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Abstract. The string equations of hermitian and unitary matrix models of ID
gravity are flatness conditions. These flatness conditions may be interpreted as
the consistency conditions for isomonodromic deformation of an equation with
an irregular singularity. In particular, the partition function of the matrix model
is shown to be the tau function for isomonodromic deformation. The physical
parameters defining the string equation are interpreted as moduli of meromorphic
gauge fields, and the compatibility conditions can be interpreted as defining
a "quantum" analog of a Riemann surface. In the latter interpretation, the
equations may be viewed as compatibility conditions for transport on "quantum
moduli space" of correlation functions in a theory of free fermions. We discuss
how the free fermion field theory may be deduced directly from the matrix
model integral. As an application of our formalism we discuss some properties
of the BMP solutions of the string equations. We also mention briefly a possible
connection to twistor theory.

1. Introduction and Conclusion

Recently there has been some remarkable progress in the theory of ID gravity and
string theory [1-6]. The basic equations governing nonperturbative ID gravity
coupled to minimal models have been discovered. An exciting feature of these
equations is their close relation with the KP hierarchy, indicating the existence
of some interesting underlying mathematical structure. While the connection to
the KP hierarchy per se is likely to be peculiar to the minimal models, one may
hope that a thorough examination of these systems will lead to the discovery of
structures applicable to general models of ID gravity. In this paper we attempt
to construct a mathematical framework for the string equations in the hope that
some qualitative features of this framework will persist in the general case.
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We would like some geometrical interpretation of the string equations. One
very interesting interpretation is provided by Witten's theory of topological
gravity [7-10]. In the present paper we suggest another route which follows more
closely the wellestablished paradigm for the geometry of conformal field theory.
Recall the main elements of Friedan and Shenker's "modular geometry" [11].
The conformal blocks of a correlation function are horizontal sections of a flat
vector bundle over the moduli space of curves. A horizontal section satisfies a
differential equation which essentially follows from the idea that the stress energy
tensor defines a connection on the bundle. If we discuss nontrivial (nonrational)
conformal field theories, e.g., those associated with nonlinear sigma models with
Calabi-Yau spaces as targets, the flatness of the connection is the condition
that the spacetime equations of motion are satisfied, i.e., that the appropriate
generalizations of Einstein's equations are satisfied.

We propose that a similar picture holds in the case of ID gravity. We
begin by writing the string equations as flatness conditions. These conditions are
compatibility conditions for transport equations in a space parametrized by x, T),
the cosmological constant and the masses associated to the 2Ώ gravity model. The
parameters x, T), together with the initial conditions for the nonlinear differential
equations known as the "string equations," are identified with the moduli of a
certain class of meromorphic gauge fields on IP1. This moduli space is given a
further interpretation in Sect. 5 as a generalization of the moduli space of curves.
The analogy to conformal field theory is developed further in Sect. 6, where
we interpret the transport equations in x, X) as Knizhnik-Zamalodchikov-type
equations for a free fermion construction of current algebra. The novel element
is that the correlators in question involve operators (dubbed "star operators")
which are not normally considered in conformal field theory. In Sect. 7 we suggest
how one might establish a direct connection between the formalism of this paper
and the random matrix formulation of ID gravity.

It is well-known that the quantum field theory of free fermions on a curve
provides an elegant framework for understanding much of the theory of the
quasiperiodic solutions of the generalized KdV hierarchies. Following some ob-
servations of Gross and Migdal [3], Douglas emphasized the importance of the
generalized KdV hierarchies in [5]. This led to the suggestion [5, 6] that the
partition function of the matrix model might be a tau function in the sense
of [12,13]. While not strictly true, we show that this conjecture is essentially
correct: the partition function of ID gravity is given by the tau function for
an isomonodromic deformation problem closely related to that of the stationary
KdV equations. The tau function in the quasiperiodic case admits an interesting
interpretation as a function on an orbit of a loop group [12,14], and it would be
very interesting to find an analogous interpretation in this case.

In an effort to demonstrate that the above picture is not merely useless rein-
terpretation of know results we have shown in Appendix A how the present
formalism can be used to establish some properties of the string equations which
have recently become interesting in connection with the so-called "nonperturba-
tive violation of universality" in matrix models.

It has been repeatedly emphasized by Atiyah, Hitchin, Ward, and Witten
that low-dimensional integrable differential equations and field theories should
be related to higher dimensional gauge theory. The four-dimensional self-dual
Yang-Mills equations are expected to play a central role in such a formulation.
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In Appendix B we sketch some connections between those ideas and the ideas of
this paper.

After we completed most of this work we found that some ideas similar
to those of Sects. 2, 3, and 5, in the context of the MKdV hierarchy and
the associated PΠ equation, have been discussed by Flaschka and Newell [15].
V. Korepin also pointed out to us some overlap between the remarks of Sect. 7
and those of [16]. We have been informed by E. Martinec of similar progress,
especially in relating the gravity partition function to a tau function [17].

2. String Equations as Flatness Conditions

Let us recall how M.Douglas wrote the general (p,q) string equations in [5]. If
L = Dq + uq-2Dq~2 + h MO is the continuum limit of a multiplication operator
f(λ) —> λf(λ) on the orthogonal polynomials / in a matrix chain model then, he

argued, the continuum limit of the conjugate derivative operator f(λ) —• -rτF(λ)
dλ

must be of the form P = L+ , where the subscript indicates we keep only
the differential operator part of a pseudodifferential operator. The nonlinear
differential equations [P,L] = 1 should define nonperturbative 2Ώ quantum
gravity coupled to the (/?, q) minimal model of conformal field theory. Similarly,
the equations for massive models coupled to ID gravity are of the form [P,L] = 1,
where P = ^ tp^+ and the tp are the "masses" in the theory. Our first task will

p

be to rewrite these equations in first order matrix form.

The (21 — 1,2) Equations: From the work of Drinfeld and Sokolov [18] we can
represent the KdV equations as a Lax pair of first order matrix equations. Let

(2.1)
ax \ A

 w /

and consider the s/(2) matrix

Aι Bι λ (2 2)
Q -A)' ( 2 2 )

where the matrix entries can be expressed in terms of Gelfand-Dickii potentials
[19] via

- 2Rι+1 - (λRi + λ2R^{ + -"λιR{)

where RkR[ = (Pk,ιY defines Pk,ι up to a constant. Using the recursion relation
one may then verify, B[ + 2Aι(λ + u) = —2JR/'+1, and hence

/π OΏ' \
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The Ith KdV flow is thus the compatibility condition [2d/dtt + &u &\ = 0.
Similarly, it follows that if we define

then the equation [Pf, JSP] = 0 is equivalent to the massless (2L — 1,2) string
equation R +i = —^hx. In particular

IP td +AV° ή x 1 / 0 u/2\ ί-vί/%

Similarly we can generalize (2.5) to

(2.6)

(where ^ _ i = 0) and then the compatibility conditions of the linear systems

ΨΨ(λ,x,Tj) =0,

(2.7)

give the massive (21 — 1,2) and KdV equations.
The fact that a solution to £ (7 + 5) T/R; = fix satisfied the KdV flow in 7)

[6] is extremely surprising to those familiar with the almost periodic solutions
of KdV, where analogous parameters play the role of moduli of an associated
Riemann surface, while the KdV flows are (straightline) flows along the Jacobian
of that surface. We will comment on this relation further below. For now we
content ourselves with the following consistency check [6] on (2.7), using the
notation of Gelfand-Dickii [19]. Taking derivatives with respect to x,Tk and
assuming the KdV flow in Tk we have

where ξj are the vector fields generating KdV flow [19] and we have used

commutativity of the flows. The first equation implies hδ/δu = X (j + j)Tjξj,
j

and substitution into the second equation gives 0 = (fc + \)^k + (<V<5w)^iUi' a

true identity. This verifies consistency. One argument for the KdV flow was given
in [6], we will give another argument below. Note especially that the argument
fails for h — 0.

The (p,q) Equations. In this case we will be somewhat less detailed. Let L =

Dq + uq-2D
q~2 + '" and consider the generalized KdV flow [Lp_lq,L] = dL/dt.
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We may rewrite this, following Drinfeld-Sokolov, using the operator

/0 ... -wo \

265

0 —Uq-2

o /
where A has entries 1 along the lower diagonal and λ in the l,q matrix element.
Using the methods of [18] one may construct ^q,p(λ) = Ap -\ such that the
generalized KdV flows are equivalent to

dt

in particular, there are potentials Rq,pli9 i = 2,3, ... q generalizing the R[s used
above such that

0 ... -R'

' w
0

\ 0 I
Thus, as before, we may write the string equations as the flatness conditions
[Bί?p)JS?] = 0 , where

, d
Jt q—\ ^q^ q—1

0 ...
Vθ ... o /

and the J^t are constants, analogous to the magnetic field of the Ising model. We
may formulate the equations for massive models in the obvious way by taking
linear combinations of the lBqq.

Unitary Matrix Models. In [20] equations analogous to the above string equations,
but for unitary matrices were derived. It is not obvious whether these equations
can be written in Douglas' form [P,L] = 1. In [15, 21] it was shown that they
do admit an interpretation as flatness equations. We briefly summarize those
equations here for completeness. Periwal and Shevitz showed that the appropriate
hierarchy of equations are the self-similar solutions to the MKdV hierarchy. The
Lax pair for the MKdV hierarchy may be derived from the above pairs essentially
via a Miura transformation. The self-similar solutions are obtained be setting,
for the Ith equation, ψ(x,t) = taF(z), where z = tax and α = -1/(2/ + 1). Letting
u = f2 + /', the unitary matrix-model hierarchy becomes:

(2.9)
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Also define 2 1 / 2 = f-ζ. Then after some simple transformations we find the
hierarchy (2.9) is the compatibility condition for:

(2.10)

2/ττ ikψ + ί{Uι+{vί/2ζ))σ3 + F/σi + w/w^ψ = o,
where

17, = jR, + ζ2Rι-i + C 2 % + ^ 4 - r ,

and the GD potentials are evaluated for u — f2 -f f. The particular case of
/ = 1 in the above equations gives the PΠ equation with the normalization
f" — 2/3 -j- 8x//3 = 0. Correlation functions can be discussed in an analogous
way to the hermitian matrix model case [21].

General Semisimple Lie Algebras. In [18] Drinfeld and Sokolov wrote analogues
of the KdV equations associated to any Lie algebra g. These are again of the

d
form $£ = [^,«£?], where 5£ = htf+ Λ, α is a function taking values in the Lie

dx
algebra and A is a standard element in the affine Kac-Moody algebra g. When
this algebra is realized as a loop algebra we may again modify &> —• & to obtain

some equations of the form 0 = —- + ^ , 5£ , and these should be the string
Idλ J

equations for some matrix model1 .
Flatness conditions arise very often in physics. The above interpretations

suggest, e.g., that possibly one should think about a pure (holomorphic) Chern-
Simons theory along the lines of [23] with a suitable restriction on the fields. Such
an interpretation yields a nice interpretation, e.g., of the (p, q) actions on [24] in
terms of Wilson loops. However it is difficult to see why the gauge symmetry
should be broken. We will comment again on this below.

3. String Equations and Isomonodromic Deformation

The compatibility conditions of the previous section arise naturally in a very
interesting problem known as the isomonodromy problem. The theory of isomo-
nodromic deformation has been adequately reviewed in [25-29]. So we confine
ourselves here to a very brief description of the method.

Consider a linear homogeneous differential equation

d^-=A{z)Ψ. (3.1)
dz

At an irregular singular point a of order r we can write
00

A(z)= Y An{z - a)n-1.
n=—r

1 In [5] Douglas suggested they would be associated to the nondiagonal minimal models. This idea
has been studied in detail in [22]
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Assuming A-r is diagonalizable one can show that there is a formal solution to
(3.1) of the form

ψ ~ (Σ ̂ ( / ) ( z - f l )
where L and

are diagonal, and xp^ in invertible2. The analytic meaning of the formal solution
(3.2) is that we can divide up a neighborhood of a into sectorial domains
Qk = {dk < arg(z — a) < e^} for some constants dk, e^ such that in each domain
there is a unique true solution Ψk to (3.1) which is asymptotic to (3.2). On
Ωk+i Π Ωk we have Ψk+i = ΨkSk for some Stokes matrices. If the differential
equation (3.1) depends on parameters we can ask how we may change the
parameters so that the "monodromy date" Sk9 L remains unchanged. As shown
in the above references, such questions lead to interesting nonlinear differential
equations. We now apply the general formalism of these works to the string
equations.

Asymptotic Analysis. Consider the massless (2/—1,2) equation. In order to perform
the asymptotic analysis we follow [26, 30] and define λ = ζ2 and

(3.3)

so that W satisfies the differential equation:

dW Γ ( h.
'T, + ζ2C, + At)σ3 - (B, - ζ2Q + A,)iσ2 + 2ζAt - —dζ

Γ / " " - i c 2 / - 2 + - - - ) ^ 3 + ( - T C 2 ' + 1 + - - - ) ^ ( 3 . 4 )

where Δ\ = hx + 2Rι+\. Equation (3.4) has an irregular singularity of order 2/+ 3
at infinity and a regular singularity at the origin. For the massive string equations
we replace

C = ί
j

Aι -• \

In particular the PI equation is associated with the differential equation:

Aι -• \C\

2 We state this more carefully in the following section
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Returning to the general case, the asymptotic expansion at infinity of a
solution W to (3.4) is given by W ~ Weτfh, where

(3.6)

To prove this we observe that we can rewrite C in terms of the resolvent R(x, λ) of
the Schrδdinger operator, (—D2 + w + A)"1, used extensively in [19]. In particular,

C = p(ζ; Tj)R(x, ζ2) + ^ ^ + Θ(l/ζ4), (3.7)

where p = -\ £ (j + \) Tjζ2^1. Defining α = (2ζ2 + u)R - \R!\ β = UR- \R"
and y = ζ # ' we find that

for any diagonal matrix D diagonalizes equation (3.4) to order 0(1/0- Equating
positive powers of ζ we find

from which one obtains the first equation in (3.6). Using the diagonal freedom in
defining W we can arrange that the expansion in 1/ζ has the form of the second
equation3.

Near the origin we may diagonalize the regular singularity to be of the form
—(73/(20 so that, after a diagonalization the matrix near the origin behaves
as (1 + Θ(ζ))e~^Xog^. True solutions with given asymptotic behavior will be
linked by a connection matrix. Actually, the full extent of the machinery for
handling several singular points is not necessary. The original equation in λ is

λ

regular throughout the λ plane. The solution is simply P exp f A(λ')dλ' for an
appropriate matrix A, hence the only singularities in Ψ can occur at infinity.
Thus, near ζ = 0 we have

/ 1 r \

(3.9)

Stokes Matrices. For the (2/ — 1,2) string equation we will have 4/ + 6 Stokes

sectors Ωk each containing a unique ray θ = ——-{2k— 1), k = 0, ...4/ + 5 along
4/ + 6

which cos[(2/ + 3)0] = 0, thus we may take neighborhoods of infinity defined by:

Ωk = -{ ζ I ΛΊ , , + ^ 7 , ~(k — 2)< argζ < + _, , Λ > (3.10)

3 Strictly speaking the 0(1) part of the differential equation with this substitution requires Δ — 0,
which is a condition we will find later for isomonodromic deformation. A more tedious analysis
shows that one can start without assuming Δ = 0 and derive the same result



Geometry of String Equations 269

for fc = 0, ..., 4/ + 5. We will consider k as an integer defined modulo 4/ + 6.
The Stokes sectors have the property that in Ωk there is a unique solution Wk to
(3.4) with the asymptotic behavior Weτ/n. Note that the asymptotic behavior is
independent of the sector. On the overlap Ωk Π Ωk+\ the two solutions Wk+\ and
Wk must be related by

(3.11)

where the Sk are known as Stokes matrices. Since Wk+ι and Wk have the same
asymptotic expansion in their respective sectors, the Sk are severely constrained.
Plugging the asymptotic expansion into Wk+ιe~τ/n = Wke~τ^h(eτ^nSke~τ^n) we
find 1 ~ eτ/nSke"τ/n, and taking account of the sign of the real part of the
leading term in the essential singularity we find:

In fact, from the symmetry of Eq. (3.4) we may conclude that Wk+2i+3(ζ) =
σ\Wk(—ζ)σu and hence that Sk+2ι+3 = σi&σi = S£, i.e., S&+2/+3 = sk. By (3.9)
W has monodromy —1 upon analytic continuation around zero (or infinity),
implying a constraint on the Stokes matrices. In fact, a stronger constraint may
be derived from the fact that, again by (3.9), if we analytically continue W\ from
Ωi, then Wγ{-ζ) = -iσxWγ{ζ), hence

S1...S2ι+3 = -ίσι. (3.13)

Hence, the Stokes parameters are not alle independent. Since the determinant of
(3.13) is automatically satisfied, (3.13) only imposes three independent constraints
on the Stokes matrices, so we have 2/4-3 — 3 = 21 independent Stokes parameters.
Finally, we may consider the constraint on the Stokes parameters imposed by
reality of u. If u is real then all the coefficients of powers of ζ in IP are real so
that Wk(ζ) = W-k(0 From this it follows that for real solutions S2/+3-/C = ~h

Isomonodromic Deformation. We now interpret the compatibility conditions of
the previous section as the conditions required for isomonodromy under changes
of x, Tj. In the literature [25-27, 29] on isomonodromic deformation the Stokes
parameters Sj are referred to as monodromy parameters4. The problem of iso-
monodromic deformation is the problem of finding conditions on the w, ux, uXX9 ...
(considered as independent numbers) such that if we change x, T) the Stokes
matrices remain fixed. We will give both a geometric and a physical description of
the isomonodromy problem in subsequent sections. For the moment let us simply
consider the solution. Under a deformation of x, Tj the solution W of (3.4) will
become a smooth function of the x, I ) . Since Ψ is regular throughout the λ
plane we know that the differential dΨ Ψ~x is a matrix of holomorphic one-forms
whose only (rational) singularity lies at infinity, and is thus uniquely determined
by that singularity. Since the Stokes data are assumed to be x-indepedent we can

4 One also considers the formal monodromy, i.e., the matrix T^ multiplying the term with log ζ in
T as a monodromy parameter. In our problem we consider this parameter to be set equal to 1/2
always
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substitute the asymptotic expansion and compute

dΨ_ x _ ( 1 1
dχΨ ~\ί/ζ -1

ζj c )mod(l/ζ) (3.14)

[ + (u/2)\
o )•

Consistency with the λ equation then forces H[ = u/2. In terms of W we have:

(If we had worked directly with W then in computing WxW~ι we would have
had to drop only terms of order Θ(l/ζ2).)

Similarly, requiring that the Stokes parameters and the formal monodromy
be independent of the 7) leads to the equations:

Using (3.8), which holds to Θ(ζ~{2l+ι)) we establish the third equation in (2.7).
The compatibility of the x, T, flows now shows that u satisfies the KdV hierarchy.

r Functions. In [25, 26] it was shown that if we have an isomonodromic defor-
mation problem then one can naturally define a closed one-form on the space of
deformation parameters:

ω = Resc=00tr f Y ^ - ^ W l . (3.17)

If there is more than one singular point then we must sum over the residues,
using the appropriate asymptotic expansion near each singular point. Since ω is
closed one can then define (locally, in the space of deformation parameters) the
tau function via ω = d(\ogτ).

We will now show that u(x;Tj) (and hence, the free energy of the matrix
model) is the second logarithmic derivative of the tau function, just as in the
case of quasiperiodic and soliton solutions to the KdV equations. We have just
seen that dH\/dx = w, and substituting into the equation for d(logτ) we get
d(logτ) = -2HU hence

M(x;T; ) = - ^ l o g τ . (3.18)

Since the tau function for isomonodromic deformations is known always to be
holomorphic [31] we see that the only singularities of u are second order poles.
(As one may easily check directly from the differential equation, the coefficient of
a second order pole must be 2, implying that our τ function must be the square
of a holomorphic function. This is naturally explained by the occurrence of a
pair of Weyl fermions in the free fermion formulation below.)

Inverse Monodromy Problem and Initial Conditions. As we have seen, under iso-
monodromic deformation the monodromy data are in fact indepedent of the
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parameters x, 7). On the other hand, in order to construct the differential equa-
tion and solve explicitly for the monodromy data we must begin with an actual
solution u(x; Tj) of the string equations. It turns out that we may identify the
2/ initial conditions needed to define a solution of the string equations as the
data needed to fix completely the differential equation. Strictly speaking then,
we should speak of the function u(x;Tj,Sj) since all these data are needed to
determine u.

The problem of determining explicitly the data s, in terms of a solution (or in
terms of its asymptotics) is known as the direct monodromy problem, while the
problem of finding the inverse relation, i.e., given the s, find u(x) (in particular,
its initial conditions) is known as the inverse monodromy problem. These issues
have been well-studied in the lierature [29]. It is not always true that the inverse
monodromy problem is solvable. For instance, an unfortunate choice of initial
conditions in the form of the s, and the parameter x could put us on top of a pole
for that function u(x) determined by the sf. The existence of this pole, whose
physical implications have been widely discussed [1, 6, 32, 33] can be given a
geometrical interpretation in terms of the nontriviality of a certain vector bundle
in the case of the PII equation [34]. We expect a similar statement will hold for
the family of equations discussed here.

The (p,q) Equations. The above discussion may be generalized to the entire set
of (p, q) string equations. Again we must diagonalize the leading singularity. To
do this, choose a qth root of λ, call it ξ so that the other roots are ξk = ωk~ιξ,
where ω = e2πι^q, k = 1, ... q. Then we take

:9-2 μq-2

ξi ... ξq

\ 1 ... 1 /

so that Ξ~ιΔΞ = Ω = Diagjl, ω, ..., ωq~K Therefore, defining W(ξ) = Ξ~ιΨ
we obtain the equation

))W. (3.19)

From the asymptotic expansion we find again that W = Weτfn with

T = -^-Ωpξp+q-hξxΩ,

and for isomonodromic deformation we have uq-2 = qH[. It then follows that

d _ Γ A - I 3 # fdTV\

dx °° [ dξ \ dx) J (3.21)

5 The fact that such a pole is the only possible obstruction will be obvious, if not rigorous, from the
free fermion point of view below
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so that

is always true. Hence the only singularities for a solution to any of the string
equations are second order poles.

A similar analysis can be carried out for the unitary matrix models [21]. In

—j

f2 is the specific heat of the matrix model we see once again that the partition
function is a tau function.

this case one finds that if / is determined by (2.9) then f2 = —j log τ. Since

4. The Moduli Space of the String Equations

In this section we will give our first geometrical interpretation of the physical
parameters determining the connection IP, that is, the parameters T) and the
initial conditions of the equation for u(x). They will be seen to be moduli for a
certain class of meromorphic gauge potentials.

Consider a meromorphic gauge potential Az(z) on the complex plane. Az

defines a connection on a (trivial) bundle over <C. Consider the problem of clas-
sifying A up to gauge equivalence. The resulting classification depends crucially
on the nature of the singularities of A and on the admissible class of gauge
transformations. For example, in the local theory we take the possible (isolated)
singularity of A to be at the origin. If A has a regular singular point, i.e., if
A has a simple pole then, up to equivalence under meromorphic gauge trans-
formations, A is classified by the conjugacy class of the monodromy P exp / A
around zero. This follows since if we try to gauge A to zero by solving the
equation dΨ/dz = AΨ then there is a solution of the form Ψ = Ψ(z)zM, where
Ψ is holomorphic near zero, and e2πιM is the monodromy matrix. Passing to the
global theory of a connection on a vector bundle over a Riemann surface Σ, the
solution to the famous Riemann-Hilbert problem states that the moduli space
of connections with regular singularities at αz are classified by the conjugacy
classes Hom(πi(Σ — {α;}), GL(m, (C))/ ~. Related facts have been used extensively
in investigations of Chern-Simons-Witten theory.

The situations is very different, and far more complicated, for connections
with irregular singularities, i.e., with higher order poles. We briefly summarize the
situation, see [35-42] for the full story. We follow the presentation of [40, 42]. A
major result in the theory of differential equations, the Hukuhara-Turittin formal
reduction theorem, states that if A has an irregular singular point at z = 0, we
may solve dΨ /dz = AΨ with Ψ = ΨeΛ, where Ψ is a formal asymptotic series
and

^ = Drιz
rί + Dr2z

r2 + DTmzTm +z~lC, (4.1)

where r,- are rational numbers with r\ < - rm < — 1, DVι are diagonal constant
matrices and C commutes with the Drr (See. e.g., [35], Theorem 19.1 for a careful
statement and proof of this.) Thus, a gauge transformation by Ψ transforms
the connection to the above canonical form. Moreover, the numbers r, and the
conjugacy class of {Dn, exp[2πΐ/cC]} are gauge invariant. These are therefore the
moduli of meromorphic gauge fields under thr orbits of formal gauge transfor-
mations. Applying the above observations to the class of gauge potentials defined
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by (3.4) and its generalizations we see that the {T),x} should be thought of as
such moduli.

If we now ask for the orbits under meromorphic gauge transformations, i.e.,
transformations with a convergent Laurent expansion near zero then, as shown
in [36-40], one must take into account a more subtle invariant. This is the
collection of Stokes matrices, or more properly, a Stokes cocycle, which we now
describe6. Suppose A is in the formal equivalence class (4.1) and A gives rise to
Stokes matrices Sk in sectors around z = 0. We can then consider the matrices

= exp(zl(z))JS/cexp(—Λ(z)), defined in each sector Ωk. These satisfy

5 ^ ~ 1 in Q k ,

dSTk ϊdA Λ (4.2)

dz -BH
Let us now identify a sector Ω = {θ\ < argz < #2} with the corresponding
region on the unit circle. In this way we can define a sheaf7, st(A), over S1

whose sections consist of matrices satisfying the two conditions in (4.2). The
main theorem of Sibuya-Malgrange states that the nonabelian sheaf cohomology
group H1(S1,st(A)) is isomorphic to the moduli space under meromorphic gauge
equivalence of connections formally equivalent to (4.1).

In the examples studied in this paper we may represent the Stokes cocycle by
the matrices:

1 e2T'»s2k+A / 1 (Γ

1 J \^l\
in Ω2/C+2 Π Ω2/C+1 and Ωik+x Π Ω2k respectively. The moduli in this case are simply
the Stokes parameters s, and hence the initial conditions for the solution u(x)
to the string equations. Hence the physical data - the masses T, and the initial
conditions, as expressed through the Stokes parameters Sj are coordinates on
the moduli space of a class of meromorphic gauge fields under meromorphic
gauge equivalence. We think that it is an interesting question to elucidate what
distinguishes potentials associated with integrable systems in the space of all
connections with irregular singular points. This is the same as the problem
mentioned at the end of Sect. 2.

5. Quantum Riemann Surfaces

In this section we will examine more closely the geometry of the vector bundles
defined in Sect. 3. In particular we will be interested in the following question.
It is well known that a pair of commutating differential operators [P,L] =
0 leads, via the Burchnall-Chaundy-Krichever theory, to the construction of
an algebraic curve Σ with a line bundle8 $£ —• Σ. The KdV flows are then
just straightline motion of 5£ along the Picard variety of Σ. Since the string
equations can be formulated as [P,L] = %, one is naturally lead to ask if
there is a sense in which one may associate to solutions of these equations a

6 We skip over many technical details in what follows. The interested reader should consult the above
references
7 of unipotent groups
8 If I1 in singular if is not a line bundle because of identifications at the singular points, instead it
is a "coherent sheaf." We will assume below that our Riemann surfaces are nonsingular
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corresponding "quantum" geometry. We will propose such a notion below, based
on isomonodromic deformation9.

Although the BCK theory has already been beautifully described in [13, 43,
44] and elsewhere, we review it again from a slightly different point of view better
suited to our purposes.

We work with the KdV hierarchy for simplicity, and will indicate the proper
generalizations to the generalized KdV hierarchies later. The usual presentation
of the BCK theory begins with the band theory of the Schrodinger operator
L = D2 — u(x). We consider the two-dimensional eigenspace of L:

Vλ = {φ(x)\Lψ{x)=λψ(x)}. (5.1)

Eigenfunctions can be shown to be meromorphic functions of the "momen-
tum" z defined by λ = z2. More precisely, one introduces the Baker-Akhiezer
(BA) eigenfunction which is uniquely characterized by a normalization condition
Ψ(XQ9Z) = 1, for some fixed xo> and the expansion near z = oo,

The BA function has a meromorphic extension to an affine hyperelliptic curve Σo
double covering the affine λ line C, and is a section of a (trivialized) line bundle
«£? —• Σo. For our purposes it is more convenient to work with vector bundles on
C rather than line bundles on ΣQ. The Vχ define a trivial bundle over the affine
Λ-line. We will be concerned with various framings of this bundle, which are in
one-one correspondence with the invertible solutions of

since a solution is given by the Wronskian matrix

Ψ(x)=(vl ti) (5.3)

where tpi, \pι are two linearly independent elements of Vχ. A standard frame for
this bundle is provided by the two solutions φi(x\xo,λ), i = 1,2, which satisfy
Φι '(xo xfoλ) = δij. The φι are entire functions of λ.

Recall that if u(x) solves the stationary KdV equations:

[P,L]=0, P = ] Γ > L Γ 1 ) / 2 , (5-4)

then P restricts to Vχ and its restriction in the φ\ basis is a matrix which is

polynomial in λ and a differential polynomial in U(XQ). In fact, letting P/ = L+

one may easily show that

(<?«>' < ^ f ) (5.5,

9 This is not to be confused with the fact that the stationary KdV equations themselves can be
written as an isomonodromic deformation problem. We discuss this latter formulation of stationary
KdV briefly in Sect. 6



Geometry of String Equations

V

275

Fig. 1. A schematic drawing of the Riemann surface and the Krichever line bundle defined by the BA

framing, in the neighborhood of a branch point

from which it follows that

Φi

Φl

—Aι[u(xo)]
Q[u(x0)]

Bι[u(x0)]
Λι[u(x0)]

(5.6)

The eigenvalues of P/ \Vλ thus satisfy the characteristic equation of this matrix,
which defines an aίfine curve Σo by the equation μ2 = A2+BC. (Recall that A, B, C
are polynomials in λ and differential polynomials in xo It is a simple consequence
of (5.4) that the determinant A2 + BC is independent of x0.) Consider a patch
U in <C. If U is simply connected and does not contain any of the roots of μ(λ),
then we may choose a framing which diagonalizes Pi over U. The eigenspaces
associated to ±μ canonically define lines in the pullback bundle π * F , where
π : (μ, λ) —> λ is the projection. We may choose, e.g., φ±μ,χ = Cφ\ + (±μ + A)φ2
(One can impose the normalization condition φμj.(xo) = 1. In this case the
framing will be meromorphic.) At a branch point λu where μ(λi) = 0 the two
eigenspaces degenerate to a single line, so that we can say the μ eigenspace of Pi
at the point (μ, λ), defines a holomorphic line bundle i f -» Γo The situation is
summarized in Fig. I 1 0 . Finally, note that for large λ the eigenfunctions must be
plane waves, ~ e±x\ and since P is a differential operator of odd order we must
have asymptotics φμ,A(x) ~ e±xz, with the choice of sign depending on //, so that
these eigenfunctions are proportional to the BA functions ψ(x, ± z ) .

Let us define a Baker-Akhiezer framing Ψ to be a simultaneous solution of
(5.2) and

(5.7)

which has the asymptotics

ψ (5.8)

where Ψ has a power series expansion in 1/z near λ -> oo, and is nonsingular
except at the branch points λt and the zeroes of C For example, choosing
ψι,2 = ψ(x, ±z) in (5.3) gives a normalized BA framing. A BA framing is single-
valued and meromorphic on Σ o but not on the λ line. Rather, upon analytic
continuation around a branch point we have the monodromy

Ψ (5.9)

1 0 The situation can also be summarized in the sheaf-theoretic formula: 0 —> τι*5£ —> V —> θpSp —• 0,
where π* if is the direct image and Sp are sheaves supported on branch points
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reflecting the interchange of the two sheets. Nevertheless, we can construct our
Riemann surface Σo working completely with the framing for a bundle V —• C
and ΣQ can be pictured as "sitting inside the total space of F," in the sense that
if we consider the surface i n C x F swept out by the tips of the frame we obtain
a copy of Σo as in Fig. 1. Since the date defining a BA framing is essentially the
data defining the famous quintuplets occurring in Krichever's construction [13]
we expect that one can define a "moduli space of BA framings," which will be,
essentially, the universal Jacobian over the moduli space of curves.

We have phrased the BCK theory in such a way that we can now describe its
noncommutative, or quantum, analog associated to the equation [P,L] = fo. The
main claim is that the analog of the BA framing is a solution Ψ (x, λ) to

&Ψ=0, P/<F=0, (5.10)

and that in the fo —• 0 limit this framing reproduces the BA framing in the
following sense.

The gauge connection (^f,P/) is flat, so an entire solution of (5.10) exists for
finite values of x,λ. Morally speaking, Ψ defines a global framing of " π * F " ,
where π should be a projection from a "quantum Riemann surface." We can try
to get a picture of this object by studying the framing over the λ line, in the
semiclassical fo —• 0 limit. To this end let us consider a family of solutions u%{x)
to the string equations Σ (7 + 5) TjRj = fox which have a smooth fo —• 0 limit.
For example, in the case of PI the asymptotic analysis of Boutroux shows that
Uh approaches either a constant or the Weierstrass p function. In general we can
write u = w(0) + fou^ H .I t will also be of interest to let the equation itself vary

with ft, so we also let Tt = τ/ 0 ) + foT^] H . (Effectively, we are working over
the ring C[[β]].) For such a family we can study the equation ΨΨ = 0, i.e.,

(5-11)

via the WKB approximation using an analysis similar to that of Appendix A.
We first summarize the main conclusion of the analysis: In the fo -> 0 limit the
WKB turning points become the branch points λi of the curve Σo and a choice
of Stokes ray emanating from each of these points becomes a branch cut for the
affine hyperelliptic curve ZΌ defined by {(μo,λ)} where +μo are the eigenvalues
of Σ (7 + ^)TjPj-\[u^] acting on Vχ. In the various WKB sectors, and outside
a neighborhood (vanishing with fo) of the branch cuts we may find solutions Ψi
of (5.10) so that if we define:

Ψi(λ) = !F®(A) exp ^ j μo(λ') dλ' , (5.12)

then Ψ$ has a smooth classical limit, and is, in fact, a BA framing in the
appropriate sector. Note that it immediately follows from the smoothness of Ψ
that if we substitute (5.12) into (5.11) then in the limit Ψh -> Ψ the differential
equation (5.11) becomes the eigenvalue condition (5.7):

- 5 ( Σ 0' + 5) T ^ ; - i tM(0)ϊ) φ = ^ μ o ( A ) . (5.13)
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oo λ . λ

Fig. 2. A schematic drawing of a framing defined by the equation in h in the neighborhood of a

branch point. The oscillations are along the directions in Vχ defined by the framing in Fig. 1

One surprise we find is that the BA framings defined in the different WKB
sectors differ by multiplication on the right by nontrivial (i.e., nondiagonal)
matrices, a reflection of the Stokes phenomenon. Thus, heuristically speaking,
we can picture a quantum Riemann surface as a widely fluctuating trivialization
of a vector bundle which becomes smooth, and looks like a classical Riemann
surface, in the neighborhood of the branch points as in Fig. 2. The fluctuations
are always directed along the line of the Krichever line bundle. Because of the
Stokes phenomenon, even when we factor out the wild oscillations along the
Krichever line bundle, we find that in different sectors o f C x F the Riemann
surface as been "rotated" and "sheared." n We now provide some justification of
this picture.

WKB Analysis. We write (5.11) as

dΨ
— = (ασ3

βσ2 + yσγ)Ψ Ξ (5.14)

where α = A, y + iβ = C, γ - iβ = B. Note that s4 is 0(1) as ft -* 0. The
eigenvalues of stf are given by μ2 = α2 + β2 + γ2 = A2 + BC[uh] and approach μ%
smoothly in the classical limit. Therefore, writing μ$ = ]J(λ — λj) we must define
3(2/ + 1) conjugate Stokes lines by the vanishing real part:

A

SR ίμo(λf)dλf = 0. (5.15)

These are similar to the Stokes lines in Appendix A. In this case the integrand
vanishes as Θ(λ — Λ) 1 / 2 a t t n e points λ\. Hence there are three lines emerging
from each of these points at angles 2π/3. We can get a picture of the Stokes
lines, at least, for some region of moduli space, by first considering the case in

2/+2

which μ2 = J[ (λ — λi) with all the λt real, with A, < λi+\. Then one can easily

show that the Stokes lines have the form given in Fig. 3. The proof proceeds as
follows. We know that as λ —> oo we must reproduce the full set of 21 + 3 Stokes
rays going to infinity. Moreover, whenever two branch points coalesce the triple

1 1 The resulting object is thus somewhat reminiscent of certain cubist paintings of Picasso and
Braque



278 G. Moore

Fig. 3. An example of conjugate Stokes lines in the case where the branch points are all real. In this

case the surface has genus two

joining points for Stokes lines must turn into quadrupule joining points. Finally,
the intervals on the real axis are certainly among the Stokes lines. The above
picture is uniquely determined by these criteria. We may now imagine moving
the branch points off the real axis. The picture will deform smoothly unless two
branch points collide or unless a branch point hits a Stokes line. In that case we
may expect fairly intricate phenomena which is outside the scope of this paper.
In general the lines will divide the plane into several regions Ω&.

Our first goal is to establish the following result. In the interior of each region

Ωk, for \λ~λi\ > Θ(h2β) there are solutions Ψi(x,λ) to (5.10) such that

Γ
lim !?,(*, λ)exp - §• [ μo(λ')dλ'

exists and is a BA framing.
To prove this, recall that the usual theorem in asymptotic analysis guarantees

that there will be a solution Ψi in Ωi with the asymptotic expansion

• Jμn(λ')dλ'

where
(5.16)

and, if we expand Lz = LJ0) + ftL 1* H , then we require:

Therefore, we study the difference of the WKB phase factors:

λ λ

±:Jμn(λ')dλ'-±:Jμo(λ')dλ'\. (5.17)
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If μ2 has a simple zero then it is easy to see the limit exists.
Since the most general BA framing differs from the normalized BA framing

by right-multiplication by a diagonal matrix depending only on λ and having
power series asymptotics at infinity, we can establish the result by finding a
suitable function fi(λ) such that

Φ' 1 Φ' 3

Ψμ,λ Ψ-μ,λ
Φμ,λ Φ-μ,λ

where we normalize the first matrix to have unit Wronskian. We determine /,- by

— lθg/, = -Tj — ί φ-μ^ — φ'μj — Φ-μ,χ-Zτφμ,λ ) (5.18)

Differentiating the above with respect to x we see that since

λ

d

and φ-μ,λφμ,λ — C/2μo the right-hand-side of (5.18) is x-independent, as it must
be. Thus we can solve (5.18) for a function of λ only.

We may establish the asymptotics of /, by using the observation of Sect. 3
that C = p(λ, Tj)R(x,λ) + hx/2λ + 0(1/λ2), where R(x,λ) is the resolvent of the
Schrodinger operator, to find μn = \[p •+• hx/z + Θ(l/z3)] so that 1 2

Fi(x, λ, Tj) = - \ Σ TJl)z2J+1 +xz + 0(l/z). (5.19)

j

f\Note the occurrence of the parameters τf\ Since u satisfies KdV flow in Tj we
know from the standard theory that the BA functions have asymptotics

-e

from which it follows that d/dz(\ogfi(z)) = Θ(l/z2), which completes the proof.
The different solutions Ψi with WKB asymptotics in the various sectors Ωi

will not agree on the overlaps of sectors because of the Stokes phenomenon at
the irregular singular point at infinity. There is further disagreement from the
conditions for matching to the well-defined solutions at the turning points λι as
we now describe.

For I H I = \λ- λi\ < Θ(H2/3-ε) we can expand

dΨ
h— = (s/t + δλ^i + &(h, (δλi)2)) Ψ (5.20)

0A

and the determinant μ2 = μfδλt. Defining a variable η = ftΓ^μ/ δλi

τ = h1/3μ2/3, one easily shows that the WKB solution has asymptotics

From (3.6) we see that we are simply verifying the fact that the asymptotics in h and ζ is double
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up to right-multiplication by a diagonal constant matrix. On the other hand, after
transforming (5.20) by the first matrix in (5.21) we can obtain an exact solution
in terms of Airy functions:

τBif(η) τAi'(η)
Bi(η) Ai(η)

(5.22)

We can now use the standard asymptotic expansion of these functions [45]:

Ai(η) ~ -^=η-i/4e~2ηV2/3(l + Θ(η~2/3)), - π < arg>/ < π,

Bi(η) ~ -^=η-1/4e-2η3/2/3(l + Θ(η-2/3)), - π / 3 < argij < π/3,

, - π / 3 < argfy < π ,

_ £ -2^/2/3

(5.23)

, — π < arg?7 < π/3 .

We see that to match onto a well-defined framing near λ\ the standard solutions
Ψi must be multiplied by the nontrivial lower-diagonal matrices

±i/2

Thus, well defined framings lead to fragmented bits of Riemann surface, and
well-defined Riemann surfaces lead to discontinuous jumps in framings. This
completes the justification of the picture mentioned above.

We expect that the above discussion can be generalized easily to Riemann
surfaces which are n-fold coverings of the plane. In this case the Schrodinger
operator is replaced by the operator L = Dn -\ . One can still define the notion
of a BA framing of an n-plane bundle on the λ line and so on. We also remark
that in the above analysis we have occasionally made use of the fact that the
point at infinity is a Weierstrass point, but this is probably not essential.

Quantum Moduli Space. As ft -> 0, the parameters τ/ 0 ) define the moduli of
the classical surface ΣQ. On the other hand, if we allow the Tt to vary: T, =

T>j + hT>} H , then the T>' become coordinates on the Jacobian of Σo, as
we can see from (2.7) as well as from (5.19). Thus, we propose that one should
regard the space of (x, Tj) as a generalization of the universal Jacobian over
moduli space. This suggests several interesting questions. For example, is there
an analog of the modular group? Can we study limits like T —• oo using known
results about the boundary of the moduli space of curves? And so forth.

Finally, note that another approach to our problem would be to use noncom-
mutative geometry in the sense of Connes. One might begin with the Heisenberg
algebra [P,λ] =h and look for interesting ideals which would allow us to define
the "ring of functions on the noncommutative Riemann surface", and so on. It
would be interesting to see if such ideas are related to the above pictures.

6. Isomonodromy and Free Fermions

The isomonodromy problem is very natural from the point of view of conformal
field theory. Consider, for example, a conformal block of free Ising fermions in
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the presence of spin fields at positions α,, SF ~ (ψ(x)σ(αi)...σ(αn)φ(xo)) As is
well-known, $F satisfies a differential equation in x and has monodromy as x is
continued around the Λ, . AS we move the at the monodromy representation of the
braid group remains invariant. This is isomonodromy, usually described in terms
of flatness of a vector bundle over moduli space, in the framework of Friedan-
Shenker modular geometry. In this section we will interpret the isomonodromy
problem connected with the string equations in conformal-field-theoretic terms.
Our paradigm will be the solution of the Riemann-Hilbert problem for the case
of regular singular points given ten years ago by the Kyoto school [46]. We
review their construction first, in the light of subsequent developments in CFT.
Then we consider the case of irregular singular points. Developing further some
work of Miwa [47], we find that the theory of irregular singular points can be
included at the expense of the introduction of a new kind of operator. In a way
we are making a nontrivial extension of conformal field theory by expanding the
class of functions admitted in the theory from analytic functions with algebraic
singularities to analytic functions with essential singularities. This is reflected in
the need to expand the class of operators from twist operators to star operators.

Regular Singular Points. The basic idea of [46] is that the solution to an m x m
matrix differential equation

^=A(z)Ψ(z) (6.1)

may be characterized uniquely by its monodromy properties. More precisely,
suppose A has only simple poles at points αv and the residue can be diagonalized
to L v. Then the matrix Ψ can be uniquely characterized by the requirement that

(i) y(z o ) = i,
(ii) Ψ(z) is holomorphic in z e P 1 — {au , fln}>

(iii) Ψ(z) = £(v)(z)eLviog(z-αv) for? z ^ α v ? w h e r e £(v) i s holomorphic and in-

vertible in a neighborhood of α v.
Conversely, any such matrix defines a rational matrix A = ΨzΨ~ι with at

most simple poles. Thus, if one can construct appropriate "twist operators" ψi
such that the correlation function

Ψβa(z0 , Z) = (z0 - z) — —— (6.2)
(φn(an)...φι(a1))

has the correct monodromy properties, then it must be a solution of (6.1). Thus
we have reduced the global Riemann-Hilbert problem to the local problem of
finding conformal fields ΦL(«) with the operator product expansion

ψa(z)φL(a) ~ [ < » + (a- z ) < » + • ] (z - α)L«. (6.3)

We can construct examples of such φL explicitly via bosonization of the
fermions so that:

xpa = e^%

Ψa = e~iφ*, (6.4)

where φa are free scalar fields. We now recognize (6.1) as the Knizhnik-
Zamalodchikov equation for U(l)m current algebra, the φL being primary fields
associated to a one-dimensional representation of (7(l)m.
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The construction (6.4) only produces examples with abelian monodromy. More
generally, choosing a basis of curves yv circling once around av and generating
the fundamental group π\ (IP1 — {αv} zo) we can construct a differential equation
that gives the monodromy Ψ —• ΨMV along γv using the operators

φM(a) = exp \j tr{log(Aί)J(y)}^ , (6.5)

where J^α = ψβψa is a g/(m)i current and ^ is a contour (a branch cut for
Ψ) emanating from a. Consider now (6.2) with such operators inserted. As we
analytically continue z around a the simple pole in the ope of ψ with J gives rise
to the monodromy ψa —• ψγMya in the Fermi field. The ΨM{^) are again primary
fields for a U(l)m current algebra, but if M is not diagonal the (7(l)m Cartan
subalgebra of gl(m) has been rotated. In this case (6.1) is seen to be an interesting
generalization of the KZ equations13.

Let us now consider isomonodromic deformation of (6.1). It is clear from
locality of the ope that changing the av leaves the monodromy data unchanged.
An old result of Schlesingen states that a necessary and sufficient condition for
isomonodromic deformation is

~dz^ ~ ~ ^ zo-av '

daY \ z — av ZQ — av J

Taking into account that Ψ is a ratio of correlators we see that (6.6) are again KZ-
type equations. The compatibility conditions for these linear quations given the
nonlinear Schlesinger equations14. The linear equations (6.1), (6.6) associated to
the nonlinear isomonodromic deformation equations should therefore be thought
of as transport equations on moduli space, so that the theory of isomonodromic
deformation for regular singular points fits nicely into the framework of Friedan-
Shenker modular geometry.

According to the general theory of isomonodromic deformation [25-27] there
is a tau function associated to the deformation parameters av. In this case it is
given by

Γ
tr (

Γ _ fiψ
d logτ(a u . . . , an) = - £ Res2 = α v tr (Ψ^Γ1 -^-d(log(z - αv)Lv) , (6.7)

where the d is a differential in the parameters αv. A very interesting result of
[25-27] is that this tau function is given by τ = {φ\... φn). We will now rederive
this using general principles of conformal field theory.

We have normalized (6.2) so that it is equal to δaβ at z = ZQ. Taking the
operator product expansion as z —• ZQ and matching this with an expansion of a

1 3 Technically the standard treatment of Knizhnik-Zamalodchikov equations fails because 1) the φu
are not, in general, primary fields for the g/(m)i (nor for the o(2m)\) current algebra, and 2) one
cannot deform the contour integral of J through the branch cut #
1 4 For an appropriate choice of matrices, for example, these equations reduce to PVI [26]
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solution to (6.1) around ZQ we find

(T(zo)φn(an)...φι(aι))

where Γ is the stress energy tensor. Since L_i always takes a derivative with
respect to position we have

dav

On the other hand, substituting the local expansion Ψ = Ψ(z — a)L we get

Ψ'1 Ψz + L/(z -a) = Ψ~ιAΨ . (6.9)

Squaring this equation we find

— (logτ) = Restr f Ψ~ιΨz—— ] = ^Restr^ 2, (6.10)

da \ z — a) L

and hence the tau function is simply the correlation function of twist operators.
We note in passing that an easy implication of the above considerations is that

the solutions of the stationary KdV equations themselves can be obtained from
an isomonodromy problem [26]. The basic idea is that fermions on a Riemann
surface ]Γ0 which is an n-fold covering of the plane are equivalent to an n-tuplet
of fermions on the plane in the presence of appropriate branch points, as is well
known in the conformal field theory of orbifolds [48-51]. In particular, the BA
framing of the previous section has a QFT representation of the form (6.2).

Irregular Singular Points. Let us now attempt to repeat the previous discussion
for the case of a differential equation (6.1), where A is rational but can have
irregular singularities. Our treatment is the same in spirit as the discussion of
T. Miwa [47], although there are some differences of detail.

Recall the discussion from the beginning of Sect. 3. At an irregular singular
point we divide up a neighborhood of the point into sectorial domains, each
containing a fundamental solution with asymptotics (3.2). In particular, the
analytic continuation of Ψ\ will have the asymptotic expansion

j (6.11)

in the sector Ω^. A solution to the differential equation can be uniquely char-
acterized by the conditions (i)-(iii) above except that (iii) must be replaced by
the requirement that Ψ have the asymptotic expansions (6.11). Thus, to find
the solution to an equation with irregular singular points using quantum field
theory we define Ψ = Ψ\e~τ^z~ά) if there is one irregular singular point, and
by Π e~τ(z~a^ for several irregular singular points, and search for quantum field

operators Vsj^ia), which we call "star" operators, such that

Ψβa(zo,z) = (zo z) 7— — r . (6.12)
( ^ S Γ L ( f l l ) )
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The star operator is characterized by its operator product expansion with ψ,
ψ, e.g., for z e Ωk we have

ΨΛZ)VS,T,L(") ~ [Θ°y(a)Ha-z)Θl(aH'--](z-a)Ly[eτ(S1...Sk-iΓ
1e-τ]ya. (6.13)

From this description it looks very unlikely that star operators exist15. We now
give at least a formal construction of these operators.

Consider a ray ̂  emanating from a point α. Consider the product of operators

a

exp / dyψOί(y)MOίβ(y)ψβ(y) y?α(z),

where M is some matrix defined along the line. We may imagine defining an
operator formalism by "angular ordering" (as opposed to the standard radial
ordering) in the neighborhood of α. If we then analytically continue z in ψ(z)
through the curve <€ and compare with the other operator ordering it is a simple
consequence of Cauchy's theorem and the operator product expansion that we
have the exchange algebra:

exp / dyψΛ(y)Maβ(y)ψβ(y) ψa(z - ε)

= ψy(z + ε) (eM{z))yaexp / dyψa(y)Maβ(y)ψβ(y) (6.14)

where z is a point on # and z ± ε are points above and below z. Thus, defining
Sfk = eτSke~τ we may define, at least formally,

VS,T,L(O) = tτ{(\og <fι{y))J{y)}dy (6.15)

where we choose contours <&k in Ωk such that the matrix Sfk approaches the
identity rapidly.

It follows from locality of the operator product expansion that the differen-
tial equation satisfied by (6.12) has the property that the monodromy data S,
L are preserved if we vary the parameters au Ti . Just as the tau function for
isomonodromic deformation of an equation with regular singular points is given
by the correlation function of twist operators, the tau function for isomonodro-
mic deformation in an equation with irregular singular points is given by the
correlation function of star operators [47]. We can prove this as follows.

1 5 For example, it is often claimed that operator product expansions in CFT are convergent. Note
that (6.13) is only asymptotic. The reason for this is ultimately to be found in the fact that the string
coupling has become dimensionful [2]. Note that it is x and the masses T) which multiply the terms
giving the essential singularity at infinity. In this context it is interesting to note that many integrable
massive field theories have correlation functions related to Painleve equations [16, 27, 52]
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First consider the dependence on the position a. By an argument analogous
to the twist operator case we have

Taking the residue of the ope with the stress tensor gives the derivative of
VS,T,L(O) with respect to position a. However, V also depends on a through the
data T(z — a) and we must take this into account. Commutation with J rotates
the fermions and hence rotates the fermion transition functions in the adjoint
representation. Since a change in T induces a change b£f — [δT9^] we find that

tτ(δT(zo)J(zo))Vs,τ,L(a) ~ / -^— tr (δT(zo)j^) VS,T,L . (6.17)

Using (6.16) and (6.17) we get

- Res z o = α tr δ T(zo)A(zo) = — ^ ^ - — - > . (6.18)

Putting together (6.16) and (6.18) we then find

| - log(F. . . V) = i Res z o = α tr A2(z0) = £. log τ, (6.19)

da da
where the second equality follows from an argument similar to the case of regular
singularities. It also follows immediately from (6.18) that the dependence of log τ
and log(F. . . V) on other parameters is the same.

In [47] Miwa obtained formulae for the tau function using a slightly different
formalism. Comparing his formulae in terms of infinite expansions evaluated by
Wick's theorem we obtain the same result:

τ =
/=0 α,=l

As shown in [47] contours of integration can be defined so that for small enough
Stokes data the integrals make sense, thus giving a more precise definition to the
star operator.

As a special case of the above formalism we can express the solution u the
string equations in terms of a fermion correlation function. For the (21 — 1,2)
models we have a star operator at infinity and a twist operator at the origin. We
may choose the contours of the star operator to converge to the branch cut for
the twist operator at the origin. Then applying (6.18) to the case where we vary
the parameter x, (one of the parameters in T(ζ)) we see that the tau function for
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Fig. 4. A schematic view of a choice of contours for the star operator

the string equations can be computed using the star operator,

r a

I
xexp \s2k

(6.20)

where a choice of contours is shown in Fig. 4, and a twist operator φ, as the
two-point function:

τ(x) = (Vs,x(oo)φ(0)}. (6.21)

From this construction it appears that the correlation functions of twist op-
erators always provide a solution of the inverse monodromy problem and the
corresponding string equation. The only thing which can go wrong is that the
correlation function, as a function of x might have a zero, so that u has a second
order pole.

As in the case of regular singularities we may interpret the equations of (2.7)
as transport equations. Following the interpretation of Sect. 5 we see that these
should be called transport equations on quantum moduli space. The discussion
of Sect. 5 must have a parellel discussion here. In particular, since the h —> 0 limit
of a quantum Ba framing gives a standard BA framing, the "classical limit" of a
star operator must be a product of twist operators. It would be very interesting
to see in detail how this limit is obtained.

Grassmannians and Determinants. It is well known that in the case of almost
periodic solutions to the KdV hierarchy the tau function is properly thought of
as a section of a determinant line bundle [13] and that this determinant line
bundle is just the vacuum bundle for free fermions defined on the algebraic curve
associated to the solution u(x) via the BCK theory. We can argue that, with some
modifications, this picture continues to hold for the tau functions associated to
the isomonodromy problems discussed above.

Recall that in the operator formalism we choose a disc surrounding some
point P and define a local Hubert space on a circle surrounding that point. The
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partition function of fermions on the surface may be regarded as a function of the
line bundle if? —• Σ — {P} of which the fermion wavefunctions are holomorphic
sections. By considering the restriction of these sections to a circle surrounding
P we obtain a subspace W a L2{SX) defining an element of the Grassmannian.
Denoting by Ω the fermion vacuum created by the geometry j£? —> Σ — {P}, that
is, ΛmaxW we obtain:

τ w = (0 I Ωw) = fdψdψefψdψ = Detδ^ . (6.22)

w

As explained in [53] we may easily incorporate correlation functions into this
picture through use of the multiplicative Ward identities.

Recall that if we want a correlator of (Y[ψ(Pi) Y[ψ(Qd) when the fermion
field lives in the line bundle j£? —> Σ associated to W € Gr we proceed as
follows. Note that the Lagrangian is invariant under ψ —• fψ, ψ -» f~ιψ.
This does not imply that the expression (6.22) is invariant, since the allowed
space of sections is drastically changed. First of all, the boundary conditions are
modified by W -> / W. Secondly, at zeroes and poles of / the L2 condition
on the wavefunctions becomes an unusual normalizability constraint. Using a
local analysis of the Hubert space on a circle surrounding such a pole one can
show [53] that this unusual constraint can be replaced by the insertion of an
appropriate operator in the presence of ordinary fermions. As an example, let us
take / to have a single zero and pole. Taking into account the conformal weight
one half of fermions we get

[(df-1/dz)P(df/dz)Q]-1/2(ίp(P)ψ(Q))f.w = ^ p L . (6.23)
Det df

As pointed out in [53] this is the physical explanation for the relation between
the Baker function and the tau function.

Suppose now we have an m-tuplet of fermions φ α defined on a Riemann
surface Σ. Removing a neighborhood of a point P e Σ, the boundary conditions
of ψ define a subspace of W cz Gr(Hm), where H = L2(Sι) as usual16. The
partition function is again Det dw as usual, and the bottom row of the Baker-
Akhiezer framing describes a holomorphic section of a holomorphic m-plane
bundle over Σ — P.

The theory of multiplicative Ward identities again holds, but with some
interesting generalizations, the transformations:

U) -> (γ~{:
preserve the action. The multiplication by Y will again change the boundary
conditions (by the obvious multiplicative action of Y(ζ) on Hm) and if Y has
singularities then the L2 condition on the fermi wavefunctions is modified in the

1 6 The relation between the quantum field theory of a fermion on a surface Σ which is an m-fold
cover of the plane, and the quantum field theory of an m-tuplet of fermions on the plane in the
presence of branch points gives a nice explanation of the construction on pp. 34-35 of [13]. Moreover,
it shows directly why their association of a space W in Gr(M^ to an nth order operator coincides
with the space constructed via the BCK theory in the case that the operator satisfies the stationary
generalized KdV equations
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neighborhood of these singularities. Again, we can replace these conditions by
operator insertions. If Y has poles or zeroes then the operators are simply pro-
ducts of ψζ, ψa and their derivatives. If Y has branch cuts then we have inserted
twist operators ψL A rigorous discussion of construction of the associated d
operator and its determinant for the insertion of twist operators on IP1 has been
given in [54]. Finally, if Y has essential singularities associated to an irregular
singular point of a differential equation then we have inserted a star operator. In
all cases we have

(V...) W
Όetdw

Moreover, and quite generally, if we consider the multiplicative WΓs for a
correlation function of twist and star operators obtained by multiplying the Fermi
field by a function with a single zero and pole we obtain a "discrete" relation
between the fermion two point function in the presence of these operators and
a ratio of tau functions. We expect that one can explain in conformal-field-
theoretic terms all the relations obtained by use of "Schlesinger transformations"
in [26]. (Schlesinger transformations themselves can be viewed as replacing a
twist operator by its normal ordered product with ψ9ψ.)

From these remarks we see that the KdV flow is again induced by the infinite
dimensional abelian group Γ+ of [13]. In this case the flow has the interesting
interpretation of being the flow of the renormalization group.

7. Free Fermions from Matrix Models

In this section we suggest a way in which the connections between free-fermion
theory and the string equations discussed above might be derivable directly
from the matrix model integrals. Unfortunately our results are incomplete, but
some key features emerge already at this stage. First we will see that the spectral
parameter of inverse scattering theory is identified with the eigenvalue coordinate
of the random matrix path integral. Second we will see that the random matrix
model leads naturally to a doublet of fermions.

Let us consider the simple Gaussian matrix model.

Correlation functions of, say, traces of φn can be interpreted [6, 55, 56] as
expectation values in a slater determinant of fermion one-body wavefunctions
given by Hermite functions:
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Fig. 5. A simple Fermi sea

As in [6] we may pass to second quantized wavefunctions:

(7.2)

The Fermi sea is illustrated in Fig. 5. As argued in [6] the main contributions
to correlation functions come from the neighborhood of the Fermi level. In the
large N limit, and for n ~ Θ(N) we have:

Ψ2n(7/N) ~ (-1)W

2N

(7.3)

1
Thus, defining ψ(y;N) = —=ψ(y/N) we argue that ψ actually has a smooth

large TV limit. For example, for the two-point function one easily verifies:

L (7.4)

On the operator level we define p = n/2N and

α,(p) = VN(-l)n+N(ά2n - ia2n+ύ,

a2(p) = VN(-l)n+N(ά2n - iά2n+ι),
(7.5)

where an = aχ+n. The sum over n becomes an integral f dp. Again, assuming
- 1

that the main contributions come from the neighborhood of the Fermi level we
extend this to an integral over the entire p axis. Our main claim is therefore that
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ψ has a good large N limit and is given by

00 00

ψ(y) = e* ί dpaι(pYyp + e~iy ί *

y)+e~<yV>2(-y) (7.6)

and that the Fermi sea becomes the ground state defined by aι(p) \o) = 0 for p > 0

and ΛJ(—p) |0) for p > 0. This will only be true in correlation functions where the

delta function singularity between ψ and φ* does not play an important role.

Level Spacing. As a test of these ideas we rederive a formula for the level

spacing in the gaussian unitary ensemble from the theory of random matrices.

We are simply reinterpreting the calculation of Jimbo et al. [57]. The point of

this exercise is that in this case we can translate directly from a random matrix

partition function to a tau function in a free fermion system with g/(2) symmetry.

In the model (7.1) we ask for the probability that no eigenvalue falls in the

range [/li,A2].
17 In terms of the orthogonal polynomials φ ; one may show this

quantity to be given by [55, 56]

% - ίdλΨj(\

- ίψHλ)ψ(λ)dλ)\N). (7.7)

In the N —*• oo limit, taking λ, = α, /iV, we obtain

for ξ = 1/π and / = [αi,α2]. It is understood that the normal-ordered exponential
is evaluated by expanding in power series and point-splitting all the integrals so
that the delta functions in the two-point correlation functions don't contribute.
This is a rather mild version of the star operator. Following [57] we show that
A i is simply the τ function for isomonodromic deformation associated with g/(2)
fermions ψι^ as in the previous sections. Thus we define χ\(z) — eιzψι{z) and
X2(z) = eizψ2(—z) so that ψ = χ\ + χ2 and φ1" = χ\ 4- χ\, and consider the
Baker-Akhiezer framing.

(O\χl(x)exV{-πξfξh)χβ(x')\O)

ψ*β(χ, A = 7^—7—Λ t , n x (7.8)
(0| exp ί-πξj χ M |0)

At this point one may easily follow all the steps in Sect. 7 of [57] using the inter-
pretation in terms of a doublet of fermions18. In particular, we can compute the

1 7 This is the same as "the probability of empty place" in [16]
1 8 For readers of [57] one can identify, for example, Rf(x,xf;ξ) with the two point function of χ](x)

with ψ(x% and so on
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monodromy of (7.8) under analytic continuation of x around a\. From the opera-
tor product expansion we compute dΨΨ~ι

y where d is exterior differentiation in
x, (Xi. This gives once more Knizhnik-Zamalodchikov type equations, interpreted
here as isomonodromic deformation equations. From the general arguments of
the previous section we deduce that Λ\ is the tau function for isomonodromic
deformation.

If we consider a more general polynomial potential than (7.1) we must work
with the orthonormal wavefunctions pn(λ) appropriate to that potential in order
to justify the assumption that the important contributions to the correlators of
ψ come from the neighborhood of the Fermi level. For even potentials we can
rewrite the recursion relation for orthogonal polynomials [1-3] in the form:

λp2n+l(λ) = y/rin+ΊPϊn+i + y/Vin+iPln

By evaluating these at λ = 0 we see that quite generally if we expect a continuum
limit for the orthonormal wavefunctions themselves in the neighborhood of λ = 0
we should define

P2n+l (j^j = ( - l ) 7 l M , P2»(j^ = (-1)-/2(X,A), (7.10)

where x = n/N. Assuming rn has an expansion of the form rn = r(x)+ε2rι(x)-\—,
where ε = 1/JV we find that (7.9) implies

C7-11)

Since the dominant contributions of physical quantities come from the neigh-
borhood of the Fermi level (x = 1) we see that quite generally the orthonormal
wavefunctions become sines and cosines leading to a doublet of Fermi fields as
above. In particular, at finite N we have the exact formula:

ψN+l(λl)ψN(λ2) -
(N\ ψ

and (7.4) again holds so the discussion from (7.3) to (7.8) may be repeated. From
these remarks it follows that the level spacing should be universal.

2D Gravity. We would like to apply these remarks to 2D gravity. At finite N one
can write a Fredholm integral equation for the two-point function, such that the
partition function is the Fredholm determinant, giving discrete versions of the BA
framing and the tau function. For small λ the kernels have a smooth N —• oo limit.
Unfortunately, exploring the double scaling limit uncovered in [1-3] requires a
more delicate analysis of the behavior of the orthogonal polynomials for λ near
the boundary of the support of the eigenvalue distribution19. Nevertheless, we

1 9 Our difficulty is that different scaling assumptions lead to different asymptotic expressions. For
example, assuming the continuum limit ^n(Xc + a2^mλ) -> P(z,λ) we see from the recursion relation
that P(z,λ) would become the Baker-Akhiezer function. But there are other possibilities
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expect that the effect of the multicritical action will be equivalent to an insertion
of a fermion bilinear

\

which will become the star operator. This interpretation is supported by the
fact that the Stokes data for the physical solutions to the string equations are
concentrated along the real and imaginary ζ axis, as shown in Appendix A.
(Recall that γ = ζ2.) Whether such an interpretation is really tenable must be
left to future work. It would give a complete explanation of the relation between
the one-matrix model formulation of ID quantum gravity and the theory of free
fermions in the presence of star operators.

According to [5] and [18] ID gravity coupled to (p,q) minimal models should
have sl(p) or sl(q) symmetry. In particular, we expect that an analysis similar to
that above should show that in the matrix chain case sl(ή) fermions can arise.
This would happen if in the recursion relations:

λ{\)fm{λ{\)) = Qm,kfk(λ(l))

the orthogonal polynomials fk have different smooth limits for the different
conjugacy classes of fe mod n.

8. Further Speculations

Since all known matrix models are described by nonlinear equations associated
to isomonodromic deformation, one might wonder if this is not a general feature.
Possibly ID gravity should be formulated as a conformal field theory (on auxiliary
Riemann surfaces!) in the presence of a new class of operators. This raises
many questions. The Riemann surfaces discussed in this paper have no obvious
connection to the world sheet of the ID gravity model. The latter emerges from
the Feynman diagram expansion of a theory of a Hermitian matrix φij. The
surfaces in this paper are coordinatized by the spectral parameter λ, interpreted
in terms of the eigenvalues of φij. Nevertheless, it is difficult to believe that the
surfaces are unrelated. Indeed, it was suggested by A. Morozov and S. Shatashvili
that 2D gravity should be thought of in terms of a nonconformal field theory
at genus zero, the effects of the sum over topologies effectively spoiling the
conformal invariance [58]. We have arrived at a picture strikingly similar to their
guess. Possibly the auxiliary surface is, in some sense, a picture of an effective
world-sheet, with the star operator reproducing the effect of a "condensation of
handles." (This would raise the spectre of whether we should consider the role of
nontrivial topologies of the auxiliary Riemann surface itself.) Continuing this line
of thought, it is conceivable that extending the above picture to conformal field
theories other than those of free fermions might correspond to exotic types of
gravity, or perhaps to c > 1 theories. For example we can consider star operators
in WZW theories. As we saw, the isomonodromic deformation equations can
be interpreted as KZ equations, but these equations were at level 1. It would
be interesting to write down and study the higher level equations. The free field
realizations of WZW might facilitate the construction of star-like operators in
these models.
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It would also be very interesting to understand if there is a connection between
the above ideas and the topological field theory approach of [7-10]. In the latter
approach the topological origin of KdV flows has proven elusive. In the present
approach they are interpreted as flows defined by Knizhnik-Zamalodchikov-type
equations on a certain moduli space. Perhaps some kind of asymptotic expansion
of a star operator in negative powers of x will provide the missing link between
these formalisms.

Be all this as it may, our work has implications beyond the framework
of ID gravity. We have been led to a generalization of modular geometry.
Firstly, one should include the notion of star operators in general conformal
field theories. Thus, the basic monodromy data of such a theory will include not
only matrices representing the braid group and operator product expansions ("B
and F matrices") but also Stokes matrices occurring in more exotic exchange
algebras than have been hitherto examined. We might therefore expect that these
monodromy data will define some generalization of a modular tensor category
[59]. Secondly, as we have described, the introduction of star operators leads
to a notion of quantum Riemann surface and quantum moduli space. Just as
there are analytical and topological aspects to modular geometry (the latter
corresponding to the modular functor point of view), one might expect that the
analytic aspects associated to this generalized MTC would be related to some
geometry of quantum moduli space. The geometric category representing this
extended notion of a MTC might well be useful in understanding the analog of
modular geometry for integrable but nonconformal models. From what we have
managed to glean of the geometrical meaning of this extension we may expect
to find a rich but peculiar combination of algebraic and analytic geometry.

Appendix A. An Application: The BMP Solutions

Recently Brezin, Marinari, and Parisi have proposed that in isolating critical
behavior of matrix models one should not take the continuum limit after analytic
continuation in couplings, but only with integrals which are initially well-defined
[60]. This led them to construct numerically a solution of JR3[W(X)] = x which,
they argued, is uniquely determined by reality and the asymptotics u ~ Θ(x1/3) as
x —• +oo. From the numerical integration it appears that the solution is pole-free.
It is natural to suppose that such unique solutions for all odd m. This proposal
for fixing the "nonperturbative parameters" of the string equation has been given
further support in [33, 61]. In this section we will see how the isomonodromic
deformation method can give some insights into the results of [60, 61].

We will show that the above asymptotics uniquely determines the Stokes
parameters in the monodromy problem associated to R3 = x. This unique solution
is real for all x. A technicality prevents an easy discussion of the equations for
all odd m, but we can present a natural conjecture for the behavior of the Stokes
matrices in all cases. For all odd m we expect the solution to the unique. Using
the property that KdV flow in Tj is isomonodromic we can also confirm the
numerical results of [61] that it is impossible to flow from the m = 3 model to
the m = 2 model. We also will indicate a line of argument which can probably
show that these unique solutions have no poles on the real axis.

We investigate the direct monodromy problem following closely the treatment
in [30, 62]. Consider the equation ΨiΨ = 0 as x —> ±00. We must distinguish
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several cases. Since Rι = κ\vί + with

K / = ( } 2'+*/!

we see that perturbation theory predicts that the solution to 2 0 Rι+\ = — \x is
given by

u ~ (-l/2κ/+!) 1 / ( / + 1 ) x 1 / ( m ) / even, x -> ±oo,

/odd, x - > - o o . ( A > 1 )

In fact, perturbation theory tells us to take the + root for u in the case of odd
Z, but we may easily examine both cases at once. Rescaling variables and only
keeping leading order terms we may rewrite the equation P/ Ψ = 0 as

( ) ]
(A.2)

I

where pγ{ξ) = ]£ (±l)pκpξ
2l~2p. For / odd we obtain this equation with x —• —oo,

where:
ζ = {-x/2κι+ιγ'^ξ, τ = (-x/2κ / + 1) ( 2 ί + 3 ) / ( 2 ί + 2 )

For / even we obtain this equation with ±x -> -f-oo, where

ζ = {±x/{-x/2κιu)γl^ξ, τ = (±x/(-2κ ; + 1 )) ( 2 / + 3 ) / ( 2 ί + 2 )

The evaluation of the Stokes matrices is carried out by doing a WKB analysis
in the τ —> oo limit as in [29], Thus one obtains true solutions to (A.2) which are
asymptotic as τ —• oo to the WKB ansatz:

where T diagonalizes (A.2) to A = μσ^. There are several WKB solutions in
different regions defined by the turning points and conjugate Stokes lines. The
turning points are simply the roots & of μ, and the conjugate Stokes lines are the
lines defined by the vanishing real part:

κjμ(ζf)dξ'=0. (A3)

For WKB solutions defined in "large" regions abutting an open neighborhood of
infinity we can define a connection matrix, J ^ W K B = WkCkj to the corresponding
fundamental solution with standard asymptotics in the region Ωk at infinity. Then
by matching the WKB solutions to a well-defined single valued solution Wi near
a turning point ξu i.e., W™KB = WiNιti we can determine the Stokes matrices in
terms of the matrices C, N. For further details see the book [29].

Our main observation regarding the WKB analysis of (A.2) is the following.
Suppose that at a turning point which is a root of pi the conjugate Stokes lines
form three large regions each abutting an open region infinity as in Fig. 6. We

2 0 We set h = 1 in this section
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Fig. 6. Three large regions abutting infinity and a turning point

claim that the Stokes matrix for the transition function associated with the middle
region Ω2 is trivial.

Proof. The matrix A = (xσ^ +
where μ2 = oc2 + β2 + y2 and

T =

+ yσ\ may be diagonalized via T~XAT =

y —

1
(A.4)

is determined up to right-multiplication by a constant matrix. We choose the
form in (A.4) so that T -* 1 as ξ -+ oo. (Moreover, DiagfT-^T/df} = 0(<Γ5).)
The computation of the connection matrices C thus proceeds as in [29]:

C = lim exp (A.5)

Again following [29] we break the integral in the exponential into two pieces
/ = 11+I2 by integrating first to ξk and then to infinity, where \ξk—ζk\ = ^(τ~5+ ε).
In 12 we may drop the terms from y since these contribute Θ{τ~2) to the integrand.

C 2 / + 3

The resulting integral is then given by ^ — - + xζ + Θ(l/ζ). The contribute from

the lower limit of integration in h will cancel a term from I\. We estimate /i as

Ik

τ J μ(ξ') dξf = τ(ξk - ξk)
2ξppf (ξk)yjξ2 ± 1 + (P(log τ/τ),

where p is the derivative at the zero. Thus C = 1 for matching in each sector.
Near a root of p\ we expand in powers of ξ — ξk. Defining η^ = 1/2

the equation takes the form

dW

dηk

= [(Aσ3 + Bσ2)ηk
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Fig. 7. Stokes lines for the case / = 1, u ~ +(—x)1 / / 2 for x —> — oo. We have also indicated the Stokes

parameter associated with each region

This may be diagonalized by some matrix V so that near the turning point we
have a solution W \ of the equation which is asymptotic to

and y/A2 4- B2 = 2ξppf (ξk) J ξ\ ± 1. One may check that the limit as ξ -> ξk of
T in the WKB ansatz exists and approaches V. Thus the N matrices are also
trivial, so that the Stokes matrix for the central region is trivial. When the regions
defined by the conjugate Stokes rays emanating from a point are not of the form
in Fig. 6 we cannot use the WKB ansatz to get a good approximation to one of
the fundamental solutions in a sectorial domain of infinity.

We may apply this lemma to obtain the necessary conditions on the Stokes
matrices associated to solutions of the string equations consistent with pertur-
bation theory. In some cases these necessary conditions determine the Stokes
parameters uniquely.

Our first task is therefore to describe the Stokes lines. In the ρ —> oo limit
there are 4 lines emerging from the origin at right angles, and at each of the
points ±ξi there are four lines emerging at right angles since the zeroes of pi are
simple. Finally at ± 1 , or ±i there are three lines emerging at angles 2π/3. Stokes
lines can only interset at turning points.
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Fig. 8. Stokes lines for / = 1, u (-x)1/1 for x -• -oo

The conjugate Stokes lines for the two cases with / = 1 are shown in Fig. 7
and Fig. 821. Applying the lemma and taking into account the constraints Sk =
-sk = s2/+3_/c and (3.13) we see that for / = 1, u h(-x) 1 / 2 , s5 = 0. This
forces 52 = S3 = —i and s\ + S4 = s\ — s\ = ί but leaves the real part of
s\ undetermined. As expected, there is a one-parameter family of solutions
consistent with perturbation theory. It is interesting to note that if we consider
the (unphysical) case u ~ —(—x)1//2 than by the lemma S2 = S3 = 0 forcing a
unique solution s\ = S4 = S5 = i, consistent with the results of [30]. Moving on
the case / = 2 we have Fig. 9 and Fig. 10. From the limit x —• +00 we obtain
that s\ — sβ = 0. From the limit x —• —00 we obtain 52 = S5 = 0, and from
the monodromy constraints we get so = S3 = S4 = —i, implying that there is a
unique solution satisfying these constraints, as claimed. (We are assuming that
the inverse monodromy problem can be solved. Strictly speaking we have only
shown that if a solution exists it is completely unique. The solvability of the
inverse monodromy problem could probably be demonstrated regirously using
the methods in [34]. Alternatively we could use the free fermion formalism of
Sect. 6 to construct a solution.)

If we move on to higher / we meet a technical problem which is that the
configuration of Stokes lines becomes too complicated to use our lemma imme-
diately to set half the Stokes parameters to zero. For example, the situation for
/ = 4, the next case of interest in depicted in Fig. 11 and Fig. 12. Although we
may guess that, e.g., S3 = 0 we cannot conclude this without further (difficult)
computation. Nevertheless it is natural to suppose that for general / we have
the following configuration of Stokes parameters: For / odd, u ~ + ( — x 1 / ( / 1 )

2 1 Although these and the following figures can be deduced by pure thought it is much faster to plot
them using Mathematica
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Fig. 9. Stokes lines for / = 2, u ~ x 1 / 3, x -• + oo

Fig. 10. Stokes lines for / = 2, u ~ x1/3, x -+ -oo

we have s 0 = s2 = s3 = - = s/_3 = s/_i = 0, s/+i = s/+2 = —i, si, s3, ...s/
undetermined, but subject to the constraints a — α = —i, where α = s\ -\ s/. On
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Fig. 11. Stokes lines for / = 4, u ~ x1/5, x -• +oo

Fig. 12. Stokes lines for / = 4, u '

the other hand, for / even, comparing the constraints at either end of the axis will
fix two disjoint sets of Stokes parameters. We expect that s\ = 52 = = 5/ = 0
while sj+i = sι+2 = S2/+3 = — i so that the solution is unique.

Finally we remark that we have not used the reality constraints in a very
essential way. An interesting solution of the Painleve equation is the triply
truncated solution, characterized by u ~ -f-(—xγ^2 for x —> —GO and u ~ ±ix1^2

for x —• GO. Using the above technique one easily shows that in this case the
constraints S2 = S3 = —ΐ, 50 = 55 = 0, s\ + 54 = 0 are supplemented by S{ = 0 or
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S4 = 0, depending on the sign of the imaginary part. In either case we confirm
that the solution is unique.

We can use the above configurations of Stokes data and the fact that KdV
flow is isomonodromic to argue that it is impossible for a solution with / even to
flow to a solution with / odd and u ~ +(—x) 1 / ( / + 1 ) . For simplicity let us consider
the string equation

\{mλ + \)Rmι + \{m2 + \)TRmi = x (A.6)

with m\ > ni2. As discussed in [6, 63] if one scales a solution u(x; T) to (A.6) using
Ό(y; T) = 7-2/(21^+1)^(7-1(2^+1)^. T ) ? t h e n Λ e l a r g e j U m i t υ ( y ) = H m φ . T )

T-*oo

must be a solution of the lower order string equation \{m,2 + \)Rm2[v] ~ x,
provided the limit exists. However, the existence of this limit is a very delicate
issue. Indeed, in [61] convincing evidence is presented that the flow from m = 3
to m = 2 does not exist. If the limit does exist then we can scale ζ —• τ~ι^2m2+1^ζ
in (3.4) to obtain a connection with a smooth T —> 00 limit. Since solutions can
in principle be obtained from the path-ordered exponential of the connection,
solutions to (3.4) will also have smooth T —> 00 limits. Moreover, from the
asymptotics in ζ we see that the coefficients have smooth T —> 00 limits and in
fact approach the asymptotics of the lower order equation. Thus, fundamental
solutions smoothly approach fundamental solutions for the lower order equation,

although they will be defined on small regions of angular width -, and
4mi + 2

hence only define part of a fundamental solution for the lower order equation
which is defined on the larger regions of angular width . Because of this

4m2 + 2
we find two rules governing flows:

1. A large region associated with a trivial Stokes matrix for the "m2 equation"
cannot contain a small region with a nontrivial Stokes matrix for the "mi
equation."
2. A large region associated with a nontrivial Stokes matrix for the "mi equation"
must contain at least one small region with a nontrivial Stokes matrix for the
"mi equation."

Note that for even and odd / the nontrivial Stokes data disagrees on the real
axis. Hence, by rule 1 it is impossible to use KdV flow to go from an even / to
an odd / model, confirming the result of [61]. Note that flow from an even / to a
smaller even / is consistent with rules 1 and 2.

The present formalism might also be of use in setting the issue of whether the
unique solutions for / even with perturbative asymptotics can have poles on the
real axis. Because of the very sparse Stokes data we can formulate the solution
to (3.4) in terms of a Riemann-Hilbert problem, which further simplifies in terms
of Ψ(λ) defined in (3.3). Since an analogous RH problem for the PΠ equation
can be used to establish the existence of pole-free solutions we suspect that the
same methods can be brought to bear here. We hope to return to this issue in
the future.

Unitary Matrix Models. An analog of the BMP solutions exists for the PII
hierarchy [21, 64]. We may again apply our lemma for the first two cases in
the series. In this case we require power law growth at one end of the axis and
exponential decay at the other end. In the first two cases in the PII hierarchy
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these two constraints lead to a configuration of Stokes lines from which we may
conclude necessary conditions that, together with the monodromy constraints only
determine the Stokes parameters up to a single real parameter. The nontrivial
Stokes matrices are again concentrated on the y-axis, allowing us to formulate
a Riemann-Hilbert problem as in [29], Chap. 4. Again, we can only conjecture
that this situation continues for all the other members in the hierarchy. The
one nontrivial parameters enters the integral equations equivalent to the RH
problem. In fact the integral equations can be examined directly, and in [21] it is
shown that a physically acceptable solution indeed exists for a unique value of
this parameter.

Appendix B. Twistor Correspondence

Mason and Sparling [65] have shown that solutions to the KdV equations are
in one-one correspondence with holomorphic vector bundles over minitwistor
space (= TP1) which posess an extra symmetry. Since solutions to the string
equations define, in particular, solutions to the KdV equations we may apply the
observation of [65] to associate corresponding holomorphic vector bundles over
TP 1 .

Consider the equations :

which are compatible when u(x, T\) satisfies the KdV equation. By taking a linear
combination of these conditions and changing the framing by

where H' — u we obtain the linear system which can be regarded as the twice
dimensionally-reduced system equivalent to the SDYM's equations in a space of
signature (2,2) [65]. This is similar to the relation to inverse scattering theory
pointed out in [66]. Using standard twistor methods these can be regarded as
defining a holomorphic structure on a two-dimensional complex vector bundle
over TP 1 . (In brief, pulling back the connection to P3((C)-P((C) via the standard
twistor fibration, the self-duality condition becomes an integrability condition for
a holomorphic 2-plane bundle, and dividing out by the lift of the symmetry
1R4 -> IR4/1R = 1R3 brings us down to minitwistor space TP 1 . See [67] for
details.) In this paper a crusial role was played by the "equation in A," ΨΨ = 0.
Such equations arise naturally in the twistor construction-essentially they embody
the statement that the bundle on twistor space is the pullback of a bundle on
spacetime.
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