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Abstract. In this paper, we first construct multi-lump (nonlinear) bound states
of the nonlinear Schrδdinger equation

r -ot 2

for sufficiently small h > 0, in which sense we call them "semiclassical bound
states." We assume that 1 ̂  /? < oo for n = 1, 2 and 1 ̂  p < 1 + 4/(n — 2) for
n ̂  3, and that V is in the class (V)a in the sense of Kato for some a. For any
finite collection {x l9 . . . , XN} of nondegenerate critical points of V, we construct
a solution of the form e~iEt/hv(x) for E < α, where v is real and it is a small
perturbation of a sum of one-lump solutions concentrated near xl9...,xN

respectively. The concentration gets stronger as ft->0. And we also prove these
solutions are positive, and unstable with respect to perturbations of initial
conditions for possibly smaller h > 0. Indeed, for each such collection of critical
points we construct 2N~ 1 distinct unstable bound states which may have nodes
in general, and the above positive bound state is just one of them.

1. Introduction

In [W.a] and [FW.a], the following nonlinear Schrδdinger equation (abbreviated
as NLS) on R",

^ (1)
o 2

was proposed to study stabilizing linear modes concentrated near local minima
for sufficiently small ft > 0 for potentials bounded below. In [FW.a], Floer and
Weinstein (Alan) proved the existence of solutions of (1) for sufficiently small h > 0
for bounded potentials, which are localized near each given nondegenerate critical
point of V for all time; in fact, solutions of the form e~ίEt/hv(x). In [Ol], the present
author generalized their existence result to arbitrary potentials in the class (V)a.
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(As we pointed out in [Ol], this restriction on V is needed even for bounded
potentials.) These solutions have only one "lump" in the sense that they are
concentrated at one point, for whose precise meaning we refer to [Ol] or
Theorem 4.1 in the present paper. However, as already pointed out in [FW.a] and
[Ol], this concentration gets stronger as ft-»0 and so, when h is sufficiently small,
we may try to construct ΛΓ-lump solutions by adding N such one-lump solutions
which are concentrated at distinct N nondegenerate critical points of V. In the
present paper, we construct such ΛMump solutions which are small perturbations
of the sums of N one-lump solutions. We refer readers to later sections for its
precise meaning. The method of the proof is again the Lyapunov-Schmidt
reduction as in [FW.a, Ol]. In other words, we first find nice approximate solutions
whose errors can be controlled with respect to h and then try to perturb them to
get exact solutions. The approximate trial solutions will be sums of N one-lump
solutions and their slight translates. Then we estimate the norm of the Fredholm
inverse of the linearized operator at trial solutions to reduce the problem to a
finite dimensional one. Finally, we solve this finite dimensional problem by some
simple topological means.

Although the basic line of proof is the same as in the one-lump case in
[FW.a,Ol], most of the estimates are more involved, depend on some judicious
cut-off functions, and furthermore we need a new idea to estimate the norm of the
Fredholm inverse, which was not needed for the one-lump case. In fact, estimating
the Fredholm inverse is the most essential and difficult step in these kinds of
problems (see [JaT, T] for a problem of this kind).

If we substitute e~ίEt/hv(x) into (1) where v is real, we get the following nonlinear
eigenvalue problem.

-^Δv + (V-E)Ό-\Ό\p-lΌ = Q. (2)

If we divide the equation by h2 and set λ = I/ft2, we get NLS without ft,

- ±Δv + (λV- λE)v - λ\v\p~lυ = 0, (2')

and then our semiclassical result can be interpreted as a "quantum" result when
the wells are deep enough, E is negative enough and γ = λ is big enough.

If we change variables by x = hy and set u(y) = v(hy\ Vh(y) = V(hy\ we get NLS

-^Δv^(Vh-E)u-\uΓίu = ̂  (2")

and then we get a quantum existence result when the distance between wells is
large enough and the wells are wide enough. In this paper, we solve (2") for ft
sufficiently small as in [FW.a,Ol].

In [RW.m], Rose and Weinstein (Michael) got an existence result of different
sorts of one-lump bound states which bifurcate from the bound states of linear
Schrodinger equations, while the bound states obtained in [FW.a,Ol] are
perturbations of the well-known ground state solution of NLS,

u-\u\p-lu = Q, (3)

where λ = V(x0) - £,x0 is Λe critical point being considered. Our lump solutions
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will be perturbations of sums of N ground states of the latter kind whose centers
locate near xί9...,xN, respectively.

After we establish the existence result, we consider the stability and positivity
of the solutions. We prove if ft > 0 is sufficiently small, the N-lump solutions found
above which are, in some sense, sums of positive one-lump bound states, are all
positive, and unstable for ΛΓ ̂  2. Recall that the stability of one-lump solutions
depend on whether the critical point x0 is a local maximum or a minimum (See
[GrSS,O3]). The method of the proof is that we first show that the real and
imaginary parts L^ of the linearized operator of (1) at the solutions satisfy certain
spectral results, and then apply the instability criterion by Jones and Grillakis (see
[Gr, Jo]). As a by-product, we show that the solutions are positive. The same line
of ideas was used in [O3].

We also apply the same method of constructing the above positive solutions
to construct the bound states which are now, in some sense, signed sums of N
positive one-lump bound states and so have nodes in general.

We now briefly outline the organization of the contents of this paper. In
Sect. 2, we give the definition of the class (V)a and some of its consequences which
are needed for later estimates, and set up the problem. Sections 3,4 and 5 deal
with the problem of the one-dimensional and two-lump case for bounded potentials.
Sections 3 and 4 study the existence problem using the Lyapunov-Schmidt
reduction as in [FW.a,Ol]. Section 3 contains main estimates for reducing the
problem to a finite dimensional one and Sect. 4 finishes the proof of the existence
for the two-lump problem solving the finite dimensional problem by an elementary
degree theory. Section 5 deals with the positivity and stability of the solutions
found in Sects. 3 and 4. Section 6 shows how we can refine the results for the
one-dimensional two-lump case to generalize them to the JV-lump problem for
general dimensions under unbounded potentials in the class (V)a. Since these
generalizations are only a matter of complicating the estimates, we just indicate
how we modify the proof of the one-dimensional two-lump problem for the general
cases. Finally in Sect. 7, we indicate that the same proof goes through to construct
2N~ * distinct bound states which have nodes in general, and then give some remark.

2. Preliminaries

In this section we recall the definition of the class (V)a in [K, Ol], and its
consequences.

Definition 2.1. We say that a potential V defined on IR" is in the class (V)a for
αeR, if either V = a identically or V(x)>a and (F-α)~1/2eLip(lR'1).

Remark 2.2. As already mentioned in [K,O1], most potentials that increase

(eventually) monotonically as |x |->oo belong to the class (V):= (J (V)a, but the
αeR

following bounded potentials which have accelerated oscillations as |x|-»oo are
not in the class (V):

V(x) = sin\x\2 or sine1*'2,

although sin I x I is in the class.
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Proposition 2.3 (see [K] or Proposition 2.3 [O1,O2]). Let Ke(K)fl with b:=
\\(V-aΓll2\\Upand H= -±Δ+V.Ifb<l, then
i) H is self -adjoint with domain D(H) = D(Δ)nD(V).
ii) For each ueD(H)

\\(H-E)u\\2^(l-b)\\(V-E)u\\2

for any £eR with V — E > 0, where such E exists by the definition of the class (V)a.

Now let us define the operators

HΛ :=-i4+KΛ,

where Vh(y):= V(hy). Then it is easy to see that Vhe(V)a for all ft if K is in (V)a and

Corollary 2.4 (see Lemma 3.2 [Ol] and also see [O2]). Let Ve(V)a with
b:= | |(K-αΓ1 / 2 | |L i pαmί E<a. Then if 0<ft, <d< l/bfor some d, we have

\\(H,-E)u\\2^λ\\u\\h

for all ueD(Hh) and for some λ>0 independent of ft, where \\ \\h is defined by

\\u\\2 = \\Au\2 + \(Vh-E)2\u\2.

Note that when V is bounded, all || ||Λ are equivalent to the H2 norm and so
we will use H2 norm for bounded potentials. We refer to [O1,O2] for the proofs
of Proposition 2.3 and Corollary 2.4. From now on until Sect. 5, for simplicity of
proof, we will consider only the two-lump case where n = 1, V bounded and p = 3.
In Sect. 6, we indicate how to remove these restrictions.

We also need the nondegeneracy on the linearized operator of (3) at the ground
states.

Nondegeneracy. Let R0 be the unique ground states of (3) and consider the
linearized operator at jR0

Then LO has the kernel

l r ίdR0ker LO = span < ——-

Proof. This is previously known to be true for n = 1 and for n = 3 and 1 < p 5Ξ 2
(see [W.m, Appendix A]). The complete proof for the general case is also contained
in [W.m, Appendix A] modulo the fact that any solution of the following equation:

d2 n-l d
'dr2 7~Tr +

w'(0) = 0

w(0) = 1

is unbounded. However this is now established by Kwong [Kw] in the course of
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his complete proof of the uniqueness theorem of the ground state of the equation

- Δu + u - up = 0

(see Sects. 4 and 5 in [Kw]). Π

From now on we shall seek solutions of the form

of the equation

dt 2 dx2

where v is real- valued and V — E>ε>0. Then the function v must satisfy the
nonlinear eigenvalue equation

h2

— —-v"+Vv — γv3 = Ev

which we will study as h -> 0. Without loss of any generality, we may assume γ — 1
so that the above equation is reduced to

As in [FW.a,Ol], we introduce a new variable y = x/h and define the function u
by u(y) = v(hy). Then u satisfies Eq. (3):

where Vh(y):= V(hy).
Suppose that {*ι,x2} *s two non-degenerate critical points of V and without

loss of any generality assume that x^ = — R, x2 = R Denote a=V( — R) — E,
b = V(R) — E. By the choice of E above, we have

α, b > ε > 0.

The rescaled potentials Vh have the corresponding nondegenerate critical points
at ± R/h with the same values respectively as V. Define

which are unique solutions (up to translation) of the equations

-X + αu-w 3 = 0, (4)

-X + ί>w-w3 = 0 (5)

respectively. Due to the translational invariance of these equations
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will be also solutions of (4) and (5) respectively. We define trial solutions by
and

where 7 = (z1,z2) and |z f | <^. Following [FW.a, Ol], we define

Then 5ft is a smooth map from H2 to L2 and its Frechet derivative is given by

We want to find a zero of Sft, i.e. a solution of (3) of the form uΎh -f φ for sufficiently
small h > 0 and small φ. We have

where NΊh(φ) = 3uΎhφ
2 + φ3.

In the following sections, all constants /c/s, Xt's and Q's will be independent
of h. Also for a later purpose, we choose the following partitions of unity {ah,βh}
for each h > 0 such that ah(y) = α(%), where

1 for y < — —

n

0 for y > —

and βh = 1 - α ft.

3. Reduction to Finite Dimension

3.1. Error estimates: Sh(uΎh).

Proposition 3.1. There exists positive constant kλ such that for every p>Q,we have

lis l̂lî c^^

where μ = min {^/2a,^/2b}, and we use the notation W(r}(z) to denote the minimum
of the function W on the closed interval Br(z) (See [FW.a, Lemma 3.5]). In particular,
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(I) (ID

(HI)

We estimate (I), (II) and (III) separately. We have

(l) = Sh(u^(R+Σί)/h) = \:Vh(y)-V(-R^u^(R+2ιm

using the fact that ult-(R + zl)/h satisfies (4). Similarly, we have

(II) = Sfi(M2,R + 22)/Λ) = lVH(y) - F(K)]u2,(R + Z2)/Λ.

Then, these two terms can be estimated to prove

)2Λ)(-Λ-z1)], (8)

)(R + z2)-] (9)

for any p > 0 in exactly the same way as in the proof of Lemma 3.5 [FW.a]. To
estimate (III), first note that

Therefore,

= \ 3(2α
R

Z2)/tί / R + 7 R -4-

,

Now setting μ = min {^/2a, ^/ϊb} and fcj = max {Kl9K2, K3}9 we have finished the
proof of (7). The last statement comes from setting p = h~1/2. Π
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3.2. Estimates of the Fredholm Inverse: S'h(uΊh).

Definition 3.2.

^7,Λ = SPan {Wl,-(Λ + zι)/ f t> W 2,(Λ + z 2)/ft}

• JFCiΛ = L2-orthogonal complement of KΎth in H2.
' πτ,Λ'πτ,Λ : trιe restrictions to H2 of the L2-orthogonal projections to K~h and

Kjh respectively.
• Lr,h:π^(SLh(Urιh)).

The operator L?ft maps H2 to χiΛ. Now we have the following analogue of
Proposition 2.3 in [FW.a].

Proposition 3.3. There exist positive real numbers k2,h0 and α0(<^) so that for
|z0| < α0, 0 < h < h0 and

Proof. We use the same indirect argument as in [FW.a]. Suppose the contrary.
Then there exists ~zi = (zlΛ,z2^} and ht with |21 > ί |, |z2 ι ί | and ftt-^ 0 such that there
are some φ, eXi Λ. with

L > ^ 0 and ||ώ||f l2 = l,

2 "d^

(I) (Π)

(HI)

Let us first estimate (III). By the choice of αftί, βhi, it is easy to see that

^ K4 e'2^a'R/Ά (using that |Z l | <i). (10)

Similarly,

Next,

--̂ ^
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Therefore,

H6,, .,. II < X -2mm{^/2a,^2b} R/2h
l l°M l,-(R + zι)/ft M2,(R + z 2 ) / f t l l α o = Λ6 e '

Combining (10), (11) and (12), we have

|| (III) || 2 ̂  II 3Kf - l)u? f. ( Λ + r i i l ) / Λ l + 3(&, - l)ui(R + Z2ti)/hi

~ "Ml,-(Λ + z ι , ί ) / f t f ' M 2 , ( K + Z2,, )/ft i I ' oo \ \ Φ i \ \ 2

^KΊ e-μR'\ (13)

where we recall that μ = min {^/2a9 τjΐb}
To estimate πiΛ((I) 4- (II)), we introduce more definitions.

Definition 3.4.

• X^.fft = L2-orthogonal complement of KZith in H2, i = 1, 2
• π ί tΛ,π^Λ: the projections to each of the above spaces respectively, z = 1,2

Also from now on, we will use the notation 0(#(/z)) to mean that

\0(g(h))\^C g(h\

where C is a constant independent of h. Now, note that

*"1), (14)

where μ = min {^/2a, v^)*

Lemma 3.5 T/iere ^xwί positive constants fc3,fc4,/c3 αnrf /c4 such that for any φεH2

mth\\φ\\H2 = l,

(15)

\\^.*S'*(u2t(R+X2}^^^ (16)

so

l|πi f t^(Wl,_(K+Zl)>Λφ-Lzl> f tφ)||2^/c3e-^2ft, (17)

|| π^S;(W2,(R+Z2)/ft)j?ftφ - Lg2Λ(β*φ) || 2 ̂  V~^/2ft. (18)

Proo/. The inequalities (15) and (16) can be easily proved using the fact that αft

(respectively βh) has support (— oo, — R/2ri] (respectively [R/2h, oo)), that w2,(

(respectively ul^(R+Zί/)h) has the maximum ~£Γ(^/2*)/R (respectively
there and that ||0||H2 = 1. The inequalities (17) and (18) come from (14), (15) and
(16). Π

Now, let us continue the proof of Proposition 3.3. By the definition of L^h and
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the assumption in the beginning of the proof, we have

II 4fc A-K Λ M I I 2 = II LW<W I I 2 -» o.
However,

by (13), (17), (18) and the fact that πiΛ.(I) and τriftί(II) are uniformly L2-bounded
since || φt \\H2 = 1. Therefore,

IIL^^α^φί + L^^Φίlli-* as i^oo. (19)

Note that

where

= \^ v^i . - (Λ + z i ,. )/fi. )αfi. ̂  »> M i . - (it + z i .«•)/*,• /
M l , - ( J H - z ι , i ) / f t i l l 2

and similarly for A 2 t ί. Therefore,

Since || 0f ||H2 = 1, and so |/lu|, U2,il are uniformly bounded over /, we can estimate
the second and third terms above in the same way as before to prove that they
are of order 0(e~μR/2hi), using the fact that αΛι. (respectively βh.) has support
(—00, — K/2ftJ (respectively \_R/2hh oo)). In particular, they converge to zero as
/->oo. Now, let us deal with the first term, which is easier to deal with than
<L21ι iΛαΛiφ i, LZ 2 t < Λj8Λ iφi> because it involves only "local" operators, while LZ1><Λ,
LZ2 .^. are "nonlocal" operators as they involve projection operators. Now,

,

= ί S /(u l f_ ( Λ + Z l t ί ) / Λ ί)αΛ ίφ i S/(M2i(Λ+Z2ti)/f t i)j8Λfφ ίέί3; (20)
-(Λ/2ft i )

from the locality of the operators S'(ιιlι_(Λ+ZM)/Λi) and S'(u2ί(R+Z2 pl)/Λl). Here,

αΛ.^i) + (FΛ4 - £)KΦ;) ~ 3tιf f _ (
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—-£• + (v* - E)Φi - 3«2lay2 v *' )ψl) Ί

where [•/] is the commutator. Note that

II ιι2 N II

ι .
\\U2,(R + Z2,i)/tiiPhl II oo,-(R/2hl)<y<(R/2hl) = Λ5

where | |/ | | 0 0 fα< y<fc:=sup β < y <J/Cv)| . On the other hand, we have

In fact,

(21)

(22)

(23)

and so

dy ΊΊI2

as || φi \\H2 = 1, and α' and α" have compact support by the definition of α. Combining
the above discussions, we have

K/ZΛ

*«>= ί
-<R/2

R/2fti

R/2fti)

Hence, we have proved the following

Lemma 3.6.

/n particular, the right-hand side is a sum of positive terms modulo O(ft, ) and so each

term goes to zero separately as i-> oo since the left-hand side-^Q from (19).
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This will give a contradiction to our hypothesis in the beginning of the proof.
Since \\φi\\H2 = 1, we may assume (by passing to a subsequence) that one of the
following holds:
Case I). | |Φi l lH 2 , (-oo,-R/2ft i ] = ει >0 f°Γ all sufficiently large i for some εί >0.
Case II). \\ φt | | ί/2,[R/2ft I,oo) ^ ε > 0 for all sufficiently large i for some ε2 > 0-
Case III). \\Φi\\Hι.(-Ri2Λi.R/2W+l as ί-*00-

First, let us suppose the Case I) holds. Define

where πj is the L2-projection onto {u'ί}-L

9

i

and ^(y):= φt(y - (R + zjh,). Then

L l f ί^->0 (24)

because LZ1 itflioίhιφi ->0 from Lemma 3.6 and LlΛ\l/i is nothing but the translation
by R/hi of Lz^&kφi. Since ||^||H2 = | |φil |H2 = 1, we may assume (by passing to
a subsequence) that i/^ converges weakly to some φ^ in H2. It is easy to see that

<</ΌoX>=0 (25)

as (ψi,u\y — 0 from (φi9u'ί9 —(R H- z l t i / h t y — 0 by the hypothesis. Defining

α-3u?, a = V(-R)-E,

we show in the same way as in p. 401 [FW.a] that

^ι>oo = 0. (26)

In fact, for any given bounded interval Ω c R,

\\^ιoΦi\\2Ω=\\^ι^ιoΦi\\2Ω from <^ί,uΊ> = 0

( R\
• — — 1 = 1 on Ω

"i/

yeΩ

Since lim max | V^y) — V( — R)\ — 0 on any bounded interval Ω and from (24), we
ί->oo yeΩ

have

lim 11^.0^112.0 = 0 (27)
ί->00

on any bounded interval. The weak convergence of \l/{ to ψ^ in /f2 implies the
weak convergence of L^^φt to L^^il/^ in L2, and hence the weak convergence of
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the restrictions to Ω. From (27), the restriction of Ll ̂  ̂  to each bounded Ω is
0 and thus Llί0φao = 0. From the nondegeneracy of L1>0, (25) and (26),

Since I/Ί -H/ΌO weakly on /f2, ^-n/^ on the bounded interval in the L2 sense.
Since u\ has the exponential decay, we have

3tι?^->0 (28)

in the L2 sense. Combining (24) and (28), we have

where

(29)

lay2

Since we assume that Case I) holds,

On the other hand, we have

by Corollary 2.4 and so

for all i by (30). From (29) and (31), we have

ϊ-+oo .

2

Since t/Ί is annihilated by LIΛ,

/ίΓ«Ί = [^-^(-Λ)

and so by the self-adjointness of ί/Γ , we have

(30)

(31)

(32)

(33)

sThen first term goes to 0 since [t^— K( — ΛJJMΊ-^O in L2 and αftι( —
L2-bounded. The second term goes to 0 since ^->0 weakly, H^-l^ ̂
and αft.( , — (K/ftf))Mf w^ -»0 in L2. This contradicts to (32). So we have taken care
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of Case I). Case II) can be taken care of in the same way. Therefore, we suppose
Case III) holds now. Then

I™ || Φi\\H\(-π,-RI2hi} = lίm II Φi\\H*,[R/2fli,oo) = 0,
ί -* oo i -»• oo

(34)

= ll^((uTι.Λ.)^|ii-
»,lli

(35)

from (14). (Note that if w l j _ ( Λ + Zl ί)/ft. and w2,(
would be exact.) However,

2 i)/»i
were orthogonal, the equality

R/2Λ,

= ί Φi'shl(^i,hί)
ufι,-(R+zl,im

--K/2Λ,

( ί + ί Wi'ShtfajWi.-
\(-oo,-R/2f t i ] [R/2fi i,oo)/

(36)

Since S'hi(u^ih )u1 ,- ( Λ+Z l >ί)/Λi is uniformly L2-bounded, the second term goes to 0 by

(34). Moreover, \\S'hi(u^h)u^(R+Zί^ and so the
first term in (36) also goes to zero. Therefore the second term in (35) goes to zero.

In the same way, we prove that the third term also goes to zero in (35). Since
we assume L-Λ. 0/-»0 in L2 by the hypothesis, we have

HSi.(«τ)^l l2-»0. (37)

And it is easy to see by the same way as before that

2 dy2

2 dy2

2

2

,-μK/2ft,\

Hence,

(38)

by (34) and (37). On the other hand, we have

1 d^
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by Corollary 2.4, where λ is independent of i. This contradicts to (38) and so we
finally finish the proof of Proposition 3.3. Π

3.3. Reduction. Now we are ready to find a solution of the equation

modulo K-h for sufficiently small h > 0.

Proposition 3.6. There exist positive constants fc5,oc2 and hί so that for every
~z = (z l 5z2) and h with \zt\ < α2, / = 1,2 and 0 < ft < ft2, there exists a unique element
φΊtheKh such that

and

H^llH^fc5ll^(u7,Λ)| |2. (39)

Proof. Once we have Proposition 3.1 and 3.3, the proof is the same as the one of
Proposition 3.7 [FW.a]. We invite the readers to provide their own proof or refer
them to [FW.a] for details. Π

4. The Reduced Problem

In this section, we will prove our main existence theorem for the one-dimensional
two-lump case with a bounded V.

Theorem 4.1. Let Vε(V}a for some aeΊR. and E<a, and V be bounded. Then for
each pair (x l 5x 2) of nondegenerate critical points of V, there is an ft3 > 0 such that
for all h with 0 < h < ft3, the equation

has a nonzero solution with, the following concentration phenomena: For each given
ε, δ > 0, there exists some ft > 0 such that if 0 < h < ft,

sup \u(x)\>k6~j2(V(Xl)-E),

sup \u(x)\>k7~j2(V(x2)-E)
xeBδ(x2)

and

sup |φc)|<ε,

where /c6,/c7 are independent of ft.

Here we would like to note that u implicitly depends on ft.

Proof. Let α2 and ft2 be the constants from Proposition 3.7 and suppose ft < ft2.
We project Sh(uΎh + φrh) onto the space K~h to define a reduced "vector field"
s f t :(-α 2,α 2)x(-α 2,α 2)-»R 2 by sΛ(7) = (sM (7), sΛ,2 (7)), where
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where u'jtZ.^(y) = u'j(y — (xjΛ zj)/h) for 7= 1,2. Consider the "linear vector field"
v0(z) = (ι>ό. if? ), t;0,2(?)), where

together with the family of vector fields VΛ defined on the square [-1, 1]2 by

where v is a fixed number chosen 1 < v < 2 and h ̂  min(ft2,α2

/2). Then we have
the following proposition. (See Proposition 4.4 [FW.a].)

Proposition 4.2. The vector fields vh converges uniformly to v0 on [— 1, 1]2.

Assuming this proposition for the moment, let us proceed with the proof of
Theorem 4.1. We have only to prove that vh(~z) has a zero in (— 1, 1)2 and so sΛfz)
has a zero in ( — α2,α2)

2 because this together with that

= sPan

implies

for some z with - fιv < z < hv.
Note that the vector field u0(~z) has degree + 1 or - 1 depending on the signs

of V(xι) and V"(x2). In any case, the degree is nonzero. Moreover, t;0fz) never
vanishes on the boundary of [— 1, 1]2. Now by Proposition 4.2, υh is homotopic
to v0 under the homotopy which never vanishes on 3[ — 1, 1]2. Since the degree
is invariant under such a homotopy of vector fields, vh will have nonzero degree
and so must have a zero in (— 1, 1)2.

For the last statement in Theorem 4.1, recall the solutions of (2) corresponding
to the solution u of (3) is

X\ I X —XΛ — Zi \ fs — X2 — Z2\ , X

a Hl-T-1 M—i-* )+M»
and

uι (y) — \/2fl sech ^/2ay, a = V(x1) — E,
U2(y) = \f^ sech -^/2by9 b = K(x2) — £.

Here as ft->0, z/ft->0 since we choose z so that | z | < f t v and v > l , and
Ψ?,ft(Ά) converges to 0 uniformly by Proposition 3.3, 3.7 and the Sobolev
inequality. Moreover, u^x — xί — z^/ti) and w2((x — x2 — z2)/h) become more and

more concentrated at x 1 ?x 2 and have maximum values x/2(F(x1) — E) and

-v/2(K(x2) — E) respectively. This finishes the proof of Theorem 4.1. Π

Now we have only to prove Proposition 4.2.

Proof of Proposition 4.2. We will closely follow the proof of Proposition 4.4 [FW.a]
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but we have to take care of two-lumps, which complicates the estimates. The
expansion (6) gives

(I)

( i )

for j= 1,2.
For the simplicity, we assume j = 1, and j = 2 can be dealt with in the same

way as j = 1,

2,z2,Λ) + (^-^KWι,Z l, f t-fW2 j Z 2 > f t)-(w 1 > Z l ) Z h-fW2,2 2 > f t)
2

The second term can be estimated to prove that it is of order 0(e~μR/2h), R > 0 fixed
as before by noting that it involves products of u± and w2. (Here, we again assume
that x1 = — R x2 = + R-) For the first term, the same argument as in [FW] works
to prove that

Therefore

Then by exactly the same argument as in p. 406 in [FW.a], we have

h o — i i

for any p > 0.
Next, it is easily to see that

C21| ̂ Jlέzg C3|| 5,̂ )111 (41)

by Proposition 3.1 for the second inequality and by the fact that ||ΛΓ^||2^
C||$||jj2 for the first inequality, which can be easily proven. (See Lemma 3.2
[FW.a].)

Now, let us estimate the term (II). Note that
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ld?_
2dy2

- 3(2t4 l i Z l t Λ M 2 f Z 2 i Λ

Therefore,

= <"Uι,ft»Sft(M l,zιJi)#?,ft>^

In the same way as estimating the second term in (I), we prove that the second
term in (II) is of order O(e'μR/2h). For the first term,

V.-VjiΛ

(42)

Once again, the factor (Vh — Vh( — R/h))u'ίtZlth can be estimated in the same way as
Sh(uΎh) in Proposition 3.1, which this time becomes easier.

Together with Proposition 3.1, (41) and (42) yield

(pft)
Therefore,

ft-^ftv*)-ι^
ί h-*{C2(V\Zl I + ph)2 + e-*» + C6(W\Zl I + ph)4 + e'^/h)}.

Choosing p = h~ε with ε > 0 which will be chosen later, and recalling that |zt | ̂  1,
we have

Since we assume that v < 2, we can choose ε > 0 small enough so that all terms
go to zero as h -> 0. Hence we have proved that

uniformly over "z e[— 1, 1]2. Similarly, we can prove that

uniformly over Te[— 1, 1]2. Hence Proposition 4.2. Π

5. Instability and Positivity

In the previous sections, we have constructed a solution uh of the form
U2,h + Φft °f the equation
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Id2u _ _ , Λ

where ulth(y) = ul(y- (χl + z2)/h), u2th(y) = u2(y - (x2 + z2)/h) and φh satisfies the
following estimates:

)(R + z2)l (43)

where we assume x^ = - R,x2 = R and |z£ | < h\ v being chosen any 1 < v < 2.
In this section, we study the stability of these solutions with respect to the

perturbations of initial condition. We consider the rescaled version of (1),

/ - - + κ *-'*ι2* (44)

as in [O3]. First, we introduce the definition of Lyapunov stability.

Definition 5.1.

pi (φ):= inf « (H, - E)(e">φ - uh\ eiβφ - H,
* 0eR

= inf £<eίβVφ - Vuh,e
ίβVφ - VuΛ»

where Hh= —^d2/dy2+ Vh. Of course if we assume that Vh is bounded, then
Q(Hh) = H^R) and we may use Hl-norm instead of the form norm used above.

Definition 5.2. The solution uh is (Lyapunov) stable if for any given ε > 0, there
exists a (3>0 such that if pc (φ(0)) < δ, then p&, (ψ(t))<ε for all feR, where

ψ(t) satisfies the time-independent equation (44).
Now, we are ready to state the main theorem in this section.

Theorem 5.3. The solutions uh we found in the previous sections are all unstable for
N ^ 2 if h is sufficiently small.

Remark. In [O3], we proved that for the one-lump case, the solution is stable if
it is localized near a local minimum and unstable if it is localized near a local
maximum (see also [GrSS,Gr]). The above theorem says that once the solution
has more than two lumps, the lumps begin to interact with each other to give the
instability. It would be interesting to study how they interact.

If we linearize (44) at uh, we have the following real and imaginary parts of
the linearized operator,

2dy2
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We will use the following instability criterion by Jones and Grillakis to get the
instability result (See e.g. [Gr,Jo]).

Instability criterion) Define N± =# of strictly negative eigenvalues of L^ res-

pectively. If I N + - N " I ^ 2, then the linearized operator at uh of (44) I *
\ — Lh 0

written in the Hamiltonian form has real positive eigenvalues and so uh is unstable.

Having this criterion in mind, we will study the spectral properties of Lft

+ and
L f t~. For this, we need the following lemma. (See Lemma 3.1 [O3].)

Lemma 5.4.
i) The operator L+(λ)= — ̂ d2/dy2 + λ — 3u% has just one negative eigenvalue — 3λ

and one dimensional kernel in H1, where u0 = ^/2λ sech ^/2λy. Moreover, the
corresponding eigenspaces are spanned by u% and u'Q respectively.
ii) The operator L_ (λ) = — ̂ d2/dy2 + λ — UQ has one dimensional kernel in H1 which
is spanned by UQ.
iii) Neither operator has positive eigenvalues and

inf ess(L+(λ)) = inf ess(L_(λ)) = λ.

Proof. See Lemma 3.1 in [O3]. Π

Corollary 5.5.
i) Let v be orthogonal to the eigenspaces of L+, i.e., t;_Lspan{t/0,Wo}. Then,

ii) Let v be orthogonal to the eigenspace of L_(λ) i.e. the span{w0}. Then,

Proof. We leave the proof, to the reader or refer to Corollary 3.2 [O3]. Q

Using this, we prove the following propositions, which will imply Theorem 5.3
by the instability criterion.

Proposition 5.6. There exists h4 > 0 such that ifO<h<h4, then L^ has no negative
spectrum and one dimensional kernel spanned by uh.

Proposition 5.7. There exists h5>Q such that if 0 < h < h5, then L£ has at least
two negative eigenvalues.

Before proving proposition, we give the proof of the fact that uh is positive if
0 < h < ft4 as a corollary of Proposition 5.6. We first need the following well-known
fact on Schrόdinger operators (See [ReS] or [GUa]).

Lemma 5.8. Consider the Schrδdinger operator on RM,

H=-Δ+V,

and suppose that H has a ground state, i.e. the bound state of the lowest eigenvalue.
Then the ground state is nodeless and may be chosen strictly positive on 1RΛ Moreover,
the positive ground state is unique up to positive scalar multiple.
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Proof. See Theorem 3.3.2 and Corollary 3.3.4 in [GUa]. Π

Theorem 5.9. The solution uh found in the previous sections is positive, if 0 < h < h4

so that ZΛ satisfies the properties in Proposition 5.6.

Proof. This is immediate from Proposition 5.6 and Lemma 5.8. Q

Now, we go back to the proofs of Propositions 5.6,5.7. We first need the
following lemma.

Lemma 5.10. Let φh be as in (43). Then we have for any fixed 0 < ε < 1.

if 0 < h < h6 for some h6 > 0, where k8 depends only on ε.

Proof. See Lemma 2.2 [O3]. Π

Proof of Proposition 5.6. We know that uh satisfies the equation

by the definition of uh, i.e., Meeker LΛ~~. We will prove

inf > c >o (45)
!>!{«! A«2.*} \ V > V /

in Lemma 5.12 where c does not depend on h if h is sufficiently small. Assuming
this for the moment, let us proceed with the proof. Equation (45) means that the
restriction of LΛ~ to {w1, f t,w2,ft}1 is positive definite and so Lf~ has at most one
negative eigenvalue because we already know that Lft~ has one zero eigenvalue
with the eigenfunction uh = ulfh + u2>Λ + φh. Suppose LΛ~ has one negative eigen-
value and the corresponding eigenfunction w with || w| | 2 = 1. Decompose

where w± is the orthogonal projection to {«!,», M 2,ft}"L,

Recall that <MI>Λ, M 2 j f t> = 0(e~μR/h) from (14). And from Lemma 5.10 and || w ||2 = 1,

<0Λ,w>

by choosing ε = ̂ . Therefore,

Hence, if h is sufficiently small, then p and q have different signs. On the other
hand, we will prove

2) (46)
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for any υ with ||ι?||2 = 1 in Lemma 5.11. Then,

0 > <Lft~w, w> = <LΛ" w±, w±> + LΛ-(pi4 l fΛ 4- gιι2tΛ), w>

by (45). Therefore we have

Moreover, we also have

I^ft"w1,w1>|= (
\ \

1. i

~ ~dx

(47)

Since Vh, u\ are bounded, we have

(48)

Combining (47) and (48), we proved that

as

(Here, note that w± implicitly on h.) By the Sobolev inequality H1

uniformly converges to zero. Also, p and q in

satisfy

and so

which are uniformly away from zero over h. Therefore, if h is sufficiently small, w
must change sign as the signs of p and q are different, and so w cannot be the
ground state of LΛ~ by Lemma 5.8, which contradicts to the hypothesis that w has
the (unique) negative eigenvalue and so it is the ground state. Therefore, LΛ~ has
no negative eigenvalue. Then Proposition 5.6 comes from the uniqueness of the
ground state by Lemma 5.8. Π

Now, it remains to prove (45) and (46). We give the proofs of them in the form
of lemmas.
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Lemma 5.11. For any given p,geR and v with \\v\\2 = 1, we have

(L;(pu^ + qu2,h\v}

Proof.

i^L

i d2

a + iκ» - £) - uΐΛulΛι - UΛ(UIΛ + <wu2Λ

-Λ))«ιΛ-««(«2.» + δι)«ι. (49)
Therefore,

1>ft,ι;> - <u l j f c(u2 f j f c

We can prove
(50)

in the same way as in (8) or (9). And,

<"»KΛ + 0*)"ι.*

by Lemma 5.10 and the fact that

II ιι u II —
\\U2,tι Ul, h II oo —

By (50), (51) we have proved

^u^vy
In the same way, we have

<Lft-W2,ft,ί;>

and hence the proof. Π

Lemma 5.12. //ft is sufficiently small, there exists some c> 0 which is independent
ofh such that

inf <^P'P>>c>0.
»J-(«1,».«2,»} ^'υ/

Proof. We have

~ + (V, - E) - u\β,v

~ "2Λ

(A)
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Combining (10), (1 1), Lemma 5.9, (47) and the fact that || uh || ̂  is bounded uniformly
over ft, we have

\\(A)\\2 = 0(h3/2) (52)

if we assume that || i; ||2 = 1. If we denote

-

2dy2

then

L^2βh)v,vy + 0(h312)

y + (L^2βhυ,vy + 0(h3/2). (53)

Now, suppose that vλ{uiΛ9u2tt} and ||t;||2 = 1. To estimate (53), we may assume
without loss of any generalities that in Sect. 3, when we choose α and β,

θί = y2 and β = δ2,

which is possible because α, β ̂  0 and are smooth. It follows that αft = y\ and βh = δ%9

y^\yhv^v^). (54)

Here,

due to the same reason as ,(23). In other words, apply

1 d2

to (55). For the first term of the right-hand side in (54), first note that

<7ftt;,u1,fi> = 0(e-''R'2Λ). (56)

i.e. yΛy is "almost orthogonal" to UM. In fact,

as <y,u l ι Λ> = 0 by the hypotheses. Then it follows as before that
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Now,

yhυy, (57)

where

Lt.ϊ.= -~ + (V(-R)-E)-*ίΛ.

Using Corollary 5.5 ii) and (56), we have

Substituting this into (57), we have

Since we assume in the beginning of this paper that

Vh - E > ε > 0,

we have

(58)

Substituting (55) and (58) into (54), we have

^OVM?) ^ε<α^,ι;> + 0(ft). (59)

Similarly, we have

<L^2βhv, vy ^ ε(βhv, vy + 0(ft). (60)

Substituting (59) and (60) into (53), we have

since αft -f βh = 1. By choosing a smaller ε, we have proved that

if ι;l{M1>ft,u2,ft}. Hence Lemma 5.12. Finally, we have finished the proof of
Proposition 5.6. Π

Proof of Proposition 5.7. By Lemma 5.4, the negative eigenvalues of

L+ =_1^ (v(_R)_E)_3u2
2dy2

1 d2

Lί2=--TΎ + (V(R)-E)-3u2

9,2dyz

are — 3a and — 3b respectively, where

a=V(-R)-E and b=V(R)-E.
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We will show that if h is sufficiently small, then these eigenvalues survive as ones of

And we also know from Lemma 5.4 that the eigenfunctions of LQΛ and LQ 2

corresponding to the negative eigenvalues are u\^ and u\th respectively. First, note
that wί>Λ and u\^ are "almost orthogonal", i.e.

<"ϊjh"i.*> = 0(*~^ (61)

which can be proven easily. We will prove that if h is sufficiently small, the restriction
of Lft

+ to the span{w?Λ,M2,Λ} is negative definite, which will conclude by the
mini-max principle (see [ReS]) that Lft

+ has at least two negative eigenvalues. It
is now easy to show that

ίR/s). (62)

On the other hand,

<««i,»ϊJ> = {(-^ + (".-«-3^)«?J,.

-{(4^+(κ'-£)-3("' '+"'
where L^ = -(l/2)(d2/dy2) + (FΛ - £) - 3w?Λ, / = 1,2. In the same reason as (62),

(63)

and from Lemma 5.10,

<"A«2,,X,Λ> = 0(fc3'2). (64)

And,

<LA>2,Λ,«2,Λ> = <L0

+,lM

2,Λ,M

2,Λ> + <(FS - V(-R))u2

Λ,u
2^. (65)

Since u\Λ is the eigenfunction of LQ,I with the eigenvalue — 3α, we have

<LΛ>2

tS,u
2,Λ> = -3α<u2,Λ,u2,Λ>. (66)

Moreover, we can estimate

(67)

again in the same way as in (8), (9) and Lemma 5.10. Substituting (66) and (67)
into (65), we have

C^X,*,"2,*) = -3α<u2,s,«
2

>s> + 0(h3'2).

Therefore, we have

<Lfi

+ u2

Λ, u2,ft> = - 3α<u2,ft, u
2,ft> + 0(h3'2). (68)
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Similarly, we prove

<LΪ «!», «!.»> = - 3K«i.», ui,ft> + 0(h3'2). (69)

Combining (61), (62), (68) and (69), we have proved that the restriction of L£ to
span {u\frU\^} is negative definite, and so that by the mini-max principle, L% has
at least two negative eigenvalues. This finishes the proof of the proposition. Π

Remark. In fact, in the course of the proof we have proved that L£ has one
eigenvalue near each of — 3a and — 3b if h is sufficiently small.

6. Generalizations

6.1. Construction. We can remove the assumption that V is bounded as long as V
is in the class (K)α, by using, as in [Ol], cut-off functions and the operator domain
D(Hh) and the corresponding weighted norm instead of the space H2. Now, we
explain how we modify the previous construction to deal with multi-lump case.

Let a collection of nondegenerate critical points {x l9 . . . , XN} of V be given. We
again consider the rescaled equation

and now trial solutions given by

\ " / \ " / \ " /

where ~z = ( z l 9 . . . , Z N ) and

Ui(y) = τj2cii sech -^/zαj j;, αf = V(xι) — E.

We can estimate the error Sh(u^h) in the similar way as in Proposition 3.1 using
the fact that the N lumps ut(' — (xt + zt/h)) farther and farther away as fc->0. To
estimate the Fredholm inverse of S'h(u~h\ we introduce the partitions of unity given
as follows:

Let d:= the minimum of |x, — Xj | , ij = 1,..., N, and define

Ad
1 for |x- -

2 r f >

0 for |x-x j |>y

j?(x)=l- f α,.
J = l

Choose {βj,ft,jSfi}j=ι,...,^ as our partitions of unity where

Now, we have to take care of the following cases separately as in the proof of
Proposition 3.3
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Case /). || φt \\ Hi.i-wwnxjihtUdiwnxjiw ^ ε t > 0 for all sufficiently large i and for
some j — 1, . . . , Λf and βi > 0.

//) lim max || φt ̂ [-(diw+wMdiw+ixjiM] = °

Case I) can be taken care of as in the Case I) or II) in Proposition 3.3 and
Case II) can be taken care of as in Case III) there. For the reduced problem,
consider the reduced vector field defined by

where shJ(~z) = (l/fι)(uf

jίZ.^Sh(uΎfl)y for 7 = 1, . . . ,/V. Now we prove in the same
way as in the two-loop case that vh uniformly converges to the linear vector field
t;0 on [— 1, 1]* defined by

Then we prove that uft has the nonzero degree since v0 does so because

7=1

due to the nondegeneracy of critical points. Moreover, these arguments work even
for high dimensional situations under the same hypothesis and so we have the
following generalization of Theorem 4.1.

Theorem 6.1. Let Ve(V)a for some αelR, V — E > ε > 0 and p be chosen so that it
satisfies the basic hypothesis in the abstract of the present paper. Then for each
collection {xί9...9xN} of nondegenerate critical points ofV, there is an Λ 4 >0 such
that for all h with 0 < h < ft4, the equation

h2

- —Δυ + (V- E)v - \v\p- lv = Q (70)

has a nonzero solution with the corresponding concentration phenomena as in
Theorem 4.17.

So far, we studied Eq. (1) in the semi-classical point of view, i.e. when ft-»0.
However, we can reinterpret this existence result as a genuine "quantum" result:

I) The Case of Deep Wells. If we divide Eq. (70) by h2 and set λ = I/ft2, we have
the equation

- ±Δv + λ(V - E)v - λ\v\p- h = 0. (71)

If we consider the family of potentials Vλ, eigenvalues Eλ and yλ defined by

then as λ -> oo, each potential well of Vλ gets deeper and deeper, and inf Vλ(x) - Eλ

and yλ become bigger and bigger.
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Theorem 6.Γ. Suppose that Ke(K)fl and V — E>ε>Q. Consider the nonlinear
Schrόdinger equation

where Vλ = λV, Eλ = λE and yλ = λ. Then for each collection of critical points
{xl9...9xN} there exists some λ0>0 such that for any λ>λθ9 the equation has a
nonzero solution with the corresponding concentration phenomena as in Theorem 4.1.

Note that we do not need the separations of the wells as long as the wells are deep
enough.

II) The Case of Wide Wells with Large Separations. On the other hand, if we look
at the rescaled equation itself

- \Δu + (Vh - E)u - I u \ p ~ lu = 0

as h -»0, the wells of Vh become wider and wider and the distances between the
wells become larger and larger.

Theorem 6.1". Suppose that Ve(V)a and V — £>ε>0. Consider the nonlinear
Schrόdinger equation

- ^Δu + (Vh - E)u - I u \ p ~ lu = 0, (72)

where Vh(y) — V(hy). Then for each collection of critical points {x l 5 . . ., XN] of V(and
so critical points { x ί / t ι 9 . . . 9 x N / h } of Kft), there exists some h0 >0 such that for any
0 < h < ft0, (72) has a nonzero solution with the lumps concentrated with nonzero
concentration near ofXj/h. In particular, the lumps becomes more and more separated.

Remark. The reason why we have chosen (72) to solve (43) and (45) is that it has
the nicest limit among them as ft->0 that we can deal with, while (43) and (45)
have singular limits as either λ -> oo or h -> 0 respectively.

6.2. Instability and Positivity.

Theorem 6.2. The solutions of the form uh = uΎh + φh, where

are all positive and (Lyapunov) unstable if h is sufficiently small.

Again this theorem comes from the following two propositions and the
Instability Criterion.

Proposition 6.3. The operator

has one-dimensional kernel, no negative eigenvalue and all the other spectra are
positive.

Proposition 6.4. The operator
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has at least N negative eigenvalues.

Proofs of these propositions are following essentially the same line of ideas as
in the proofs of Proposition 6.6 and 6.7 using the following facts:
1. The operator LQ = — ?Δ -f λ — \UO\P~1 has one-dimensional kernel spanned
by w0 and no negative eigenvalues, where u0 is the "unique" ground state of the
equation

2. The ground state of a Schrόdinger operator

has no node and so can be chosen to be positive everywhere and such a ground
state is unique (See Lemma 5.8).
3. The operator

has one negative eigenvalue.
1. and 2. will be needed to prove Proposition 6.3, and 3) will be needed to
prove Proposition 6.4.

7. Final Remarks

Note that summing up one-lump solutions is not the only way of getting an
approximate ΛMump wave solutions. For example, we can choose any of the
following

as an approximate solution. Then it is easy to see that exactly the same estimates
hold as before and that we may even choose the same constants in the estimates
as in the case ult(xjL+Zl),h + ••• + uNt(XN+ZN)/h.

This gives 2N 1 distinct ΛMump bound states of NLS (1). Of course, these
solutions have nodes, i.e., change their signs. Again, we can prove that all of these
solutions are also unstable this time using a more refined instability criterion in
[Gr, Theorem 1.2]. In fact, we can prove that the real part LΛ

+ has at least N
negative eigenvalues (all of which are of order 0(1)) while the imaginary part Lft~
has at most N — 1 negative eigenvalues (all of which are of order 0(h)).

We may even choose a sum of one-lumps with different phases as approximate
solutions (the above solutions correspond to the phase e°π =1 or eiπ = — 1).
However, unless the phase is real, i.e. riθ = ±1, the corresponding standing NLS
equation is not a single equation but a system of equations. For example, when
N = 2, if we let the solution be of the form

where u and v are real and eiθ ̂  ± 1, then u and v satisfy the equation

h2

- —Δ(u + eiθv) + (V- E)(u + eίθv) - \u + eiθv\2(u + είθv) = 0,
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and so
h2

Δu + (V - E)u - (u2 + v2 + 2uv cos θ)u = 0,

h2

- —Δv + (V-E)v-(u2 + v2 + 2uv cos θ)υ = 0,

since elθ is not real. (If eω is real, then we have just one equation.) One can easily
see that the pair (u = u l t f t ,ϋ = u2,Λ) is an approximate solution of this system of
equations whose error can be estimated as before, but this time estimating the
Fredholm inverse is not as clear as before. So far now, it is not clear whether
such TV-lumps with different phases exist. This will be a subject of our future
investigations.
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