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Abstract. By applying a method of Hardy and Ramanujan to characters of
rational conformal field theories, we find an asymptotic expansion for
degeneracy of states in the limit of large mass which is exact for strings
propagating in more than two uncompactified space-time dimensions.
Moreover we explore how the rationality of the conformal theory is reflected
in the degeneracy of states. We also consider the one loop partition function
for strings, restricted to physical states, for arbitrary (irrational) conformal
theories, and obtain an asymptotic expansion for it in the limit that the torus
degenerates. This expansion depends only on the spectrum of (physical and
unphysical) relevant operators in the theory. We see how rationality is
consistent with the smoothness of mass degeneracies as a function of moduli.

Introduction

One of the characteristic features of strings is the prediction of the existence of
infinitely many massive particles. Based on the fundamental principle of modular
invariance (world-sheet reparametrization in variance) one deduces that the number
of particles grows exponentially with mass. This growth is universal and
independent of which background strings are propagating in. One of the simple
consequences of this fundamental behaviour is the existence of a limiting
temperature (the Hagedorn temperature) [1] beyond which the canonical partition
function diverges.

For various reasons one might be interested in more detailed information about
the large energy degeneracy of particle spectrum in string theory. Although the
leading behaviour of degeneracies is independent of the background, as mentioned
above, the subleading terms do depend on the background in which strings
propagate. The subleading terms might be useful in computing certain
thermodynamical quantities. In fact this point in connection with extending the
thermodynamical computations in [2] was one of the main motivations for
undertaking the present work. Another application of these subleading terms might
be in probing high energy aspects of string theory. Finally, these expansions might
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be relevant in distinguishing and classifying conformal theories. This is the stringy
analogue of the famous mathematical problem "can one hear the shape of a drum"
(i.e., by the knowledge of the eigenvalues of the Laplacian on a drum, what can
be learned about the geometry of the drum).

A seemingly unrelated issue is the notion of rationality of a conformal theory.
A conformal theory is rational if the correlation functions are finite sums of
holomorphic times anti-holomorphic functions of the world-sheet coordinates. The
main motivation for considering rational conformal theories in the physics
literature, comes from the fact that they arise naturally in many examples, and
can be usually solved exactly by solving certain differential equations. A simple
adaptation of the method of Hardy and Ramanujan [3], which we employ, can
be used for finding the subleading corrections for asymptotic expansion for mass
degeneracies of rational conformal field theories. Similar methods can be adapted
to the computation of the on-shell partition function at one-loop, as the torus
degenerates (τ2 -> oo). This can be done for both irrational and rational conformal
theories.

The organization of this paper is as follows. Section 2 is intended as a short
review of RCFT's with emphasis on their modular invariance. The invariance
under modular transformations in these theories leads to some basic relationships
between the ratios of the matrix elements of the modular transformation
S:τ-> — 1/τ and certain formal ratios involving the "dimensions" of the irreducible
modules on which the chiral characters are defined [4]. This result will be reviewed
and extended in this section. As a prelude to the more powerful analytic methods
described in detail in Sect. 3 of this paper, we also discuss briefly in this section
the well known application of modular invariance and the Cauchy integral theorem
in determining the leading order behavior of the coefficients in the power series
expansions of the chiral characters.

In Sect. 3 we will describe the method prescribed by Hardy and Ramanujan
in deriving an asymptotic expansion for a large class of partition functions. We
will consider in some detail their main example of the oscillator partition function

00

for a single free holomorphic boson f(q) = f ] (1 — <fl~ι. There we shall rederive

their asymptotic expression for this partition function using a somewhat less
complicated but equivalent approach, and discuss in somewhat less involved terms
their proof of the exactness of this asymptotic expansion. Next we will apply their
analysis to obtain asymptotic expansions for some common fermionic partition
functions which are, of course, not only of substantial physical interest but also
of some mathematical interest. Some of these partitions have also been considered
in [3]. Part of this section is somewhat technical and some of the more technical
aspects are postponed to Appendix A.

In Sect. 4 we shall expound on the arguments given in Sect. 2 about the
determination of the chiral characters in an arbitrary RCFT by means of modular
invariance. As a simple application and extension of the method of Hardy and
Ramanujan, here we will first derive the asymptotic expansion for the coefficients
a® in the power series expressions for these characters χ£q) and then we will
consider the question of the exactness of this expansion. It is argued that though
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the expansion may not be exact, it is so that the error introduced by this
"perturbative" method is in fact bounded. In other words we shall prove that the
expansion determines the coefficients aff up to a constant which is independent
of n. A simple example of the Ising model is used at this point to demonstrate
these ideas. To illustrate these ideas even further, we also consider the example of
bosonic strings compactified on a circle with rational squared radius.

It is a simple matter to extend our analysis of the conformal field theories to
the spectrum of physical particles in string theory which is the subject of Sect. 5.
One new novelty is that the partition function in general has a non-trivial modular
weight (2 - D)/2, where D is the number of uncompactified dimensions. It is shown
that the asymptotic expansion for the mass degeneracies is exact for D>2; more
precisely, for large enough mass m a finite number of terms, about O(m2) terms,
can be summed to obtain the exact degeneracy. For D ^ 2 it can be shown that
the series is exact up to some fixed power of n. A general principal which seems
to underly this behavior is that the exactness of the asymptotic expansions depends
only on the modular weight of the class of modular forms under investigation and
not on any of the other details of their mixing under modular transformations.
In particular the exactness of the asymptotic series is independent of the form of
the modular transformation matrices S and 71 Strings compactified on rational
tori are an important class of string theories on rational backgrounds which we
analyze as an example in Sect. 5.

In Sect. 6 we begin studying irrational conformal theories. In particular we
study the physical partition function for such theories at one loop, in the limit as
τ2 -* oo. This limit probes the asymptotic degeneracy of states. This allows one to
consider the behaviour of the asymptotic degeneracies as one continuously changes
the moduli. In Sect. 7 we compare the two methods, and explain how rationality
could coexist with continuity of moduli in the asymptotic expansions.

We present our conclusions in Sect. 8 and discuss some unresolved issues and
possible future applications of the ideas introduced in this paper. Appendix A fills
some technical gaps from the analysis of Sect. 3, Appendix B computes certain
properties of some of the coefficients appearing in the asymptotic expansion, and
finally Appendix C completes some of the analysis needed in Sect. 6.

2. Some Applications of Modular Invariance in RCFT's

RCFT's have been extensively studied in the last few years. They were first
emphasized, in connection with classification of conformal theories by Friedan
and Shenker. Rational Conformal Field Theories (RCFT's) are characterized by
the defining property that the spectrum of the irreducible representations of the
chiral algebra is finite dimensional. Hence the vector space of the conformal blocks
for any correlation function in such theories has a finite dimension. Equivalently
the Hubert space in this kind of theory can be decomposed into a finite direct
sum of tensor products of the space of irreducible representations of the left and
right chiral algebras s/ and J /
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where φt and φτ for ί = 0,l,...,iV — 1 denote the irreducible highest weight
representations of s/ and J/. Of particular importance to us is that as a consequence
of the above decomposition for the Hubert space Jf, the one-loop partition function
for an arbitrary RCFT, being the trace over the Hubert space, decomposes in a
similar form:

Z(τ,τ)=Yχi(τ)χί(τ) (2.1)
ί = 0

in which the functions χt and χτ are the chiral characters correspondingly of the
left and right modules φt and φΊ and are given as the traces over the corresponding
sectors φt and φτ of the Hubert space: χf = tr/0.(gLo~c/24), with similar expression
for χτ with quantities q, Lo, φt and c replaced by their barred expressions, where
the parameter q is defined in terms of the one-loop modular parameter τ as
q = exp(2πΐτ) (see Fig. 1).

Modular invariance is an important physical restriction imposed on the
partition function Z(τ, τ). It is the statement of the invariance of the partition
function Z under an arbitrary modular transformation of the parameter τ:

aτ + b

cτλ-d
α, b, c, deZ, ad — bc=ί. (2.2)

This is the group SL(2, Z)/Z2 of unimodular 2 x 2 matrices with integer
coefficients, modulo a Z 2 action which changes the sign of all the integer coefficients
a, b, c and d, hence leaving the transformation above of the parameter τ unchanged.
The modular group is generated by two transformations T: τ -* τ + 1 and S: τ -> — 1/τ

1

ί
-i -\

r-plane q-planβ

Fig. 1. The τ-plane is the Teichmuller space for a torus. The stripped region (excluding the part interior
to the unit circle) is a fundamental domain for PSL(2, Z). The transformation q = e2πir maps the full
stripped region in the τ-plane, to the interior of the unit disc in the g-plane. The contour Γp must be
divided into arc segments ξPtl near each rational singularity ε2πip/ι
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of the modular parameter τ. The symmetry under the action of this group describes
the physical requirement that the partition function should remain invariant under
a change in the basis for the two vectors generating the lattice which defines the
torus, over which the conformal theory at one loop order is constructed. The
modular in variance of the theory (in variance under T) implies that the conformal
dimensions of all the states in the spectrum (h9h) must satisfy h — heZ and
furthermore, the left-right decomposition of the Hubert space implies that the
dimensions of all the states in a given module φ x be the same, modulo addition
of integers. As a consequence of this fact, the chiral characters can be given the
following expansion in terms of the parameter q:

Σ 4V), (2.3)

here h( are the holomorphic conformal dimension of the highest weight vectors in
the chiral modules φt. For the vacuum subsector φ0 = 1, the chiral character χt

has the form (2.3) with h0 = 0, and if the CFT is unitary then all other conformal
dimensions are positive; hi>09iφ0. Also the coefficients αj,0 are non-negative
integers for every value of n ̂  0. The value of α(

0

0) depends on the degeneracy of
the vacuum and is equal to 1 for the theories in which the vacuum is non-degenerate.
In the course of our analysis we shall see that these simple facts are not without
significance in determining the general expansions for the chiral characters.
Precisely the same arguments of course apply to the right chiral sector, hence a
similar expansion for the chiral characters χτ exist and is obtained from (2.3) by
replacing all the quantities by their barred counterparts. For the present, therefore,
it suffices to restrict our attention to the left chiral sector only. It follows from
these arguments that the transformation matrix T in the space of chiral characters
is diagonal with eigenvalues αf = e

2πiιht-ci2*\ referred to as the "Dehn twist" phases
for this conformal theory. Furthermore the modular transformation matrix S
describes how the chiral characters transform among one another under the
transformation τ -• — 1/τ. Therefore the action of the two generators of the modular
group in the space of chiral characters is given as:

T:Xi^<*iXi and S:χi^Sjχp (2.4)

S is known to be symmetric: S = ST and unitary: SS* = 1. Denoting by C the
conjugation matrix which connects the chiral characters of the conjugate represent-
ations; Ciχ^χ^ there exist the following two relations among the transformation
matrices S and T:

S2 = C and (STf = C. (2.5)

Indices are raised and lowered using the conjugation matrix C. Furthermore, if
all the representations φt of the right chiral algebra are self-conjugate, then one
has the usual SL(2,Z) relationships: S 2 = (SΓ)3 = 1, otherwise since C is
idempotent; C2 = 1, one has: S 4 = (ST)6 = 1.

Transformation properties of the chiral characters χ, under S and T are known
to lead to severe constraints on the structure of the characters. For example, the
most basic applications of the transformation properties described by (2.4) would
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immediately give interesting relationships between the formal dimensions D{i) of
the Hubert subspaces φ( and the matrix elements of the transformation matrices
S and T. For instance a well known equality exists [4] between the ratios of the
dimensions D(i)/D(0) to the specific ratios of the matrix elements of the
transformation matrix S:D(i)/Di0) = Si0/S00. Let us review this result. Using (2.3),
D(i), being the sum of 1 over all the states in the representation φ., is formally

00

expressed in terms of the coefficients af as D{i) = Σ an} = xM = 1) Furthermore,

under modular transformations S:# = exp(2π/τ)-»g' = exp( —2πΐ/τ), the point
q = 1 is mapped onto the point q' = 0 (allowing τ -• 0 in upper half-plane), hence it is
readily observed that (for unitary theories):

l im^M = ^o, ( 2 . 6 )

<'->oSojXj(q') Soo

where we have used the fact that in the limit q'-+0 the dominant contribution

arises from the vacuum sector for which χo(q') = q' c / 2 4 ( 1 + Σ e£°V" I ~ 4' c / 2 4

V 11=1 /

This can be recast in a slightly more canonical form (which does not treat the
vacuum sector preferentially). To do this, consider the diagonal, modular invariant

J V - 1

partition function Σ Xι(<UXι(9) a n d for fixed i form the ratio of Xi(q)Xi(q) to
ι=o

this function. The modular invariance of this partition function implies that:
Σ Zι(« = l)Zi(« = 1) = Σ XM = °)Xι(<ϊ' = 0). This together with Eq. (2.4) gives:

1 = 0

*,(<? = iMg = i) = ISjjxtf=0)1 istaΛg' = o)]
( 2 7 )

Y Zι(9 = l)Zι(« = 1) Y Z.ίί' = 0)Zι(ί' = 0)
1=0 /=0

The dominant contribution to the right-hand side of this equation comes from
the vacuum as before. An application of (2.3) thus leads to the desired conclusion:

|Π(i)|2

*£-* | S i O l 2 (2-8)

1 = 0

One will further note that the sum over the index i of both sides of this equality
is equal to unity, on the right-hand side this being due to the unitarity of the
transformation matrix S.

An immediate generalization of the previous arguments is reached if in place
of the point q = l9 one instead considers a general "rational" point q = e2πip/ι on
the unit circle in the g-plane, where p and / are positive1 co-prime integers and
p < I Using an appropriate modular transformation, which we presently denote

1 Except for / = 1, in which case only p = 0 is to be considered
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by Mp'\ a point q = e2πip/ι is mapped onto the point q = 02. It then follows that
the arguments leading to the previous conclusions may be identically applied to
any such point in place of the point q=l. Making use of the notation:

Dd),p,ι Ξ £ a&e2πinp/i9 o n e r e a dily finds the indicated extensions of (2.6):

p^p (2.9)

an application of which, by means of identical reasoning as used to arrive at (2.8),
also yields a generalization of the latter as follows:

KP,l\2

'lioW (2.10)

Σ

1 = 0

where the sum over index ί of each side is again unity, on the right-hand side this
being due to the unitarity of the modular transformation matrix MpΛ. It is clear
that for p = 0 and / = 1 Eq. (2.9) reduces to (2.6). In general Dω*p ι gives us
information about the relative degeneracy of levels modulo /. If for example we
take p = 1 and / = 2 in (2.9), on the left-hand side we get the ratios of the difference
between the dimensions of "even" and "odd" subspaces D®en - Dfdd of the fth

sector to that of the vacuum sector D{£\n - Dfd\. To evaluate the right-hand side
of (2.9) in this case, we note that the desired modular transformation in this case
is given by: τ->τ/(l - 2τ) which maps the point q = — 1 on the unit circle onto
the point q = 0 (more precisely we define a parameter z by letting τ = p/l + iz/l.
Upon performing the modular transformation we will let z->0+). The transform-
ation MpΛ affecting this modular transformation in the space of chiral characters
can be clearly taken to have the decomposition M 1 ' 2 = ST2S. Using this form and
the definition of transformation matrices T and S as given by (2.4) one can evaluate
the right-hand side of (2.9) and find the relation3:

^even ^odd _ -πic/24/
n(0) _ n ( 0 ) e V*» JV-i
" e v e n " o d d £ α

1 = 0

That the right-hand side of this equation is a real number is a simple consequence
of the relation (B.I) of Appendix B.

2 It should be pointed out that this transformation is not unique, because any transformation of the
form TmMp<ι for any integer m, would do the sams job. However as we shall see, all physical quantities
remain independent of the choice of m
3 An application of this relation to the Ising model, for instance, yields that for the character χί/2 the

right-hand side is equal to y/ϊ — 1 and that for the character χ1/ί6 it is identically zero. The vanishing

result in the latter case is directly connected to the fact that the rational point q = — 1 is not a singular

point of the character χι/ί6
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Perhaps the most interesting application of (2.4), and what is the general theme
of the present paper, is made by the use of the Cauchy integral formula. The use
of the Cauchy integral formula in the analytic theory of partitions was advocated
many years ago by Hardy and Ramanujan, as we shall describe in some detail in
the next section, who made use of this formula to arrive at some remarkable
asymptotic expansions for several important partition functions. According to the

oo

Cauchy integral formula, since the functions M(l) = clc/24~hiXi((l)= Σ α π V *s a

«=o
regular function everywhere in the interior of the unit disc in the complex q-plane,
we have the following integral representation of the coefficient a^ for fixed values
of i and n:

Here nt = n — c/24 + Λέ and the contour of integration Γ in this formula is any
closed contour surrounding the origin q = 0 and lying entirely interior to the unit
disc in the complex <j-plane, and may be taken to be any circle with the center at
the origin and radius p< 1. To see how this integral behaves we let the radius
tend to I:p->1~ and, as it is commonly done in the physics literature, use the
modular transformation property of the partition function xt(q) to render an
approximate evaluation of the integral using the saddle-point approximation [5].
To be precise, we note that the point q = 1 is roughly a saddle-point of the integrand
in Eq. (2.12) in the limit of large n. Furthermore making use of (2.3) and (2.4), Eq.
(2.12) leads to:

0-1 zπi r Q"' ' 2πi Γ qn

 S P Q
r p p

where the last step is made noticing that in this limit q'«0 and therefore the
dominant contribution to the sum S^χ^q') comes from the vacuum sector, a
situation encountered previously. The integral on the right is normally evaluated
by defining a change of variable: q = e~2πω, and hence we also have q' = e~2π/ω.
Finally one makes a saddle-point evaluation of the resulting integral, which is
readily seen to give the result:

[2π(c/24) Ί g4πV(c/24)π,
— — — + 2πnfω dω ~ constant x 5/ 0 r-r—. (2.13)

ω J (n f)
3 / 4

This equation actually gives the correct leading order dependence of the coefficients
a{*} on n. As for the constant multiplying the leading-order expression, a slightly
more careful treatment shows that this constant is in fact equal to l/^/2(c/24)1/4.
The importance of this coefficient in thermodynamical considerations was pointed
out in [2]. Thus we see that the leading order behavior of the coefficient a^ for
all values of the index i in a general RCFT is determined solely by the knowledge
of the central charge of the Virasoro algebra c, and (certain) matrix elements of
the transformation matrix S. To put it yet more simply, the value of this coefficient
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is fixed by modular in variance. It is also interesting to notice that this result implies
that in fact the ratio of individual coefficients (i.e. for fixed n) of the ith sector to
the corresponding ones of the zeroth sector is given at the leading order in n by
the same ratio as of the matrix elements of the transformation matrix S as in (2.6):

a(i) 5

-—- = —— + non-leading contributions. (2.14)
an ύ 0 0

This relation will of course receive corrections from subleading terms. Can we
determine the non-leading contribution to the integral expression (2.12) for the
coefficients a®Ί As we shall describe in detail in Sect. 4, our answer to this question
is positive. Let us give a brief review of our strategy in dealing with this question.
Fix the value of index i for now. Consider the function χt(q) above. This function
is regular for every point in the interior of the unit disc in the complex g-plane
and has essential singularities for some or all of the rational points on the boundary
of this disc. As we let the radius p of the circular contour Γp approach value 1,
the integral on the right-hand side of (2.12) will pick up a contribution from each
of the singularities of the function χ£ on the boundary of the disc. The most
"dominant" singularity is at the point q = 1 as one may intuitively expect. This
leads to the contribution we have (in some sense) already computed using the
saddle-point approximation. However to obtain a more exact expression for a®
we must not only perform the integral in (2.13) exactly, but also include the
contributions from all the other singularities. This is the strategy of HR which we
will now turn to.

3. Analysis of Hardy and Ramanujan

Our intention in the present section is to give a self-contained account of a
remarkable approach proposed by Hardy and Ramanujan [3] in the beginning
of this century to study the asymptotic behavior of the class of partitions described
by elliptic modular functions or by functions closely related to them. Their
approach makes essential use of two important features of this kind of partition
function. The first feature common to all elliptic modular functions is that every
point interior to the unit disc in the complex plane is a regular point of these
functions. At the same time, some or all the rational points lying on the boundary
of this unit disc are essential singularities of such a function, with the function not
defined for points outside the unit disc. The second of these features is that modular
functions possess well-defined transformation properties under modular trans-
formations, a feature crucial in studying the behavior of these functions near their
essential singularities, a study which is at the heart of this approach as we shall see.

It is instructive to give a rough account of the use of these principles first,
though we have already alluded to the basic ideas involved in this kind of
application in the introduction of this paper as well as some in the preceding
section. Let us presently concentrate on the main example considered by these

00

authors, the characteristic function f(q)= Yli^-q")'1 associated with the
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number of distinct unrestricted partitions p(ή) of a number n as the sum of positive
integers. In physical terms, f(q) of course describes the oscillator partition function
for a single free boson on the torus world sheet with modular parameter τ related
to q via the relation q = exp (2πrr). The partition function f(q) is essentially given
by the reciprocal of the Dedekind η function: f(q) = qi/2*/η{q). Therefore its
behavior under modular transformations readily follows from the notably simple
linear properties of the elliptic modular function η(q), being a function of modular
weight of +1/2. To be specific, under an arbitrary modular transformation (2.2)
this behavior is given by:

{3Λ)

in which ζ is some 24th-root of unity depending on the parameters α, b, c and d
whose exact form will be given shortly. From this the transformation property of
f(q) is immediately deduced to be:

f(q') = Γ \cτ + d)~ */y */* V 1

in which q' = εxp {2πi(aτ + b)/(cτ + d)} is the image of the point q under this
transformation.

As transparent from its definition, / is analytic at q = 0 and has a well-defined
00

power series expansion in the neighborhood of this point. Thus f(q) = £ P(n)<ln

n = 0

with the integer coefficient p{n) being clearly the number of distinct unrestricted
partitions of number n and where p(0) = 1 by definition. The analyticity of the
function / in the interior region of the unit disc, however, also makes possible the
use of the Cauchy integral theorem in giving a contour integral representation of
these coefficients. Thus fixing n we can write the coefficient p(ri) in the usual way as:

where Γ is any arbitrary closed contour surrounding the origin q = 0 and lying
entirely interior to the unit disc. Thus we may take the contour 7" to be any circle
of radius p < 1.

As clear from its expression, the partition function f(q) has an essential
singularity for every point on the unit circle with a rational4 argument q = e2πipl1

in which one may take p and / such that 0 < p < I and as coprime integers5,
without any loss in generality (see Fig. 1). The singularity arises because infinitely
many terms in the denominator of/go to zero for these rational points. Inspection
of the denominator indicates that, roughly speaking, the degree of the singularity
of this function at each point substantially depends on the denominator / of its
fractional argument; the smaller the value of the integer /, the more zero's we get

4 The function f(q) is known to vanish for almost all the points on the unit circle with irrational
arguments. Some brief comments on this behavior at irrational points may be found at the end of
Appendix A
5 See footnote 1
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in the denominator, and thus the more singular is the behavior of the partition
function / at this point. We will shortly rigorize this observation.

The main idea of this method is to allow the radius of the contour of integration
Γp to converge to l(p-^ 1") in an n-dependent way, and at the same time to take
advantage of the modular transformation properties of the function/to determine
the precise singular form that this function admits as we approach each one of its
rational singularities on the unit circle. To put it slightly differently, the modular
transformation properties of the partition function f(q) allows us to find a "test
function" which approximates the function / near each singularity with a
substantial accuracy. Indeed, in the limit q'->0 the expression f(qf) rapidly
approaches unity, a fact which is transparent from the defining expression for /.
Consequently, if we consider the rational point q = e2πip/ι on the unit circle in the
complex g-plane and a modular transformation MPtl which maps this point onto
the origin q' = 0 of this plane, then an application of (3.2) yields an approximation
of the function/(#) by means of some specific exponentially singular test function
in the vicinity of this rational point. A useful way of doing this is to define a new
parameter z in this manner:

q = exp [2πi(p// + &//)], q' = exp [2πi(pf/l + i/fe)], (3.4)
then, for p odd we set6:

^ c=-l9 d = p9 (3.5)

and that for / odd we set:

a = p'9 b=-]-ψ^9 c = l9 d=-p9 (3.6)

in which the (non-unique) positive integer p' is chosen so that b is also an integer.
If both p and / are odd, either of the above definitions will be satisfactory. Assuming
further that we write q = e2niτ and q' = e2πiτ'9 in view of (3.4) it is easily verified
that: τ' = (ατ + b)/(cτ + d). The two choices of the set of parameters a-d given
above obviously lead to equivalent linear transformations. However they are
needed in order to represent the phase ζ for an arbitrary set of parameters by
means of a single formula given by [3,6]:

d-l)-^[d(c-fc) + αφ2-l)]|J (3.7)

in which the symbol ί - j is the Legendre-Jacobi symbol taking only two values

+ 1 or — 1. The complete set of rules defining this symbol may be found in reference
[6] and will not be repeated here. The details of this point and particulars of the
transformation theory of ̂ /-function, however, have been long known by mathe-
maticians and may be found in [6], thus we choose not to repeat them here.
Combining these definitions and assignments and by virtue of (3.2) one finds the

Because p and / are relatively prime, a pair of integers b and p' can always be found so that bl — pp' =
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following exponential form of singularity as q^e2πipl1 along any regular path:

in which ωpl is defined for p odd as:

and for / odd as:

ωFtI = i1 / 2expl j^lP/<-

where the principle square roots are intended in all these equations. To this end
it should be sufficient to give the final expressions for the phases. For / odd this
phase is given by the formula [3]:

and for p odd by the formula:

= (—)ex \-ni{-(2- J- ) + -(l--)(2 - ' - ' 2)Π (3 10)
ω*' \ P / e X P L 14 12V l) PP JJ

where the symbol ( - ) is the Legendre-Jacobi symbol mentioned earlier. Of

W
particular importance is the fact that the expressions given here for ωpl are
independent of the choice of the integer p\ the only criterion for which is that
(1 +pp')ft should be an integer, and therefore the substitution pf-+p'' + ml for any
integer m should leave the phases invariant. Equivalently, this is to say that the
phases and thus the expression of the partition function should depend only on
integers p and /, which together fully specify the positions of the singularities of
the partition function, and not on any other parameter as such. It is really to (3.8)
that the analysis of Hardy and Ramanujan is owed.

The evaluation of the integral in (3.3) would now become possible if we could
in some sense arrange to dissect the circle Γp into small arc segments ξPth one for
each rational singularity e2nipl1 of the function f(q)9 so that on points of any given
arc segment the function / may be replaced by the test function, as given by (3.8)
(see Fig. 1). Then we may express (3.3) at least formally as a sum over these arc
segments:

p(n)= Yωple-2ninplι(—) f z 1 / 2exp[ — + — ( n - 1/24) \dz. (3.11)
pi \ I /«;.. Ll2/z / J

Rational points are unfortunately dense on the unit circle and thus for our
prescription to be useful we have to adopt a somewhat more subtle approach to
the matter of dissection of the circle mentioned here.

Now that we have disclosed the rough strategy, let us begin with a rigorous
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treatment of the method. Here we will rather closely follow the discussion given
in Ref. [7] which is a variant of the discussion given by Hardy and Ramanujan
in their original work. We have chosen to do so because the analysis of [7], though
more concise and less involved, nevertheless exhibits all the essential features of
the original arguments by Hardy and Ramanujan. Let us begin with a note on
the nature of the singularities of the partition function f(q). To do this, we focus

JV

our attention instead on the partial or "restricted" expression fN(q) = ]J (1 — qn)~ \

in which the exponents involved in the product are bounded by some fixed integer
JV, and think of function f(q) as the large-TV limit of these restricted expressions.
The function fN here is clearly the generating function for the restricted partitions
pN(n) of a number n as the sum of integers not exceeding JV, and indeed for JV ̂  n
it reduces to the unrestricted partition p(n). Moreover, for fixed JV, the function
fN has finite order singularities, or poles, at those rational points on the unit circle
for which the argument has the denominator not exceeding JV; / ̂  JV. The order
of the pole at one such rational point is thus seen to be given by [JV//], where the
bracket denotes the integer part of the expression contained. It is clear that the
order of singularity is larger in inverse proportion to /.

The set of rational points />//, including 0 and 1, with 1 ̂  / <̂  JV when considered
as an ordered set, under the usual" < " ordering of numbers, form what is commonly
referred to as the Farey's series FN of order JV. This set has many interesting
arithmetic properties which do not particularly concern us here, but some of which
may also be found in [8]. The relevance of FN to the analysis of Hardy and
Ramanujan is that it naturally provides the aforementioned dissection ΣN of the
full circle into arc segments ξPtl9 each in effect centered around a rational point

e2mp/ι Hence in the limit JV -• oo, and in the manner to which we alluded above,
this leads to the desirable situation where all the rational singularities of the
partition function / are taken into account when evaluating (3.3) or equivalently
(3.11). Though many equivalent descriptions of the dissection ΣN of the circle may
be given, the original description was given by considering for a fixed rational
number p/l in Farey's series of order JV, three consecutive rational numbers in this
series pr/l\p/l,p"/Γ. We then consider an arc segment ξPyl defined by the angular
range: φ'pl<φ<φpl9 where the endpoints φ'pl and φ"pl are defined as7:

**« / Kΰn' φι;>'ι=l+WW) (312)

A remarkable property of Farey's series of arbitrary order is that for any two
consecutive terms p'/V and p/l in such a series one has the relation pΓ — p'l= 1.
Using this property it is simple to show [3] that (3.12) indeed leads to a dissection

of the full circle. This we write symbolically as £ ξPtl = 1. Moreover it has been

shown that the length of each arc segment is larger than 1/2/JV and smaller than

7 Note that the Farey's series of order N begins at 0 and terminates at 1. Thus the intervals described
here would clearly form a dissection of the circle should we choose the end points for / = 1 say in the

form: φ01 = 1 and φ" =
N + l ' N + l
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1//JV which we write symbolically in the form: 1/21N < ξpJ < I/IN. The last property
turns out to be essential in evaluating (3.11) to the desirable approximation.

Using these ideas, we are now equipped to disclose the precise sense in which
the summation in (3.11) has to be performed in order to lead to a rigorous estimation
for the p(ή). Starting afresh from Eq. (3.3), and fixing the value of integer π, we
consider a circular contour of integration Γp centered at the origin and having
the radius p = e~2πln. Clearly p->l~ as n approaches infinity. We shall have to
postpone for the present the justification for the precise way we have chosen this
contour to approach the unit circle; suffices it to say for the moment that this
choice is the optimal choice one can make in order to obtain the most accurate
estimation of p(ή). Letting q = pe2πiφ, and by virtue of (3.3) we have that:

P(n) = p-n)f{pe2«i«>)e-2™«dφ. (3.13)
o

Breaking the range of the integration by means of the dissection ΣN we may further
define a "local" angular variable θ in each arc segment ξpl associated with this
dissection by means of the substitution: φ = p// + 0 and at the same time we may
define a new parameter z via the relation: z = /(1/n — iθ). Thus we rewrite the last
equation as:

p(n)= -i^e-2™"1- J /(exp[2πi(/7// + i z / / ) ] ) e x p f ^ ) d z (3.14)
P,l l ξP,ι \ l J

in which by letting -θ' p l and θpl denote respectively the upper and lower bounds
of the angular integration, the limits of z-integration are simply noted to be given
respectively by /(1/n - iθpl) and l(l/n + iθ'pl). It follows from the definition of the
arc segments ξpJ that:

with /' and /" defined earlier.
Our next step is to make use of the approximate form of the function f(q) in

the vicinity of its rational singular points as described by (3.8). In fact the full
expression may be given for an arbitrary point q = exp [2πf(p// + ιz//)] in view of
(3.2):

+ Σ p(m)ωp,e
2πim^ιz1'2

Qχp\^(l/24-m)-^\ (3.15)
m=l \_IZ 12/J

The appropriate limit for us to be considering is the limit z->0+ in which limit
clearly q-+e2πip/ι and also g ^ O . It should be clear that the term involving
summation in the last equation is vanishingly small in this limit, thus serving only
as a tiny correction to the singular first term in a small neighborhood of each
rational point on the unit circle. Inserting this expression for f(q) in Eq. (3.3), we
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arrive at the final form of the integral:

p(ή)= - i Σ
P,I

') ί
I ξP,ι

(3.16)

where ή = n — 1/24 and the range of I in the sum is 1 ̂  / ̂  N and p ranges through
numbers smaller than and relatively prime to /. This result is clearly the same as
the formal result (3.11) except that here we have managed to attach precise meanings
to the otherwise formal sums and integrals within that equation. We have still to
make a proper choice for the integer N in this sum as it has been so far left
arbitrary and must be thus chosen to lead to the most accurate estimation of p(ή).
An examination of this point can be shown to lead to the determination of N as
N = constant x y/n, but we have to postpone this analysis for the present time.
Since the number of elements in the Farey series FN is O(N2) we end up with O(ή)
terms in (3.16). The remainder term Rn has the same structure as the first term
and is given by:

m=l

1 J
ξPίl

— ( 1 / 2 4 -

(3.17)

Even though the complete details of the computation of the integral expressions
above are delegated to Appendix A, the basic line of reasoning and the results
may be succinctly described here as follows: As in Fig. 2, the first term in (3.16)
is computed by adjoining several additional line segments; ξs for s = 0,1,..., 6 to
the original path segment ξ along which this complex integration is to be performed.
By virtue of the Cauchy theorem and the analyticity of the integrand everywhere
in the punctured z-plane with a cut along the negative real axis, the integration

ω-plane

Fig. 2. The line integral over ξpΛ can be deformed, by using analyticity, to - ξ3 - ξ2 — ξλ + Ω - ξ6 -

ξ5 - ξ4. ω is related to q by q = e-
2πωe2κtpl1
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along the combined path in the counter-clockwise direction equals the integration
along the path Ω also shown in the figure. The integration over the contour Ω is

(0 + )
more commonly denoted as J , and in the present case the integral can be

- α o

computed exactly with the aid of a loop-integral formula for the Bessel functions
of the first kind J v:

1 πi -

lexp(ί-z2/4t)dt. (3.18)

Moreover, study of the integrals along the path segments ξs, s = 0,1,...,6
reveals that these integrals are all at most of order 0(n~1/4), a negligible correction
in comparison with otherwise growing exponential behavior of the main
contribution to this integral as emerging from Ω -integration. In addition,
examination of the integral Rn in (3.17) demonstrates that the contribution to p(ri)
which comes from this term is also of the same order of smallness: Rn = 0(n"1 / 4).
The details of all these assertions may be found in Appendix A, however. Thus
the final answer is found to be (see Appendix A):

ίl d /^(«/0V(2/3)(n-l/24)\

= Σ Σ (cop,e-2ninpll)^j-( l +0(tt-1/4). (3.19)
^ 2 / 2 M J1/24 )

The leading contribution to this sum comes from the leading order singularity
q = 1 which corresponds to / = 1 and p = 0, and is readily found to be of an
exponential form [3]:

i Λ / «/(2/3)(Λ-1/24)\

p(n) = - - ( )+. . . . (3.20)
iπ^βdnX jn-l/24 )

)
)

The largest non-leading contribution to the partition p(n) comes from the second
most significant singularity q= — 1 which corresponds to / = 2 and p = 1. It is
found to have the form:

/ e(nl2W(2l3)(n- 1/24) \

\ Jn-\I24 )'

[ lfd'~ (3.21)
2π dn

Looking at one more term, the two singularities of the next order of importance
q = e2πi/3 and q = e 4 π ί / 3 which correspond to / = 3 with two respective p-values
p = 1 and p = 2, together lead to the following contribution:

Jϊ (2nπ π \ d / ^
^—cos )— . (3.22)

V 3 18/M 7^1724 /

(2nπ π\d/^/3M2/3)(n-l/24)\

V 3 18/M .7^1724 /

All the other terms in the asymptotic series (3.19) may be computed without any
additional difficulties and they are found to be typically of the same structure as
say the last expression. Particularly noteworthy is the form we have found for the
error in this "perturbative" series for the partition function p(n). Its form clearly
indicates that for large values of n the series is not only asymptotic but it is also
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exact, as follows from the integrality of p(n) and vanishing of this error term in
this limit. This is the surprising aspect of the work of HR, namely by adding a
finite number of terms, about O(n) terms, we can obtain an exact result for p(n)
by taking the closest integer to the sum. We have shown in Appendix A that as
a general rule the modular weight of a given modular partition function (being
—1/2 for f(q) determines the structure of the error term one finds for the
corresponding asymptotic series. Specifically for modular forms of weight d we
find that the error term is of the order O(nd/2) for d ^ 0 and O(nd) for d > 0. We
shall encounter several examples of this fact in subsequent sections of this paper.
Another item of great importance to the remainder of this section and to the rest
this paper is that the method we have described in this section may not only be
applied to a variety of modular forms with simple linear transformation rules such
as (3.1) or (3.2) but it is equally applicable to any family of modular functions
which transform linearly among one another under modular transformations. A
major part of the present paper is devoted to the analysis of this kind of situation
as will be discussed in more detail later.

Let us consider some simple generalizations and applications. An immediate
application of this method, as discussed by Hardy and Ramanujan [3], is to the
family of functions whose general form in terms of f(q) is given by:

where ai9 α,, bj and βj are any arbitrary set of positive integers and also taking
notice of the fact that / ( — q) is expressible in terms of f(q) as: f( — q) = ({f(q2)}3/
f(q)f(q4)). Even though most partitions of this type are of combinatorial and
number theoretic value, among them there are some partition functions of
fundamental physical importance. For instance consider the partition function:

(3.24)
f(n2\ °°

f(q) Π
i t = l

which is (essentially) the partition function for the free theory formed by a single
holomorphic boson and a single holomorphic fermion with AP spin-structure on
the torus. Note that F(q) can be described in terms of the character χ 1 / 1 6 of the
irreducible representation of the Virasoro algebra with h = 1/16 and c = 1/2, i.e.,
F(q) — (\/η)χί/ί6. It also possesses a description in terms of the basic Jacobian

theta-function 92(q) as F(q) = (l/y/2η)y/92/
fl' We. let an denote the coefficient of

qn in the series expansion for this partition function; thus we see that:

F(q) = Σ <W" = 1 + 2<7 + V + Sq3 + .... (3.25)

Using (3.8) in (3.24) it is not difficult to show that for q->e2πip/ι the behavior
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of F tends exponentially to an infinity which for / odd is of the form:

( 1 2 6 )

in which the bracketed expression [2p] is such that [2p] < / and is equivalent to
2p modulo additions of /. For the rational points with / even the behavior is
however not singular near these rational points:

(3.27)

in which again [p] < 1/2 and is equivalent to p modulo additions of 1/2. Thus it
should be clear that there shall be no contributions from the rational points for
which the denominator I is even to the asymptotic expansion for the coefficients
an of this partition function. Hence we will reach the final form of this expansion
with no additional difficulty:

ίl d ίe(πll)Sn\
an= Σ Σ (QP,ιe2πinp/ι)γ^(^) + O(n-^) (3.28)

4πdn\ j J

1 d(e**\ Jϊ (2nπ π\ d feiπ'*w~n\

AπdnX^JnJ 2π \ 3 6jdn\ ^β J

in which qpl denotes the combination of phases which we found in (3.26). The
first couple of terms of this expansion are then readily shown to be [3]:

(3-29)

Other fermionic partition functions which occur commonly in superstring
theory, and often in company with F{q\ are those associated with other spin
structures for the chiral fermion on the torus. Let us name the partiton function
associated with the AA spin-structure G and that associated with the PA
spin-structure H. These have the familiar forms:

Πα+«""1/2) Πα-<r 1 / 2 )
G(q) = q-i/16n-^ and H(q) = q~1/16^ . (3.30)

Π(i-Λ Π (!-«">

These partition functions also have simple descriptions in terms of the Jacobi
theta-functions d3(q) and 9A{q) respectively as: G(q) = (l/η)y/S3/η and H{q) =
(l/η)yj3Jη. We would naturally be interested in carrying out similar analyses for
these partitions. Separately, however, neither of these functions satisfies the analytic
criterion of the method of Hardy and Ramanujan. Nevertheless, as it is quite well
known, appropriate linear combinations of these functions (which correspond to
GSO projected subsectors) do possess the required structure, these being related
to the two remaining irreducible characters χo(q) and χ1/2(<?) of the c = 1/2 Virasoro
algebra in the same manner that F(q) is related to the character χ1/16(q).
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Thus:

G(q) = -(χo + χm) and H(q) = -{χ0 - χ1/2) (3.31)
η η

for which the characters have the required analytic expansions to which our method
visibly applies:

-fo) = «-1/16 Σ Jw" = ί- 1 / 1 6 ( l+« + V + 593 + λ (3.32)
y\ «=o

and similarly

^ % ) = <?7/16 Σ c«<? = «7/16(J + 29 + 4<?2 + 7 ?

3 + •••). (3.33)

Even though perhaps no simple expression in terms of f(q), such as (3.24),
exists for these characters, it is nevertheless possible to use the transformation
properties oϊf(q) to establish, in a manner similar to what we did for the partition
function F(q\ the asymptotic series for these partitions. This may be done for
instance by studying the asymptotic series of the partition function:

/ ( - I ) /<«2>
n = l

It is quite simple to show that by virtue of the definitions of the characters (l/η)χ0

and (l/^)xi/25 their respective coefficients bn and cn are given in terms of the
oo

coefficient dn of R; R(q) = £ dnq
n, by the simple relations: bn = d2n and cn = d2n + ί.

n = 0

Our problem is therefore reduced to finding the asymptotic expansion for dn9 a
problem whose solution is very similar to that for the function F(q), i.e. using the
description in terms f(q) to detect the exponential singularities of this function.
Indeed for / odd we find:

ω[2P],ι ΠΓ- ί n πz
R(q)~—^V^exp T ^ - ^ T , (3.35)

ω ί2p + Π.2l V 1 6 / 4 /

similarly for even Γs of the form / = 4m we find:

but for even Γs of the form Z = 4m + 2 we find a non-singular form:

R(q) ω[pUI2 y ^ z e x p ί ^ ^ j . (3.37)

Allowing εpl to denote the phase expression in the relation (3.35) and δp t the phase
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expression in (3.36), the asymptotic series for dn takes the final form:

Je2Z +

ίl d /V*/0V(l/2)(«-l/8)N
._v!__!lί ) -4- O(n-v*Y (3.38)

^(π/lK/(l/2)(ιi-l/8)

Using this and the relation of dn to the coefficients of our interest bn and cn

mentioned above, we readily find the desired asymptotic series for the latter.
Looking at the first few terms of each series we find:

—cos nπ + - —
2 \ 8 / d \

/2nπ π\ <*
cos —

V 3
+ (3.39)

1 / 3πλ rf /e(«/2Wϊ
H cos nπ 1—

2π \ 8 Jdn\ /̂n

(3.40

So far we have discussed few examples from a rather special class of partition
functions of the form (3.23); those with the modular weight — 1/2. There should
be no inherent difficulties in generalizing the prescription of Hardy and Ramanujan
to modular functions of arbitrary weight. Thus consider, as an example, the
partition functions:

f (a)

f(q)
(3.41)

which is another member of the family of partitions functions (3.23). From an
arithmetic standpoint, P(q) is the generating function for the partitions of a number
n into odd parts, or equivalently into unequal parts. It also satisfies the relation:

2Xi/i6 a n c * ^ is essentially the partition function for a single chiral
PA b d dii h h b i f h i l i

— Q~1/24

fermion with PA boundary conditions on the torus, thus being of physical interest
to us. It is apparent from (3.41) that P{q) has vanishing modular weight. In fact
by virtue of (3.8), and in analogy with (3.26)-(3.27), the exponential singular
behavior of this partition function in a small neighborhood of the rational point
q = e2πip/ι is observed for / odd to be:

(3.42)
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However, for / even we find a non-singular behavior:

) (3.43)

from which it follows that there are, as we may have expected from the second
equality in (3.41), no contributions from the rational points on the unit circle whose
denominator is even. A rather simple computation is then required to reach the
final form of the asymptotic expansion for the coefficient s(ri) of qn in the power

oo

series expansion of this partition function: P(q) = £ s(n)qn. General arguments of
n = 0

the kind required to obtain this result will be discussed in Sect. 5 and we need
not go into the details of these arguments here. The final result is thus found to be:

»>= Σ Σ l°rf-2*^iJo(τ£(» + έ ) ) + 0(1) (144)

2« Λ V ' V 3 V 24//
in which σp denotes the combination of phases present in (3.42) and Jo is the
Bessel function of the first kind with an imaginary argument. One notices that the
error introduced by this expansion is here found to be a constant independent of
n and hence does not seem to indicate the exactness of the series looked at
previously. We will have more to say on this later on in Sect. 5 and Appendix A.
The first two terms may thus be found to be as follows [3]:

d r (in

(3.45)

A similar analysis can be performed for the other two even spin structures, which
we leave to the reader.

4. Extension to Rational Conformal Field Theories

We argued in a previous section that the prescription of Hardy and Ramanujan
finds application in a variety of cases of physical interest and we saw some examples
of their application in that section. One naturally expects to be able to apply the
same prescription to find asymptotic expansions for the chiral characters of an
arbitrary RCFT.

It should be clear from our discussion of the method of HR that the basic
ingredient in finding our series is to study how the characters transform under
modular transformations which takes a rational point on the boundary of the unit
disc in #-plane, to q = 0. We have already seen a simple example of this as described
by phases in (3.10)—(3.11). However, for RCFT's, since the modular transformations
are more conveniently expressed in terms of S and T, we would like to express a
given modular transformation in terms of products of them. So we will first discuss
some basic facts about the modular transformations.

An arbitrary modular transformation τ' = (aτ + b)/(cτ + d) can always be
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expressed in the following from using continued fractions (see for instance [9,10]):

l— (4.1)

1

a0 - l/τ

here aj for 7 = 0,1,.. ., N are non-zero integers and a^ is an integer which may also
be zero. Following our conventions in the previous section, we would like to
consider modular transformations with a = — p', b = ((1 + pp')/I), c= —I and d = p,
where p, / and p' are all non-negative integers. The constants ap j = 0,1,.. ., N in
the above expression also occur in the continued fraction representation of the
ratios l/p and p'/l as given by8:

1 1
l/p = ao + , p'/l = a^-\ (4.2)

ax+ aN +
" + — "'+ —

aN a0

It follows from (2.1) that a general modular transformation M has a
decomposition in terms of the generators S and T of the modular group as in the
form:

M = τa*ST(~1)NaNS''T-aιSTaoS (4.3)

in which the integers aj are again positive with the exception of a^ which may
also be zero. We have already noted in the previous section that there exists a
kind of "gauge" arbitrariness in the choice of p' and that the quantities of interest
to us are all independent of the choice of this gauge. Specifically our expansions
are collectively invariant under: p' ->/?' + ml. Notably this substitution affects the
form of the modular transformation M in (3.3) in the manner:

p' -> p1 4- mloM -> TmM, (4.4)

as is apparent from the second of Eqs. (4.2). The proofs of invariance under the
choice of p' in each of the forthcoming contexts will thus make use of this fact as
we shall see.

Let us now return to the main point of this section, the determination of the
asymptotic series for the coefficients a® of the chiral characters χ£q) in Eq. (2.3).
Following the prescription of the previous section, as already pointed out in Sect. 2
of this paper, we have to consider the contribution from each rational singularity
of the character in question on the boundary of the unit disc. Again we first fix
our attention on one specific such point: q = e2πip/ι.

Consider the modular transformation MPtl mapping this point to the origin
q = 0 of the complex g-plane. We will denote the unitary matrix affecting this

8 As a rule the division should be continued, making use of the replacement r = r— + j of the final
element in the fraction, until the forms of the two continued fractions for p/l and p'/l are in agreement
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transformation in the vector space of chiral characters by MpJ. Hence we have that:

( 4 5 )
Following precisely the same steps as those used for p(ή) this formally implies:

in which we have defined n, = n — c/24 + hi9 and where the arcs ξp q forming the
dissection of the unit circle are same as in the previous section. The next step is
to break the integrand in two parts, a most dominant part, singular in case of
characters for which the exponent — c/24 4- hj < 0, and a non-singular part9 which

rapidly approaches zero as q'-+0: χ7 (^) = « o V " c / 2 4 + Λ i + Σ α^Yw~c/24+/l '. The
ro=l

counterpart of (3.8) for the character χ^q) is now only a simple exercise to derive.
It is found that the behavior of this character in the vicinity of the rational q = e2πinp/ι

has the form:

χiq) ~ α<?[(M' ')- ye- *«*/"-W/ι e x p ^ ( c / 2 4 - Λ,)]. (4.7)

Finally denoting the integral over the second part of the expansion above for χt

by R^\ and using the same notations and arguments as in Sect. 3, this expression
can be easily shown to be equal to:

/ p / ι J e x p P 7 ^ 4 ~hj) + 2πωnfldω + ««, (4.8)
P,I ξP,ι [_ I ω J

where now θfj1 denotes the following expression:
x]f exp(2πf[(c/24 - hjp/l - (c/24 - /z>'//]) (4.9)

with no summation over j intended in this last expression and where R^ has
exactly the same form as the first term with (c/24 - hj) in the argument of the
exponential (in the integrand) replaced by (c/24 — hj — m) and with an additional
summation over j . We leave the details of the computations of these integrals to
Appendix A and simply give the final result here:

<° = Σ Σ W/e-2**'*l)-~J0( —^(c^-hj)^ + constant, (4.10)
j=oι,P an \ I J

described in terms of the derivative of the Bessel function of the first kind J o with
an imaginary argument. Though all values of j are being formally included in this
sum, those values of j for which c/24 — hj^O are clearly observed not to lead to
exponentially growing terms, and are thus generally not of great interest to us.

9 For conformal theories with c>24 some of the subleading terms might also be singular and have
to be treated similarly. This will not be the case for string theory (as is clear in the light cone gauge).
Also the methods discussed here obviously generalize to non-unitary conformal theories as long as we
include all the singular terms
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Thus in these and subsequent formulas the value of j is implicitly restricted to
those for which c/24 - h} > 0. For large values of n, it is simple to find the leading
behavior of a(*\ as a function of n, using the known asymptotic form of the Bessel
function Jo with imaginary argument: J0(iz) ~ ez/-s/2πz and recover the previous
result (2.13) with the value of the constant being (l/^Xc/24)^4, as mentioned in
the paragraph following that equation. Note that the quantities D(i)tPj defined in
Sect. 2 are proportional to Sf^ which correspond to leading singularities in (4.10).
Using this we can recover (2.9).

The (constant) correction in the above expression cannot be determined using
our analysis and requires a fundamentally different approach for its determination.
This point has been illustrated in detail in Appendix A where we have shown the
reason for the emergence of this error term in this case and its absence from say

00

the simple bosonic oscillator partition function f(q) = f\ (1 —qn)~ι discussed in

Sect. 3. This is connected to the chiral characters having zero weight under modular
transformations, as opposed to the bosonic case in which the modular weight of
the function f(q) is - 1/2.

As for the proof of invariance of the expansion (4.10) under different choices
of parameter p' alluded to earlier, it directly follows from (4.4) and (4.9):

ij j U U \ ' '

in which the last equality has resulted from the definition of Oy phases defined earlier.
The reality of the expression (4.10) for the coefficients off in general RCFT

follows from the symmetry and unitarity of the transformation matrices S and T
as well as relation (2.5) which hold between them, together with the expansion
(4.3) for the elements of the modular group in terms of these generators. The details
of the proof as well as some properties of the coefficient matrix Sfj1 are however
provided in Appendix B.

4.1. A Simple Example: Critical I sing Model on the Torus. An explicit example of
the formalism developed in this section is furnished by the critical Ising model on
the torus for which c = c = 1/2. The unique modular invariant partition function
in this theory is the diagonal invariant formed from three chiral characters

Xo = -\AΠ+PO ), Zi/2 = - ΛΠ-PD and * 1 / 1 6 = — A\J9 corresponding
2\ A A / 2\ A A ] ^Jl P

to the three unitary irreducible representations of the c = 1/2 Virasoro algebra;
h = 0,1/2,1/16, together with their conjugates: Z I s i n g = χoχo + χmXι/2 + XψβXi/iβ-
The descriptions in terms of the spin structures, or equivalent descriptions in terms
of the basic Jacobian theta functions, then leads to the well known ^-expansions
for the characters. The vacuum sector corresponding to h = 0 thus has the character
expansion:

χo(q) = tr[h = 0](qL°-V*») = < Γ 1 / 4 8 ( 1 + q2 + q3 + 2q* + •••), (4.12)

and the character expansions for the other two sectors h = 1/2 and h = 1/16 are
respectively given by:

Xll2(q) = t r [ A = 1 / 2 ] ( ^ » - "* 8 ) = q23»8(l + q + q2 + q3 + •••) (4.13)
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and also:

°" 1 / 4 8) =) = V (4.14)

It should be noted that vacuum is the only sector in this model which possesses
a character expansion with negative leading exponential. Inspection of the
asymptotic formula (4.8) in this case thus reveals that the only significant
contributions to the expansions indicated by this formula must come only from
this sector. Let us proceed to determine the first few terms of the asymptotic
expansions for the coefficient af, for each of the three characters i = 0,1,2 in this

theory. The well-known transformations of the chiral determinants X[J with X,
Y

Y = P,A under τ-+-1/τ: X\J^>YO immediately determines the form of
Y x

transformation matrix S in the basis {x09X1/29Xin6}
 t o b e :

J2

sβ -y/2 0

(4.15)

Also from the conformal dimensions of the three subsectors, and the central charge,
or from the direct inspection of (4.12)-(4.14), the form of the transformation matrix
T in the same basis is readily determined to be:

(gί-Ac/24) 0 0 >

0 _e(-i*/24) 0 . (4.16)

0 0 e(in/12)j

A straightforward application of (4.8) is thus seen to give the following first few
terms of the asymptotic expansion for the degeneracies of the three chiral characters
in this theory, as the reader may readily check. For the zeroth sector, h = 0, the
result is: 2dn

flnπ 1
+ c o s ί τ + y j ^

/ Ad
V SJdn

in ί
— /-
2V3

1

48

3V3V 48
(4.17)

For h = 1/2 sector.

m Id/. /Ϊ7 23\\ / 3π\d fiπ /Ϊ7 23\\
aί) = -—J0[ ιπ H n + — +cos «π — Jo — / - « + — )

2dn °\ V3V 48// V 8; (/n°V2V3V 48//

+ COS J o —

V 3 9/dn °V3 48
(4.18)
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and finally for the h = 1/16 sector one finds:

ti\ 1 d
J o iπ / - ( w + —

V V 3 V 243V 24

d . ( i n ,., , t l . ( 4 1 9 )

We may note that the last expansion is identical with the expansion obtained
00

earlier for the partition function £ (1 + qn). This is of course expected as this
π = l

function represents, as mentioned earlier, the oscillator partition function for a
single holomorphic fermion on the torus with periodic (P) boundary conditions
in spatial direction and (A) boundary conditions in the time direction, the precise
characterization for the defining spin-structure of the chiral character χυi6{q).

4.2. Another Example: Strings on a Circle. A well-known class of rational
conformal theories are obtained through the study of the strings propagating on
backgrounds at special rational moduli. The simplest such example is provided
by strings propagating on a circle of rational dimension. The rationality in this
case, as we shall describe in detail shortly, refers to the square radius of the
compactification circle being a rational number. For the reasons of convenience
and without any loss of generality for rational circles, the radius R of the circle
may be taken to have the form: R = y/r/2s, where r and s are positive co-prime
integers. The partition function of this theory has the well-known form:

1 1 2 nR-mR2- 1 2 n2R + mR2

Zdτcie

 = ~- Σ q(1/)(n/R mR) q^/2^n/2R+mR^ (4.20)
η*\ n,meZ

which entails the trace over oscillator states in the Fock space, as described by
the oscillator partition function 1/ηή, and over the momentum and winding states
associated with the compact dimension, as described by the partition function

£ qPL'2qPR'2 in which pL = ^p — w and pR = \p + w, and where p and w, denoting

respectively the momentum and winding of the states in the compact direction,
are quantized according to usual rules as: p = njlR and w = mR.

Let us first proceed to bring the partition function (4.20) into the standard
form (2.1) for RCFT's. Defining N = 2rs we first bring Z c i r c l e to the convenient
form below:

Ύ — V n(l/2N)(ns-mr)2ή(l/2N)(nS + mr)2 (AΊU
^circle"" - L* V H ' V*-Δl)

ψ\ n,meZ

Next we denote the integer quantity inside the parentheses in the g-exponent by
Z: ns — mr = I. Fix the value of integer I and suppose that two integers nx and mx

satisfy the latter equation with this value of Z, hence n1s — m1r = l. Since r and s
are designated to be relatively prime, there exist integers u and v, which are by
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no means unique10, for which one has us — vr = 1. It is not difficult to show that
the set of all pairs of integers (n, m) satisfying the equation ns — mr = I is identically
equal to the set {(ul + ίr, υl + is); ίeZ}. It follows from this, together with a further
definition λ = us + vr, that the set of values of the expression ns + mr is identically
given by {λl + tN; teZ}. Putting all this together, we arrive at nearly the final form
for the partition function:

ĉircle = 4 Σ ^ ^ V 1 ™ ' ^ 2 . (4.22)

The final step may now be managed by noticing that the argument of the q-
exponential is invariant under shifting / by multiples of N. Using this fact, some
simple manipulations and renaming of the variables finally lead us to the desirable
form for the partition function of this theory:

Circle = Λ " f t Σ q<N'2*»+k<NA( Σ r / 2 ) ( m + λ*/Λ°2) (4.23)

which has the standard form (2.1) with left chiral characters χι now having the
specific form:

Σ q(m)in+k/N)2 (4.24)

and, defining k = λk, with right chiral characters having exactly the same form but
with q and k replaced by q and k.

As it is transparent from (4.23), the partition function Z c i r c l e is in general an
off-diagonal invariant in the space of characters χk, as the integer λ defined above
in most cases is different from unity. In fact it is apparent from its definition that
λ = 1 if either r or s is equal to unity. Some comments about the quantity λ and
the partition function are in order at this point, however. Firstly, one should note
that since, as mentioned in the previous paragraph, the integers u and v are not
unique, then λ itself is not uniquely defined. In fact it should be clear from the
definition of λ that this quantity is only defined modulo additions of integral
multiples11 of N. But the characters χΛΦ remain well-defined as their definition
only depends on the equivalence class \_λ] modulo N. Secondly, it follows from
the definition of integers λ, u and v that

A 2 Ξ 1 (mod2N), (4.25)

and in particular that λ and N are relatively prime integers. In fact this can be
reversed, i.e., given an even integer JV and an integer λ defined modulo N, satisfying
(4.25), one can find r and s. Therefore we can make a change of variables from

(r,s) to (ΛU).
The matrix elements of the transformation matrices S and T in the space of

characters are simple to obtain by making use of the Poisson resummation formula

1 0 It should be noted that any pair of integers (u 4- mr,v 4- ms) for meZ may be used instead of the
given pair (u,v) satisfying their defining relation: MS — vr = 1
1 1 See previous footnote
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and the inspection of (4.24) and are given by:

Through an application of (4.10) this information may be used to arrive at the
asymptotic series for the character coefficients a™ for all the N chiral characters
fc = 0,1,.. ., iV - 1 of this theory. A rather lengthy computation gives the final result
as we presently describe. Firstly the contribution from the leading value / = 1
(p = 0) in the summation (4.8) is given by:

~ 2 >

αί*} = V cos —J 0 (4πi / n^ , (4.27)

where Πj = n— l/24+j2/2N, as defined previously and where, for the reason of
simplifying the form of this expression, we have defined the hatted symbols as:
j =j if j ^ N/2 and j = N — j if j f ^ N/2. The dimensions hj of the characters are
thus given by hj =j2/2N. The contribution to the sum coming from / = 2 (p = 1)
term in the summation can also be shown to be of the form:

(4.28)

and looking at one more value of /, we find this contribution from the two terms
p = 1,2 of the sum associated with the value / = 3:

^ U i o ^ I(
3N 36/dn °\ 3 V \24 2N

(4.29)

In the last two equations Cί and C 2 denote constants which crucially depend on
the equivalence classes of integers k + m and N/2 in additions modulo 2 and 3
respectively. For instance it may be verified that Cx is of the form:

if — e2Z,fc + me2Z or — e 2 Z + l , fc + m e 2 Z + l ,

N N
C 1 = 0 if — e2Z, k + me2Z + 1 or — e 2 Z + l , k + me2Z.

Similar arithmetic structure is observed for the constant C 2 . In fact the same is
true for all other terms of the asymptotic series. In particular, when finding the
terms coming from the singularity at the rational point e2πip/ι, the equivalence
class of N/2 modulo / will be relevant in defining the coefficients of the asymptotic
sum.

5. Extension to String Theory

It is a relatively simple task now to extend the analysis of Sect. 2 and 3 to the
case of strings spatially compactified on rational backgrounds. In applications to
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string theory, we have to decide how many uncompactified directions D we wish
to have. The obvious phenomenological interest is for D = 4. However, for strings
in the early universe, one might be interested in the case where all spatial directions
are compact [2] and so one is dealing with D = 1. The main novelty for the
partition function of particles in string theory, compared to that of a conformal
theory, is that the modular weight of the partition function is not generally zero,
and it depends on the number of uncompactified directions. The modular weight
is — (D — 2)/2. This is because, in the light cone gauge we have D — 2 bosonic
oscillators in addition to the other degrees of freedom coming from the internal
conformal theory, each contributing a factor of —1/2.

If we assume the internal conformal theory is rational, with chiral characters
χh the string partition function will have the minor modification (for bosonic
strings) of:

where η is Dedekind's function. Thus the following modification to transformation
rules (2.4) for the characters is implied by this change

T:Xi->&iXi and S : * ^ ^ * 2 " 2 ^ , (5.1)

where we have defined άf = e 2 π i ( - D + 2 ) / 2 4 α . and Sj = iiD-2)/2Sj

i9 where αf and S{
correspond to the characters Xi. Equivalently, the transformation rule under the
action of a general modular transformation M:τ-+(aτ + b)/(cτ + d) is given by:

j (5.2)

where the transformation matrix M is now described in terms of the hatted
quantities. The goal of this section is to obtain similar asymptotic expansions for
the coefficients αjf as we did in the case of RCFT. In this case the n will have the
physical interpretation of mass: m2 = n — 1 + h x. Our basic approach in this
problem is precisely the same as that which we have used throughout this paper.
Thus an immediate generalization of (4.6) leads to:

βi° = ̂ Σ ί (-P + hr-2)l2(MPy?!iq)dq. (5.3)
2πi p,ι ξPtl q '

It is easy to convert the integral on the right-hand side of this equation to a form
similar to (4.8):

< ) = = - i Σ #ϊjle-2πinpl1 J ( / ω ) ( D - 2 ) / 2 e x p Γ - π ^ ^ + 2πωn i]dω + ^ (5.4)
P,I ξP,ι \_ I ω J

where Sff is given by: Sf/ = {ί)iD~2)/29f:1, with 3ff given by the same expression
as (4.9) with M in place of M, and where the remainder term R^ has exactly the
same form as the first term with (1 — hj) in the argument of the exponential now
replaced by (1 —hj — m) and with a further summation over j . The details of the
computations of these integrals are similar to the previously encountered ones and
are left to Appendix A. Here it suffices simply to give the final result. Hence for
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the general case of D uncompactified dimensions we find:

UP

(this form of the error is only valid for D > 1) where J -Dj2 is the Bessel function
of the first kind of order —D/2. For D = 1, the case where all spatial dimensions
are compactified, we obtain the following simple result:

(5.6)

The case D = 2 corresponds to the vanishing modular weight which we thoroughly
studied in Sect. 4 with the results recorded in Eq. (4.10).

The error in these sums are always O(nd/2) for d < 0 and O(nd) for d > 0, where
d is the modular weight of the characters, as discussed in Appendix A. It is
interesting to note that except for D = 1,2, the correction terms are suppressed for
large n, and therefore, the asymptotic result can be used to obtain the exact result
(again by using the integrality of the degeneracies). For D = 2, the error is an
n-independent constant, just as was the case for rational conformal theories. For
D = 1 the error could be as large as n1/2. Though, it should be pointed out that
we are not sure if the error is actually this large or not in this case. It might be,
for reasons unknown to us, that the sum is a better approximation to the exact
result as it is for D > 2. At any rate even for D = 1 the error is really small in
comparison to all the exponentially rising terms in the sum (~ eβy^).

5.1. Example: Bosonic Strings Compactified on (Γ%)3 x (Γ8)
3 x S1. An explicit

example of the ideas in the previous section in furnished by the bosonic strings
with 24 of the spatial dimensions compactified on three copies of the E8 root
lattice Γ8 and the remaining spatial dimension compactified on a circle S1 whose
square radius is rational: JR2 = r/2s in the conventions we adopted earlier. The
choice of the lattice Γ8 made here is entirely based on the particularly simple form
and behaviour of its related partition function under modular transformations,
thus allowing, without introducing any complications, the study of the dependence
on the rational parameters r and s. The partition function is given by

k = 0

where

ΦM^im + ̂ 3 + 9l)Yη-2\q){ηχk){q) (5.7)

with χk(q) given as in (4.24) and with obvious modifications fc(q) is thus defined.
It is by now a simple exercise to write down the asymptotic expansions for the

00

coefficients a{*] of qn in the series expansions φk(q) = q 1+k2/2N £ a(*]qn for the
π = 0
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characters of this theory which evidently possess weight + 1/2 under arbitrary
modular transformations. Due to the simple modular transformations of the (E8)
lattice partition function, one finds that the singular behaviour of this in the
neighborhood of the rational point q = e2πip/ι is of the simple form:

ί(9l + Sl + 9l)~λ (5.8)

in which phases have entirely disappeared and the coefficient is exactly unity.
Now we may take any of the two equivalent approaches to complete the

problem. Either we combine the leading structures of the constituent partition
functions near each rational point, noting that each constituent has been studied
at some preceding point, or we can use the general algorithms laid out in this
section. We shall do the latter thus obtaining the formula:

^
yjz Lte J

and then resulting series:

m2

exp — / I \nz
N-ι _ V / V V IN) ,

X Σ ^ ~ 2 κ U t p n + O ( 1 / 2 ) (5.10)
= 0p,l 2lwhere 3j^ is once again defined by 3 ^ = ( 0 ~ 1 / 2 ^ τ h e leading terms of this

expansion are readily shown to be as follows:

~ , e x p ( 4 π / ( I )nz

and the first non-leading correction is obtained to be:

N m = o V N

where the constant Cx in this expression is the same as defined in the paragraph
following Eq. (4.29). The similarity between the form of this result and the results
(4.28)-(4.29) found earlier in case of circular compactification is of course by no
means accidental. This is in fact the result of our judicious choice for the lattice
on which the 24 remaining spatial dimensions have been compactified. The
interested reader is invited to compute the next few terms of this series, but it will
not be really necessary for our purposes to do this here.

5.2. Superstrings Compactified on (Γs) x (Γ8) x S1. For the sake of completeness
it is appropriate to consider the fermionic counterpart of the preceding example.
Thus let us briefly look at the type II superstrings, eight of whose left and right
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spatial coordinates are compactified on Γ8 and Γs respectively and the remaining
spatial dimension on a circle S1 of rational squared radius as before. The partition
function of this theory is thus similarly given by Z = £ ΨkiΦΦkiΦ* where

(5.13)

with obvious definition for φk(q) and with the superstring partition function
F(q) fully discussed in Sect. 3. Writing the power series expansion: ψk(q) =

00

q-ι/2+k*/2N £ a(k)qtι for t ^ e characters, it is a simple matter then to arrive at the

exponential behavior in the neighborhood of the rational singular points:

^(«)~16(i)-1 / 2[(MM)-1]^-2' t i ( 1 / 2-'- ) p'/'^exp^(l/2-/ I m)J (5.14)

and the associated asymptotic series for the coefficients:

(An 1(1 m2

e x p l — /I

(5.15)

which is, as expected, entirely similar to its bosonic counterpart. Thus one finds
the first couple of terms in this expansion to be, first:

-1" - -

and next given by:

4π \ k2

2 > COS! ; = , P.17)
JN m=o \ 3 3ΛΓ 12/ x/6nfc

where the n-independent coefficient C 2 is, except for an extra factor of 16, exactly
as appeared in Sect. 3.1 and possesses characteristics similar to C1 which we briefly
described there.

6. Extension to Irrational Theories

So far our analysis is applicable only to RCFT's. It is obviously important to
generalize this to arbitrary conformal theories. In this section we will concentrate
on arbitrary conformal theories which could be used for constructing bosonic
string vacua. In irrational theories, the notion of chiral characters are not very
useful, as there are infinitely many characters, and hence our previous analysis
based on the method of HR breaks down. In such cases the more natural thing
to study is the full partition function Z(τ, τ) which is a modular invariant form.



Asymptotic Mass Degeneracies in Conformal Field Theories 561

Even though the masses again appear in a discrete spectrum, it is no longer true,
in these cases, that they appear at given integral values (shifted by a finite number
of fixed values). Therefore, the question to be asking in this case should be somewhat
different from the type we asked before: Let d(m) be the number of physical states
at mass m (i.e. number of states in the Hubert space with L0 = L0 = m2 + c/24).
Then d(m) (or the density of physical states) as a function of m is not a very smooth
function, and since we have no rationality to organize the states in subsectors to
ask questions which depend smoothly on m, we have to look for another function
to probe the large mass degeneracies of strings. In view of this we consider the
function Z(β) defined as

e-^\ (6.1)

Note that this is a well defined function for all positive values of β, because
d(m) ~ exp (am) from our previous analysis. For small β this function probes the
large mass degeneracies of the conformal theory. Moreover, Z defined above is
the physical (i.e., restricted to physical Hubert space) partition function for the
conformal theory in question. However, even for the case of rational theories, as
long as we are interested in the degeneracies of physical states, the methods used
in the previous sections have a shortcoming in determining the density function
d(m): In RCFT's to obtain the degeneracy of particles, we will have to put both
the left- and the right-movers and require that the left energy be equal to right
energy. So the number of particles coming from the ith character at mass squared
m2 = — (c/24) + ̂  + n = — (c/24) + hτ + n is given by

where ή = n + ht — hτ. For large enough n we have shown in the previous sections
that we can determine af up to power law corrections. But the error in d(n, i) will
unfortunately be exponential in n because the error for the degeneracy of the
left-movers will multiply the exponentially rising right-mover degeneracy. For
strings on rational backgrounds with the number of uncompactifϊed space-time
dimensions bigger than two, this multiplication of errors could be circumvented
by choosing n large enough and taking the closest integer to the asymptotic
estimation of the left-moving (and similarly right-moving) degeneracy, which gives
rise to zero error as discussed in the previous sections and Appendix A. However,
it would be very difficult to give an analytic expression for d(n, i) even for such
cases, because taking the integral part is not easy to accomplish analytically. In
particular if we try to evaluate Z(β) for such a theory, we will see that as /?-»0
we are unable to compute it with a good accuracy (error is of the form ~ exp(c//?)).
We are thus faced to compute Z(β) not only for the irrational theories, but also
for the rational ones.

We first note that Z(β\ being the physical partition function, has an integral
representation as:

Z(β) = } Z(τ, τ)dτ, = } Z(q9 φdφ, (6.2)
o o
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where in the first integral in the τ-plane, the value of τ2 is fixed at /?/4π, and in
the second integral in the q — plane, the integration is performed over the contour
Γβ of radius e~βl2. This contour is parametrized by the angular variable φ defined
in terms of q by the relation q = exp (— β/2 + 2πiφ). We are interested in evaluating
(6.2) in the limit as β-+0+. The evaluation of Z(β) now proceeds by applying to
the last expression some of the techniques we developed in Sect. 3 in dealing with
similar integrals in the complex #-plane. We thus introduce a dissection ξpl of the
circular contour Γβ in precisely the same manner as before and use the modular
transformation properties of the integrand to rewrite Z(β) in a form more apt for
computation. Let us take the transformation rule for Z(q,q) under arbitrary
modular transformation (2.2) to be of the general form:

Z(q9q)^\(cτ + d)\2dZ(q,q). (6.3)

As before, this equation allows us to isolate the behavior of this function near its
rational singularities on the unit circle. There are some rather important differences,
however. Firstly, there are (essentially) no phases in the transformation properties
to worry about, making our results somewhat simpler than before. Second and
more importantly, we no longer have analytic (anti-analytic) expressions in the
present case, thus the use of Cauchy integral theorem is not possible here. Not
withstanding these differences, our basic strategy remains unchanged. Specifically,
in the limit /?-»0+ (\q\ -* 1 ~), as we approach any given rational point q = e2πip/ι

on the unit circle, the partition function behaves as:

Z(q,q)~ Σ e M ( * ' ί ) ' 7 l ( ^

+ non — singular terms. (6.4)

Here q = exp [2πi(p/J + ΐz//)] as before, and the summation is over all pair (h,h)
of the left and right conformal dimensions with the restriction that:

Λ + Λ < ^ . (6.5)

In the terminology of the Renormalization group flows, the states satisfying this
condition correspond to relevant operators, i.e., operators which if used to perturb
the action will lead to flows away from the conformal theory. The condition (6.5)
ensures that the contribution of any such state in the vicinity of each singularity
of the function Z(q,q) will be of an exponentially singular form. We may further
distinguish those states for which the relations c/24-h>0 and c/24 — h>0
simultaneously hold which in the case of interest in string theory it implies that
h = ίϊ. These states have zero two-dimensional spin (the spin being h — h).
Henceforth, we refer to these contributions to Z(β) as "tachyonic" contributions
because their contribution to m2 is negative. The contributions coming from the
remaining states for which only one of the latter conditions holds will also be
referred to as "unphysical-tachyonic" contributions, because such states carry
non-zero two dimensional spin (±, 1 for the case of interest in string theory) and
are projected out of the physical Hubert space (because h φ h). It is ironic that we
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are finding unphysical-techyonic states relevant for capturing the spectrum of
physical states at large masses. Moreover, since we are dealing with non-degenerate
conformal theories (though not necessarily rational ones) in this analysis, there
are only a finite number of tachyonic and unphysical-techyonic pairs entering the
summation. For instance, for the case studied earlier of closed bosonic strings
spatially compactified on three copies of E8 root lattice and a circle of radius R,
having any positive real value, the only pairs satisfying this restriction (ft + ft < 2)
are those for which the momentum and winding quantum numbers n and m
(assuming R > 1) are given by n = 0,1,..., [2^/ΪR] and m = 0 or n = 0 and m = ± 1
(for when R < <v/2), or finally b y n = ± m = + l. The bracket here indicates the
largest integral portion. The first and second cases correspond to the tachyonic
pairs of conformal dimensions (ft, ft) for which ft = ft and the latter to the
unphysical-tachyonic pairs (ft, ft) for which ft — ft = ± 1. The tachyonic pairs always
exist, but the unphysical-tachyonic pairs can be shown to exist only for those radii
for which R falls in the range ((1 - (J3/2))1/2, (1 + (y^/2))1/2).

We may substitute for z in (6.4) its expression in terms of β and the local
angular variable θ:z = l(β/4π — iθ). Furthermore it is convenient to work with a
new variable p in place of /?, defined in terms of the latter by p = β/4π. The
expression Z(β) may then be readily rewritten as:

m = Σ ^
(M) ξp.i
p,ι

+ correction terms, (6.6)

in which the sum is over all tachyonic and unphysical-tachyonic pairs (ft, ft). Here
the corrections emerge because we have not included the non-singular non-
tachyonic contributions to the integrand. It is a simple exercise to show, as has
been done in Appendix C, that for the general case of modular weight d the
corrections are of order O(β~d). Our most important task, therefore, is to compute
the integral expression in (6.6) with the largest possible accuracy, and it will be
most desirable to be able to carry out this task with a degree of accuracy comparable
to the correction terms we have just discussed, i.e. with power law corrections in
parameter β. It is most remarkable that this in fact turns out to be possible for
any value of the modular weight d. The details of this assertion are somewhat
lengthy and have been delegated to Appendix C. There we will show that the
tachyonic contributions can be computed in a closed form for arbitrary d involving
gamma functions and hypergeometric functions. For the contribution of unphysical
tachyonic states we have not been able to obtain a closed form expression for
arbitrary d (though we give a closed form of it in Appendix C for the case d = 1).
Below we shall describe some of the main features of this computation. Firstly, it
is shown in Appendix C that the optimum choice for the range of the second
summation in (6.6) corresponds to the Farey's series of order l/y/p. Moreover,
having included this many terms included in the sum, the final error of our
forthcoming estimation for Z(β) will be of order O(p~d). Secondly, with the above
choice of the Farey's series, the range of angles θ (in absolute value) belonging to



564 I. Kani and C. Vafa

a given arc segment ξpl is, as we recall, bounded by y/pβl<θ<y/p/l. Hence, if
we introduce a new variable u = 0/p, for any fixed /, in the limit of vanishing p
the range of the latter variable covers the entire set of real numbers. This suggests
that we should evaluate the integrals with this new range of integration and, at
the same time, estimate the amount of error thereby introduced for non-zero values
of p. For ί i ^ l no problems arise. For d< 1, however, the extended integral is
ill-defined. However, this could be resolved by analytic continuation. For example,
in the case of the contribution of physical tachyons this integral has explicit
expression in terms of hypergeometric functions, having simple poles (see
Appendix C) for negative half-integral values of d and having otherwise well-defined
analytic extensions for negative integral values of this parameter. We have seen
that in string theory both half-integral and integral values of modular weight with
d < 1 may arise. For negative integer values of d9 the resulting expression is then
precisely the desired result, up to the required power law error. For negative half-
integer values of d, however, it is easy to show that the resulting expression after
the truncation of the poles is in fact the desired result. The error introduced in
the process is then readily proved to be of the stated power law form.

Thirdly, in the limit as /?-*0, the partition function Z(β) has an exponentially
singular dependence on β of the general form Z(β) ~ ec/β. To be more specific, it
is adequate to examine the leading behavior of the integral term in (6.6) in this
limit. Let us denote this integral by /JJjΛ). Then this integral has a universal leading
behavior for all values of modular weight d:

/£*> = ±e2πi(h-~h)pΊll(c/24 - h)(c/24 - A)]" v*Γ2d+ί(β/4πΓ2d+3/2

+ non — leading, (6.7)

which we have re-expressed in terms of/?. It is therefore observed that the tachyonic
contributions are purely of exponential growth form. In contrast, the unphysical-
tachyonic contributions involve an oscillatory part which changes very rapidly in
the intended limit of small β.

Lastly, the phases which enter Eq. (6.6) for Z(β) can be collected, thus giving
rise to a very simple and natural expression. To be precise, since in the second
summation p can be replaced by p1 and since no other p' (or p) dependence occurs
throughout, except in the phases, we can perform this sum independent of other
summations. Noting that h — ϊϊeZ, this sum is precisely given in terms of the
well-known Ramanujan function [8]: Cn(m) = £ exp (2πimh/n). Hence we have:

(M)=l

X exp[2πΐ(Λ-%yθ = C,(Λ-/Γ). (6.8)
( P M ) = I

The tachyonic case h = his particularly simple. The Ramanujan function in this
case simply degenerates to the sum £ 1. This is the well-known Euler's function
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φ(l\ counting the total number of positive integers no larger than I and relatively
prime to it. An exact expression for I^f can also be given in terms of the confluent
hypergeometric functions for all d values. This result may be found in Appendix C.

7. Rationality Versus Irrationality

Consider a conformal theory which can be deformed, by changing some of its
defining parameters, to obtain some new conformal theories. These parameters
are known as the moduli of the conformal theory. For example, in toroidal
compactification choices for radii of the torus will be part of the moduli for string
propagation on that space. The moduli space of a conformal theory has a natural
metric which comes directly from the inner product structure of the Hubert space
[11]. For example, if we consider circle compactification, the moduli is just the
choice of the radius of the circle R, and the metric in this case is simply (dR/R)2.
This metric is useful in describing low energy phenomena, for example for discussion
of adiabatic variations of R with respect to uncompactified coordinates. Moduli
fields correspond to massless scalars as viewed from the uncompactified dimensions,
whose dynamics is described by a Lagrangian which to lowest adiabatic
approximation is obtained from the metric. For instance the Lagrangian for the
radius field R of a circle compactification is (VR/R)2. This description of the moduli
space suggests that two different circle compactifications, with radii Rί and R29

are easily deformable to one another. The closer the values R1 and R2 are to one
another as real numbers, the easier is such a deformation (the lower is the action
for such a process). However, this description is applicable only in the adiabatic
approximation; i.e., the low energy domain. How can one think about moduli in
the high energy domain? Could it be that the smoothness of physical quantities
with respect to moduli is violated in this limit? We have been looking at one such
physical quantity in this paper and that is the asymptotic degeneracy of states. So
let us explore the smoothness of that with respect to moduli.

It should be noted that a'priori it is not clear if the asymptotic density of states
should vary smoothly with moduli. As we change the moduli of a conformal theory,
the masses of particles change continuously. For example, in circle compacti-
fication, the winding mode energy w = mR changes continuously with R. However,
these changes take place in a non-uniform way with respect to energy. In other
words, if we wish that the masses of string states change by no more than ε, no
matter how small we vary R, this cannot be accomplished (for example the winding
number m can be as large as we wish, and can magnify the variation drastically).
Therefore it is conceivable that the asymptotic behaviour of density of states might
not depend smoothly on R.

For the sake of argument we will concentrate on circle compactifications
(together with three copies of Es lattice) discussed before, though we believe our
qualitative conclusions hold quite generally. Undoubtedly the most striking feature
of the series representations for the asymptotic degeneracy of states found in our
circle example in Sect. 4 is the manner in which the dependence on the radius
R = Jrβs enters into the results. Any given term in any one such series is manifestly
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an explicit function of one or both of the variables N and λ in place of the variable
R. Notably the variables N and λ, by virtue of their definitions, have an entirely
arithmetic dependence on r and 5 or, equivalently, on the ratio r/s viewed as a
rational number. It is easy to argue, as we have done in Sect. 4, that the pairs (r, s)
and (N, λ) are in correspondence, and that this correspondence is one-to-one if we
should restrict the variable λ by λ < N and λ satisfying (4.25). Geometrically,
however, two arbitrarily close rational radii rjs^^ and r2/s2 (in the sense of real
numbers) evidently do not give rise to close values of N or λ in any ordinary sense.
Now if we consider the chiral characters, χ^q) for instance, we have already observed
that their dependence (in view of the asymptotic series for af) on the
compactification radius is strictly through N9 and thus no explicit expression in
terms of R exists for these characters. Speaking in more general terms, the chiral
characters in a RCFT only reflect the rational structure of the moduli and not
(say) their structure as a real number. Accordingly, it would be meaningless, for
instance, to inquire as to how much the left- or right-mover characters
independently vary as we make continuous changes in the moduli in such a con-
formal theory. It would therefore seem quite miraculous that physical quantities,
such as the physical partition function Z(β) of the previous section, should have
an explicit dependence on R, thus exhibiting no sensitivity to the rationality of
the moduli and reflecting only their essence as real numbers. The answer to this
enigma lies, as one may expect, with modular invariance. It forces left- and right-
moving character degeneracies to coalesce precisely in such a manner so as to
regenerate the R dependence.

A simple illustration of this point is provided by the physical partition function
Z(j8), studied in the previous section, specialized to the present case of circle
compactification. In view of (6.1) we may write an approximate (smoothed out)
form of this function as follows:

where rίι = n + [ftj - 1, with bracket denoting integer portion, and d(m9 i) is defined
following Eq. (6.1). We have taken the slight liberty of ignoring the fractional
portions of hx in the exponent. By the same token we may replace [ftj by ftf. The
final effect of all this is that the quantity nx appearing in the asymptotic series
(5.10) for the coefficients αj,0 is now simply replaced by n. The smoothing thus
simplifies the analysis but is seen to be of no fundamental consequence to its
conclusions. Despite the fact mentioned earlier that this approach entails
exponential errors, we would expect, nevertheless, to be able to obtain correct
leading order behavior of Z(β) from this approach. In fact this very observation
would be adequate to our purpose.

Replacing for the coefficients a^) and a^ their series expression (5.10), there
will be summations over two sets of pairs (p, /) and (p, /) to perform, that is aside
from the summation over character labels ί. The sum over different pairs can be
seen to lead to rapidly oscillatory expressions (which may include exponential
growth as well) in the limit jS->0 and do not seem to be particularly relevant to
our leading order investigation. There are other sources of oscillatory terms which
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we shall shortly discuss. Our main concern for the present is, however, with those
terms in the product for which p = p and / = I Here we can use the unitarity
relation (B.4) to obtain:

= Σ Σ^expΓ^v^ία-^^ + ί 1-^ 2}^"" 1^-' (7 2)
2/ l1 L l J

in which the first sum is performed over all pairs of conformal dimensions for
which we have exponential growth. The remaining pairs would invariably lead to
oscillatory terms which we are setting aside for the present discussion. Other
expressions of this type also emerge when a left-moving (exponentially growing)
term multiplies a general right-moving error term and vice versa. We have already
pointed out in Sect. 6 that it is precisely the emergence of these terms that makes
the accuracy of this approach in finding the physical state densities inadequate.

Having made these remarks, let us show that the pairs (hh /Γ7) which are included
in the first sum are precisely the tachyonic pairs of the previous section with equal
left and right dimensions. We can show this starting directly from our earlier
definitions of ht = (ΐ2/2N) and h-t = (λi)2/2N, with the tilde denoting a number
between zero and JV/2 in equivalence modulo N. Since hi — hTeZ9 and since we
require 1—/ϊ f>0 and 1—δ"Γ>0 should both hold, it is clear that these two
quantities must be equal. Thus we must have f = + Xi, or equivalently that:

(λ + l)i = kN or (λ-l)i = kN

for some integer k. However, it follows from the definition of λ that λ + 1 = 2MS
and also λ — 1 = 2vr, with u and υ defined in Sect. 4.2. Moreover, as a consequence
of their definition, u and v are correspondingly prime with respect to r and 5. It
readily follows from this and the above equations that the only solutions are i = mr
or i = ns, for arbitrary integers m and n subject to the restriction that corresponding
^ and /Γ7 should be both less than 1. These solutions correspond respectively to
conformal dimensions h = ̂ m2R2 and h = n2βR2. Together with the restrictions
that these be less than 1, we arrive at the conditions we identified from an entirely
different point of view of Sect. 6. Therefore the leading order dependence in RCFT's
can also be recast as a function of R9 with no particular dependence on the
rationality of R2.

We complete our analysis by making a leading order estimation of the
contributions to Z(β) coming from such tachyonic pairs. Rather than doing this
for a special case, it is instructive to look at the general case considered in Sect. 6
instead. We do this by replacing the sum over n9 which we shall perform first, by
an integral. Here we would generally require some positive cutoff at the lower tail
of integration because of the fact that our series representations are correct only
for large enough values of n. The exact value of this cutoff is, however, immaterial
in the limit that β goes to zero. Thus making use of Eq. (5.6) (with d= -(D- 2)/2)
we arrive at:

oo / άπi , \
Z(β) ~ Σ l~2(c/24 - *)-<'-" J n"-ιJ\_x 4V(c/24-A)n )e-"dn. (7.3)

h;p,l A \ I /
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Furthermore, to the leading order it suffices to replace the bessel function in the
integrand by its asymptotic behavior (which up to some v-dependent constant is
given by Jv(iz) ~ ez/yj2πz). Changing the variable of integration to x = J~n and
making a saddle point approximation of the integral, the end result is found to be:

(7.4)

This result is (to this order) precisely the result found earlier given by Eq. (6.7).
Thus we conclude that our two approaches are consistent, and rationality can live
peacefully with irrationality.

8. Conclusions

In this section we present our conclusions and a few comments on the application
and extensions of this work. We have seen that following the method of Hardy
and Ramanujan and using modular invariance, it is possible to obtain an
asymptotic expansion for degeneracy of high energy states in a rational conformal
theory (or strings, with a rational conformal theory as its "internal" theory). This
expansion depends only on the one-loop modular transformation matrix S, the
dimensions hi9 ground state degeneracy a^ of chiral characters, and the central
charge c of the theory. For strings with more than two uncompactified space-time
dimensions this expansion is exact, and the exact degeneracy of states for sufficiently
large mass m can be obtained by taking a sum of 0{m2) terms.

The asymptotic expansion we discussed has an arithmetic nature: Using the
leading dependence of density of states on the radius of a circle compactifϊcation,
we have shown that the arithmetic natural of the radius is relevant in this asymptotic
expansion.

We also studied the asymptotic behavior of physical partition functions for
arbitrary rational and irrational theories, and we found that it is completely fixed
(up to a power law correction) by the tachyonic, and unphysical-tachyonic modes
of the theory (in the bosonic string from the spectrum of states with Lo + Lo< 2,
i.e., the relevant operators). We also discussed how the rationality and continuity
of spectrum with respect to moduli could coexist.

It therefore seems that the study of asymptotic degeneracy of states does not
make a striking distinction between rational and irrational conformal theories. It
would be interesting to look at some other physical questions and see if one can
find a physical criteria distinguishing rational and irrational theories. In the absence
of such a criteria the distinction between rational and irrational conformal theories
should be viewed as a mathematically convenient, but physically inconsequential
drawing line.

Appendix A

Our primary intention in this appendix is to present the relevant details of the
computations as well as a rather thorough account of the errors for the asymptotic
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series which we have encountered in this paper. We shall also briefly discuss the
behaviour of characters at the irrational points on the circle of convergence. The
most expeditious manner to proceed is by working with the general case of modular
weight d, and then specializing to some of the cases which we have examined in
various sections of the text. The analysis of errors will be also presented in a
general setting, thus greatly simplifying our task by dealing with various cases all
at once. It our analysis, we will follow the general method of [7] which is a
simplification of the work of HR. The reference [7] deals only with the example
of the fy-function. Below we will generalize this to families of modular functions
with arbitrary modular weights.

Consider an arbitrary character χt(q) of modular weight d. We start with the
integral form of series expression for the coefficient af of qn in expansion of this
character (see for instance (4.8)). Our analysis proceeds in two stages. In the first
stage, we will make an accurate evaluation of the integral expressions due the
singular techyonic contribution to the partition function, so that we arrive at an
explicit form for the asymptotic series. This, however, will entail introduction of
small corrections, which we must also estimate at this stage. In the second stage
to estimate the corrections Rf due to ignoring non-singular contributions of
massive modes, which we have seen invariably accompany the integral expressions
in this method. This and the previous corrections together will constitute the total
correction (which we like to see minimized) to our asymptotic series for αj,0.

To carry out the first stage, we seek to evaluate the integral:

/»- J ω- 'expP π ( ^-^2πω W ί ~L (A.I)
ξp,l \_ I CO J

(we have dropped unnecessary indices) for which the range of integration ξpl has
been described in the paragraph following Eq. (3.14). The integrand is observed
to be an analytic function everywhere on the punctured complex ω-plane with the
origin ω = 0 removed, with the possible exception (for half integral d) of a cut
along the negative real axis. The Cauchy integral theorem may now be used to
compute this integral if we complete the path of integration ξpl by adjoining to
it various line segments ξs; s = l , 2 , . . . , 6 as shown in Fig. 2. Let If denote
(henceforth, the subscripts p and / are implicitly understood) the integral along
the path segment ξs. Then an application of Cauchy's theorem immediately implies
that the integration over the combined path of all the line segments considered
thus far is equal with the integral J(£ over the contour β, also shown in Fig. 2.

6

Therefore we may write: /( i ) = I{% — £ J<°. In its common mathematical notation
s = l

(0 + )

I{% is denoted by J and, as we will presently see, it may be exactly computed:

- T ω e x p r f ^ . n . - J ^ . (A.2)
-oo \_ I CO J

The simplest way to evaluate this integral is by taking advantage of the following
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well-known loop integral formula for Bessel functions of the first kind [12]:

S T ί""-1 exp(ί - z2/4t)dt (A3)
L Til -

by means of which we find:

( A - 4 )

Various special cases of interest in this paper are now simple to derive by using
some basic identities satisfied by the bessel functions. In the case d = —1/2, for
instance, we use the identity J-3/2{z) = ^Jΐzjπ (d/dz)(cosz/z) to reach the desired
result. The result of the case d = 0, corresponding to RCFT's, is obtained by using
J_ί(z) = (d/dz)J0(z\ and in the context of strings, the case d= 1/2 of spatially
compactified bosonic strings, for instance, makes use of the identity J-ί/2(z) =
y/2/πz cos z.

It is possible to make an exact evaluation of the integrals along the path
segments ξt and ξ6. We examine If for the general case of modular weight d and
If may be subsequently checked to be given by exactly the same result. This is
given by (setting ε to zero without any loss):

Jp^r(c/24-fcj)-2πniωldω, (A.5)
o L ' ω J

which can be computed with aid the following definite integral identity for /J, y > 0:

( - 2 - yx) dx =
\ X /

] x v - 1 exp ( - 2 - yx) dx = 2()?/?)
v/2iCv(2>/^), (A.6)

0 \ X /

where Ky is the Bessel function of the imaginary argument of order v.
We are thus led to the result:

c/24-hΛa~d)/2 /4π ,

Let us now focus on making estimations of the remaining quantities. We want
to estimate the following expressions for s = 1,2,..., 6:

= -i ' Σ %/^"2π/np//ί"<iίω- ί/expΓ4^(c/24~/ί7.) + 2πniωldω. (A.8)

To do this, we must first specify the range of the sum over the integer variable Z.
Furthermore, we must rigorously characterize the path segments ξs along which
the latter integrals are performed, and also the precise manner by which the contour
Γp converges to the unit circle. To attain an optimal choice, we allow all values
of Z such that I ̂  constant x ri* in the summation. At the same time we allow the
radius p of the circular contour of integration, of which ξpJ are sections, to have
the rather general form: p = e~lnln\ for some positive real numbers α and β as yet
to be determined. The constant in the above inequality will not be determined by
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this analysis, as it turns out to be of no consequence to the order of magnitude
estimations which we are about to make. Henceforth the value of this constant is
assumed for convenience to be unity.

Let us try to establish the bounds on the expressions W^n, for fixed but arbitrary
allowed values of s and n. We can confine our attention to those values of j for
which c/24 — hj ̂  0. As argued earlier, only these lead to exponential singularities.
As for remaining ones, the magnitude of their total contribution to the asymptotic
series for af is readily seen to be of the same order as the remainder term R^
which we will shortly study, so there is no need for their independent estimation.
Focusing on W{ζn first, our main task is to place a bound on the integral I{ζ which
appears in this expression. Here we have to distinguish the case of d ̂  0 from
d > 0. Let us focus on the case d ̂  0 for the time being. We will need a certain
inequality for the matrix elements of the coefficient matrix 9 which we now derive.
For simplicity we shall assume d§ = 1 (though it is a trivial matter to generalize
this). Then the set of coefficients dff, viewed collectively as a matrix in the indices
i and j , forms a unitary matrix for any fixed p and Z, the proof of which has been
provided in Appendix B. This fact is easily seen to lead, for arbitrary p and /, to
the relation:

Y\$ff\Sy/N- (A.9)
J = 0

Now going back to our estimation, and using this inequality, with reference to
Fig. 2 we have (here we have dropped hj from the exponent without any change
in our results):

\lf\<JN T (/2ε2 + /2w2Γd/2exp|^(c/24)Re(— )-2 π w/ εld M> (A.10)
o U \-ε-iuJ J

which upon using the property 1/2 lnα < θ"pl < l/lnα and the inequality

(A.11)
—ε — J

would immediately yield (by sending ε to zero12):

Inserting this result into the expression W^n then results in:

The precise meaning of the sums of the kind seen here has been discussed in the

1 2 A more rigorous treatment of this point would involve setting ε = n *, for some positive real number
h. The final result for the case d ̂  0, however, does not depend on the choice of h so long as h ̂  β.
Hence we may let ε-*0 at this earlier stage without any problem
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text and in general the result of their rough estimation, being nonetheless sufficient
for our purposes is given by (for r ̂  — 2):

The final result is thus:

I WfJ < constant x n** (A.15)

for some constant not depending on either n or i but generally depending on N.
A quick inspection of Wfn should be enough to convince us that the same result,
with only a minor difference coming from replacing φ"pl with φ'pl which is entirely
without significance to our present discussion, holds for this expression. Hence we
need not repeat that here.

Next we turn our attention to Wfn in which the integration If is performed
along the path segment ξ3 as in Fig. 2. Proceeding along the same lines as above,
for d ̂  0 we obtain that:

\\dv.
p,l/

Based on the inequality:

v~ιΦp,l/ J

< A I 7 )

which is correct in the limit ε->0, this leads to the bound:

I w<t\ < y/Ne2nni/nβn2Λ-^I — + — J exp [8πn2α"β(c/24)l (A.18)

Once again it is evident that same result applies, without any noticeable change,

to W*,.
Having completed the first stage (for d^0)9 we begin the second stage by

considering the remainder integral R® given by:

* ? = - * ' Σ 9fjιe-2πinp/ιΓd £ a^e2nimpΊl f ω'd

P,IJ m=l ξPtt

•exp -j— (c/24 — Λj — m) + 2πn fω . (A.19)

To estimate this expression we note that, for a fixed value of /, for every value of
the local angular variable θ (defined in terms of the variable ω via the relation
a) = i/np — iθ) which belongs to the arc segment ξPfl9 we have 1/2 In* < θ < l/lnα,
a fact already pointed out in Sect. 3. Hence making use of this and other facts
discussed above we have, for any arbitrary point on ξPth that (for d ̂  0):

2θ2)-"12 < ( ^ + ̂ " " 2 . (A.20)
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Furthermore, since:

Ψ(cβ* ~ *' ~

and, because of the inequality:

(cβ* ~ *' ~ m) R C (

(A.21)

and the fact that we are dealing in unitary theories so that c/24 — hj — m^O for
m ̂  1 (and c ^ 24)13, we find:

- c/24)]

(A.23)

(we will see below that this sum is bounded with a suitable choice of α and /?). In
deriving (A.23) we have made use of two facts. First we have used (A.9). Secondly,
the arc segments ξPtl form, by virtue of their definition, a dissection of the full

circle, hence we used the identity £ J dθ= 1.

The final step in our analysis (it suffices to consider d ^ 0) is to determine the
optimal choice of the parameters α and β in the above results. This may be done
in a variety of ways, perhaps the quickest being by direct inspection of the bound
(A.23) on RW. Recall that our object is to minimize the total sum of the errors
coming from R® as well as from all the auxiliary integrals we have been discussing.
There are two conditions which must be met in order to minimize the correction
coming from the Rf. First, in view of the fact that for large enough values of m,
the coefficients a® behave exponentially in m with the approximate form eyyί™ for
some positive y, we can deduce with no difficulty that the summation in (A.23)
converges if and only if the ratio nβ/(n2a + n2iβ~a)) behaves as an exponential of n
with some non-negative exponent. However this manifestly requires that the
relation β = 2oc should hold. Note that this in particular implies that the sum
appearing in (A.23) is bounded by some constant multiple of the value of the
character χt(q) at τ = ί/2, which must be finite in any consistent conformal theory.

To find the suitable β we note that since by definition nt = n — c/24 + hi9 from
inspection of the exponential e2nni/nβ it follows that we must demand β*tl. This
in turn implies that α ^ 1/2 from the preceding relation. We therefore find:

IR® I < constant x n*. (A.24)

Furthermore it follows from (A.29) and (A.33) that for s = 2,3,4,5 we have:

n I < constant x n*4 (A.25)

1 3 For a more general situation, we will have to retain all singular terms, as mentioned in the text,
and the analysis of the error will be correct, except that the remainder RH will involve large enough
m, so that c / 2 4 - f y - m ^ 0
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for some n and i independent constants generally depending on N (typically like
y/Jf) and s. One has further that for s = 1,6 the expressions Wfn, having the same
form, possess a decaying exponential behavior large values of n, and are thus
entirely negligible in the present context. For the case d = 0 this assertion follows
from the well-known asymptotic behavior of the Bessel function of imaginary
argument Kx(z) in the limit of large z: Kx(z) ~ y/π/2ze~2.

There is, nevertheless, a further restriction which should a'priori be placed on
α. Consider a typical term in an arbitrary asymptotic series. It has more or less
the form eγy/n/ι/nσ for some positive constants γ and σ. This form together with the
constraint / ̂  constant x ri* strongly suggests that we should further demand
α ^ 1/2 so that at least some positive power of n remains in the exponent for all
Z. Detailed examination of this point further confirms its validity. The final
conclusion of all this being that the asymptotic series involves corrections which
are collectively of order O(nd/2) for d ^ 0.

Before we go on let us briefly discuss the case d > 0. Here caution must be
taken as to the precise manner by which ε approaches zero. In particular we may
no longer let ε->0 in an arbitrary fashion, but must instead let ε = n~Λ and
determine h together with α and β from minimizing the errors. It is a simple
exercise to show that in this case one finds h = β, and although all other bounds
remain more or less unchanged, the bound on Wfn now reads differently:

I Wfn I < constant x nM. (A.26)

The final result is then that α = 1/2, h = β=l and that the total error in the
asymptotic series in this case is O(nd\ as opposed to O(nm) we found for d ^ 0.
Putting all this together, it becomes a trivial matter now to obtain Eq. (3.19), (4.10)
and (5.6).

To this end, a few comments regarding the behavior of the modular functions
in the neighborhood of the points q = e2niξ

9 lying on the unit circle and having
irrational values for their argument ξ, seems to be in order. Thus far we have
strictly dealt with the behavior of the modular functions near the points with
rational arguments. Their study, as we have seen, pivots crucially on the linear
transformation theory of the functions in question. Our analysis has culminated
in deriving an asymptotic series representation for the coefficients, including
corrections which, not withstanding some order of magnitude estimations, remain
to a large part undetermined. In view of the methods of our computation it is
quite reasonable to suppose that there exists, in a certain sense, an intimate
relationship between these corrections and the behavior of a given modular function
near the irrational points which lie on its circle of convergence. However, the
problem of determining this behavior, even in most specific cases, turns out to be
of the most non-trivial character and certainly far more difficult than the
corresponding problem for the rational values, examined hitherto.

A rather remarkable study of the behavior of the Jacobi theta functions near
irrational points has been carried out in [13]. It is not our intention to review all
their findings here. Only some features of their conclusions would suffice for our
rather qualitative purposes. Following their notation, let us consider the sum:



Asymptotic Mass Degeneracies in Conformal Field Theories 575

sn(x,0) = £ ev2πi*cos2πv0, which is of course related with the elliptic modular

function 93(q,θ) evaluated at the point q = e2πix on the unit circle. Then one
interesting result is that, for almost all values of x and uniformly in 0, one has:
sn = 0[n 1 / 2 (logn) 1 / 2 + ί ] for any δ > 0 and that, in a certain sense, this is the best
of such kinds of relations14. Moreover, if the function g(q) is any one of the
Jacobi theta functions, and allowing q^>e2πiξ along a radius vector or, for that
matter, along any regular path not touching the unit circle, it is true that:
g(q) = 0[(1 — |tf|1 / 2)~1 / 4] for all of irrational values of the parameter ξ. This is
again shown to be in a sense the best relation of its kind. These statements also
hold true for the Dedekind ^-function, for instance, having essentially the same
kind of power series representation as the Jacobi theta functions. Thus the partition
function f(q) = qi/2*/η(q) is readily concluded to rapidly converge to zero as we
approach irrational points on the boundary of the unit disc. Specifically, as also
mentioned in [3], it is true in the limit q->e2niξ

9 for any irrational value of ξ that:
f(q) = 0[(1 —1<?|1/2)1/4]. The remarkable accuracy with which the asymptotic series
(3.19) estimates the partition p(ή) is in fact owed to this particular behavior. Since
our analysis has shown that the error introduced by the asymptotic series only
depend on the modular weight of the partition function in question and not on
its other characteristics, it is reasonable to assume, though we are not in a position
to prove this point, that similar behavior occurs for all modular functions of
negative modular weight. That the asymptotic series in these cases are exact is
owed to the vanishing of the corresponding partition functions at the irrational
points on the circle of convergence.

Having already discussed three examples of the modular functions whose
modular weights are positive (and equal to 1/2), it may also be concluded that the
asymptotic series for partition functions of positive modular weight are not exact
precisely because of their singular behavior near irrational points whose
contributions, though quite small compared with those from rational points, lead
in general to the unbounded error terms. The constancy of the error terms in the
cases of modular weight zero can be addressed using these same arguments. For
instance the ratio 93(q)/η(q) is of vanishing modular weight and, from the ensued
discussion, if singular at irrational points at all, this is at most of logarithmic form.
However, with the aid of an elementary argument it is simple to illustrate that in
general one should not expect modular functions of vanishing weight to have zeros
at (almost) all irrational points on their circle of convergence, as in the case for

negative modular weights. Consider the partition Z = (lΛ/24)ί £ qί/2v2 1 of 24
\ veΓg /

bosons compactified on three copies of the root lattice Γ8. This is an invariant
function under modular transformation and thus, in particular, of vanishing
modular weight. Suppose then that we add a non-zero number λ to this partition
function: Z^Z + λ. It clearly remains to be an invariant modular function under

1 4 We refer the reader to Theorems 2.14, 2.141, 2.15, 2.22 and 2.31 of that paper for more details on
these statements
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this change. Thus if Z did vanish at some irrational point on the unit circle, the
new modular function Z + λ does not.

To summarize it would seem natural that the exactness of the asymptotic series
expansions, obtained in this paper by studying the behavior of the partition
functions in the vicinity of rational points, is closely linked with their behavior
near the irrational points on the unit circle of their convergence.

Appendix B

Our goal in this appendix is to briefly derive some basic properties of the expressions
9ff whose exact form is provided in (4.9). These we shall in turn use to deduce
some elementary facts regarding the coefficient a® represented by (4.10). First,
under complex conjugation it may be shown that (assuming for simplicity of
notation that C = 1):

9$-" = 9$. (B.1)

The proof of this fact is primarily based on an elementary identity satisfied by the
matrix elements of the modular transformation matrices MPtl. In fact in view of
Eqs. (4.1)-(4.3), it is a rather simple exercise to show that:

M*ι-P,j = τ - i M P , ι τ ( B 2 )

This identity in conjunction with the fact that for the pair (l — p,p) we must use
/ — p' in place of p' which, by virtue of its definition, corresponds to the pair (p, /).
Of course we still have the arbitrariness of adding to this integer any multiple of
/, this having absolutely no influence on our arguments. Simple algebraic
manipulations of (B.2) are then readily observed to lead to the desired result. An
important application of the relation (B.I) is found in proving that the asymptotic
series expression (4.10) for the coefficients are indeed real, as expected in a conformal
theory. Specifically, since replacing the variable p in the summation by / — p leaves
the summation in (B.I) invariant, we see, ignoring the inconsequential constant
term, that:

a.*0- "l Σ 98-'Λ*m-mγJo(^ V(c/24-hj)nt) = af. (B.3)
j=o P,ι an \ I )

Another useful property of the expressions θff is that when viewed as a matrix
in i and indices, it is essentially unitary. To be exact, we have that:

Y f j t ^jk. (B.4)
i = 0

The proof of this formula follows quite simply from the unitarity of the trans-
formation matrix MPtl via some elementary algebraic manipulations. Thus if α^ = 1
for all j = 0,1,..., N — 1 then 9fjι is precisely unitary:

( B 5 )
Some of the simple applications of this unitarity relation have already been
encountered in the text and in Appendix A.
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Finally it may be worth noting an amusing relationship which comes about
as the result of the interchange p*-+p'. Specifically this is the relation:

atf* = 9tf9 (B.6)
which by virtue of the unitarity relation established earlier, it may be written in
the form of a matrix equality:

(S*'-1) = (#" ')" x (B.7)

The proof of this relation rests on a simple interdependence between the matrices
MpΛ and Mp'*1:

Mp'*ι = (Mp*ι)-\ (B.8)

We will leave it to the reader to prove this equality using Eq. (4.1) and (4.2) of
the text.

Appendix C

In this appendix we shall briefly examine the derivation of the partition function
Z(β\ discussed in Sect. 6. It is imperative, as well as the primary object of the
present discussion, that we should obtain a result which is correct up to power
law expression in β.

We start by letting Ip

h\h) stand for the integral expression in (6.6) so that

Z(β) = X Σ ' ? * • h e r e w e W*N consider the contributions coming from the
(M) PΛ

tachyonic pairs with h = h for which we can derive a closed-form expression. To
see this let u = θ/p (where p = /?/4π), so that in this case we may write:

-θP,ιlp

With the aid of one more change of the variable; y = (ί + w2)"1, we reach the
following form for this integral:

dy + (?;,,+<,), (C.2)

where we have set γpl = [I + (θpl/p)2] *. Shortly we will prove that the optimal
choice for the number of terms in the series corresponds to Farey's series of order
l/y/p. Let us assume this for the moment. Then from the properties of the dissection
ξpl it follows that y/p/2l< θpl<y/p/l Hence for any fixed value of / the lower
limits of integrations approach zero as we take the limit p-*0. For d<\ the
integrals /*'* are then clearly observed to be very sensitive to the values of their
integration limits y'pl and γpl, and in particular on the manner we have chosen
to dissect the contour Γβ.

Inasmuch as we intend to evaluate these integrals with power law accuracies,
it is notable that in fact this sensitivity to the tail ends of the integration domain
is of the desired power law form O(p~d) and not (say) of an exponential form ec/p.
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This fact is based essentially on the observation that the argument of the
exponential term in the integrand is nearly unity at the lower tail of the integration
domain, thus not leading to the unwanted exponential form. Technically, this is
observed to be equivalent to performing the integration over an extended domain
[0,1] and viewing the integral as an analytic function in variable d. This function,
or its analytic extension to be more precise, will have poles for a certain discrete
set of values of d. The expression obtained by simple removing of these poles will
be demonstrably equal to the value of the integral up to errors of order O(β~d\
which are quite acceptable in the light of our previous arguments. To be more
exact, with the integration domain so modified the integral is expressible in terms
of hypergeometric functions:

d-3/2 Γ4π(c/24-/t) 1 /I l \ / 1 Λπ(c/24-h)\ ^ ^

^ } \ [ ) [ ^ } Y (C.3)

where Φ(α, y, z) is the degenerate hypergeometric function and B(x, y) is the beta
function having the well-known expression B(x,y) = Γ(x)Γ(y)/Γ(x + y) in terms
of the Euler gamma functions.

There is a vast mathematical literature devoted to the study of hypergeometric
functions, including their analytic properties in their various arguments, and it is
certainly not our intention to discuss them here. What is relevant to us, for the
present, is that Φ(α, γ9 z) is analytic in its second argument every where with the
exception of the point γ = 0, — 1, —2,... at which it has simple poles, in much the
same way as the gamma function. In fact there is a very useful formula which
illuminates the behaviour of this function at its poles:

lim — Φ(α,y,z) = z Π + 1 ( + )Φ(α + n + l,n + 2,z) (C.4)

with the second term on the right-hand side being the familiar binomial coefficient.
This formula indicates that despite its appearance to be ill-defined, the extended
integral has a well defined analytic extension for zero and negative integral values
of modular weight d. Specifically, using this formula it is a simple matter to obtain
the desired result, up to the forementioned error, for the case d = — n as follows:

l2p

Λ (C.5)
<*+!)! L 12P J \2 f 12P

Note that the right-hand side of this equation is well-defined.
The same may now be done for negative half-integral values of d. Here, however,

we find that the integral has simple poles coming from Γ(d — ±). To describe the
structure of the integral near these poles we thus make use of a well-known relation:

ί - l V T l 1
Γ(-n + ε) = X- '-1 - + ψ(n+l) + O{ε) (C.6)

n! |_ε J
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in which ψ(x) is the logarithmic derivative of the gamma function. It is then a
simple matter, using this expression, to remove the poles existing at half-integral
values of d. Thus taking the limit ε->0+, and by some simple algebra, we reach
the end result for d = - n + \\

(C.7)

where prime indicates the differentiation with respect to n. Again note that, viewed
as an analytic extension, the right-hand side of this equation is well-defined.

To see what of contributions we should expect from unphysical-tachyonic pairs,
it suffices to consider the special case of d = 1, for which the computation is
particularly simple. Starting from Eq. (6.5), we perform a convenient change of
variable by setting u = tan(w/2), where u is as used in (C.I). It is then a simple
matter, in this special case, to arrive at:

/ = L / ) / , J expΓ^(c/12fcΛ)cosw + ^ (
2 _π \J2p l2p

(C.8)

which is easily integrated to give:

= 2π **/«-*-*>/!*p/o (?± J(c/24-h)(c/24-h)\ (C.9)

where I0(z) is the bessel function of complex argument which asymptotically (for
large \z\) behaves as I0(z)~ez/s/2πz. It readily follows from this that the above
expression is rapidly oscillating in the limit as p approaches zero. This in fact is
observed to be a common feature of unphysical-tachyonic contributions for any
modular weight d even though we have not been able to find a closed form
expression for it for arbitrary d.

It is time to discuss the corrections to Z(β) which are contributed by the
non-tachyonic pairs. These contributions, denoted here by % are easily seen to
take the form:

= Σ Σ Σ €<& ί (zz)
(h.hY P,ln,mZ,l ξP,ι

(CIO)
where the prime in the first sum indicates that only non-tachyonic pairs of
conformal dimensions are included in that sum. To characterize the second sum
we assume that we are dealing with a Farey's series of order (up to some irrelevant
constant) p~r, for some positive real constant r. It then follows from the properties
of the Farey's series that pr/2l <θ< pr/l for all the points belonging to ξpΛ. Let us
take the case d ̂  0. Then it is easy to see that for every such point (for small
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enough p):

Also since

I2(p2

we have:
H>

exp[|(c/24 - * - «)] < exp[2πp2_2f+^r(c/24 - h - «)].

Putting this altogether we obtain:

mp)\<{2p2r" Σ Σ a^yxpϊlπ 2J Jc/12-h-h-n-m)].
(Λ,A)Λ,m^l L 9 +P J

(Cll)
It should be clear from the form of the exponent that in order for the remaining
summations to converge in the limit as p -» 0 we must insist on having p-dependence
in this limit of the form p~c, for some c> 0. This is readily seen to be only possible
for r = 1/2. No we note that the sum appearing in this expression is bounded by
the value of the partition function Z(q,q) at the point τ = i/2, which must be finite
in any consistent theory. Hence we finally have:

|«(p)| < constant x ρ~ά. (C.12)

The case d > 0 is very similar and it is a trivial exercise to check that it leads
exactly to the same bound.
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