) is very similar to one in [9] in Liouville theory, see also [23]
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bosonized modules. We have
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(37)

with

+

From the observation that R + in (35) coincides with the similar object for the
SLq(2) it follows that at the same time V+ is a 3j-symbol for the quantum group
SLq(2) (for a detailed discussion of the question, see [13]).

This consideration becomes easier in the limit M->oo, i.e., in the case of
boundary conditions (10),

0

1
zl/2_^-l/2

0

0

0

q1/2/

(38)

and (38) coincides with the SLq(2) quantum R-matrix, which satisfies the braid
relation

^12^23^12=^23^12^23- (39)

Now the index ΐ = l , 2 (Vi = a, V2 = b) becomes a genuine quantum group index.

b) Quantum Exchange Algebra for g(x)(M= oo)

The problem we are going to discuss now can be formulated with the following
question: is it possible to define the quantum operators a, b, c, and d so that relation
(35) will be satisfied for the whole matrix g(x), i.e.

θ(y - x)] (40)

this is a quantum analog of relation (13).

The classical expression for g(x) is (for M= oo)

e-Φ(χ) e~Φ(

χ(x)e ~ φix) e ~ φ(x)χ(x) ] ω{z)e2φ(z)dz + eφ(x

(41)

From the point of view of operator ordering, the problem is only with the operator
d, where the interchange of ordering of χ and ω change the coefficient beyond the
second term: eφ. Only this coefficient can be renormalized in the quantum version.
Let us mention that the operator eφ must be understood here as

- φ(x)e2φ(x) =
- φ(x)

Then the anomalous dimensions of both first and second terms in d are the same.
During the calculation we will use the relation (33) and

χ(x)ω(y) ~ ω(y)χ(x) =--—δ(x-y).
is.
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Now defining d as:

d = χ(x)e ~ φix) J φ)e2φ{z)dz + oce~ φ™e2φ{x), (42)

we can check the quantum relation (40) is satisfied for the α:

2πΐ

g(x) with quasiperiodic boundary conditions (18) also satisfies (40) with R+(M)
from (35) and corresponding renormalization of the coefficient in the second term
in d:\-+cc.

In the classical limit, K-+oo and

(2
K{eκ + 2-e

— ) , α-> Ξα,, cl. Quasiclassical approxim-

KJ K

ation is useful for deriving the relation between the matrix elements of g(x) in (41)
and Kac-Moody currents. Therefore in the next section we will assume that

c) Expressions for Kac-Moody Currents

The generators of SL(ri) Kac-Moody algebra in the free field parametrization as
was shown in [6, 8,15-18] are polynomials of free fields. Originally for the SL(2)
current algebra this parametrization was introduced by Wakimoto [15], therefore
we have used the terminology Wakimoto currents:

J+=Kω,

° (45)

There are two possible derivations of the relation between currents (45) and
matrix elements of quantum field g(x) from (40):

1. We can check that the Knizhnik-Zamolodchikov [24] relation

(K + 2)dg=:Jg: (46)

is satisfied;

2. We can define a quantum version of classical formula

In the first case it is easy to rewrite the differential (K + 2)dg in terms of
quantum field g(x) itself (K + 2)δg = X - g and after the normal ordering in the
right-hand side (for a = (xq,cl) we obtain that X is exactly Wakimoto's current (45).
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The second case is more complicated. Let us first consider the simple case J+.
The classical relation is

J+=K(a'b'-b'a). (47)

But it can be shown that the right quantum version is

K(q1/2a'b - b'a) = e~φe~ φe2φKω(x) = NKω{x), (48)

where we introduced the infinite constant N for the e~
φ{x)e~φ{x)e2φ{x) = N. This

correction is related to the construction of the quantum inverse operator for g (see

below). Moreover, it can be shown in the order 0 (—) that similar formulas are

valid for J_ and J o . Here we must use the relation

J ω(z)e2φ{z)dz χ(x) = χ(x) J ω(z)e2φ(z)dz + — elφ{-x),

X

i.e., we assume that $δ(z — x)dz=^.
o

Thus the quantum version of the classical relation J — Kdgg~x is

J = Kdg-{g~\'N, (49)

with

— c

This result is "quasiclassical," but the — approximation feels the difference

between K and (K + 2). More precisely, let us redefine (g"1)^:

then

J = (K + 2)dg.{g-%. (50)

It is now clear that g (g~ x)β = 1. The renormalization (50) is related to the fact that
the quantum determinant of g is not equal to 1, but

K

and therefore it is necessary to include it in the definition of inverse operator. Our
derivation of relations (50) and (46) is "quasiclassical," but we think that there must
exist an exact quantum derivation; we hope to discuss this question in a separate
publication. Let us only mention here that R(x, y) = R + θ(x — y) + R~θ(y — x) can be
written a la Drinfeld [1] as

if-
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with constant matrix F12; F2X=PF12P. Using this form it must be quite easy to
calculate the commutator [g(x)®dg(y)(g~ι(y))q~]. (Details will be published sepa-
rately [28]).

4. Quantum Group as a Right-Hand Symmetry in the WZNW Model

Now, when we have the realization of the quantum group exchange algebra, we
can construct the quantum analog of the relations (27), (28) and introduce the
quantum group SLq(2) as a right-hand symmetry. (In this section all constructions
are for Λf =oo.) The general picture is as follows: the matrix g(x) contains two
columns, corresponding to the spin \ representation Vl9 V2 of the Kac-Moody
group; these two representations are labeled by φ charge: Vί has charge — 1, and
V2 has +1 thus g(x) defines the space Jf = VlfφVl1?. Defining gj(x) for the spin;
representation of Kac-Moody algebra as a (2/+l)x(2/+l) matrix with matrix
elements symmetric polynomials of those for spin \, gj(x) will correspond to the

space JίfJ = φ VJ. In this section we demonstrate that the quantum group SLq(2)
α = l

acts in this space Jf; it means that the loop group element g(x) defines (for M-> oo)
"vertex-chiral-vertex operators" in the terminology of [13].

Let us rewrite (40) in a different basis of a tensor product in the right-hand side:

g2(y)® g± (x)=g(y)®g(χ)=Pg(y)®g(χ)P,

where P is a permutation matrix. Usually the terminology in the theory of
quantum groups as follows: the multipliers in the tensor product are denoted by
the label, i.e., g1®h2 means that g stands on the left-hand side and h on the right-
hand side (matrix elements of g and h are ^-numbers) and g is first in the tensor
product; on the other hand, g2®hί means that g is on the left-hand side but h is
first in the tensor product. In this terminology we have from (40),

θ(y-χ)-]. (51)

Here R12 = PR+, R2l=PRϊ2P. Matrix JR1 2 instead of braid relations (39) now
satisfies the Yang-Baxter equation [which is equivalent to the associativity of (51)]

^12^13^23 =^23^13^12 (52)

Now let us consider the quantum analog of the right-hand symmetry g(x)
->g(x) ft, where matrix elements of g and h are commuting: [go , hk{] =0;heG. The
condition of in variance of (51) under this transformation is equivalent to

R12h1®h2 = h2®h1Rί2. (53)

This means that matrix elements of h e G = SL(2) are g-numbers and instead of
SL(2) we have SLq(2) (see e.g., [25]); (53) is a quantum analog of Skylanin's
brackets. It is no wonder due to general principle [20].

As was demonstrated in the previous section, for the definition of quantum
currents we need the inverse operator g"1)^ At the classical level, the right-hand
transformation of g(x) is left-handed for (g~x(x))

g(x)-+g(x) h, g"\x)-+h-x g-\x). (54)
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For the quantum version of (54) we need to introduce the quantum analog of h~ι.
Such an analog in quantum group literature is known as the antipode S(h) of h

if detqh = xt — q1/2yz = l. It is easy to show that (g~1(x))q defined by (50) has the
property

when g(x)-^g(x) h. This means that Wakimoto's currents (50) are invariant under
the action of the quantum group [i.e. (50) is an exact quantum formula]

j=(K+2)dg • (g- %^(κ+2)dg h. s(h) -(Γ\=J

because of ft S(h) = S(h) h = 1.
Thus the quantum group is the right-hand symmetry of the WZW Model.

Acknowledgements. We would like to thank M. Semenov-Tian-Shansky, F. Smirnov, L.
Takhtajian, and V. Volkov for stimulating discussions. We are especially grateful to L. Faddeev
since many problems addressed in the paper arose in discussions with him. S. Sh. would like to
thank J.-L. Gervais, D. Kazhdan, E. Martinec, G. Moore, A. Morozov, P. Nelson, A. Schwartz,
and H. Verlinde for interesting discussions. This work was written during the visit of S. Sh. to the
United States in Oct.-Dec. 1989, and he thanks G. Moore, D. Gross, and H. Verlinde, and E.
Martinec for their great hospitality, correspondingly at Yale University, at Princeton University
and at the Enrico Fermi Institute.
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group action in the case of SU(2) [27].
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