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Asymptotic Neutrality of Diatomic Molecules

Jan Philip Solovej* **
Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Abstract. We use the no-binding theorem of Thomas-Fermi theory to prove
that a large diatomic molecule is "almost" neutral. That is to say, that if
the total nuclear charge is Z then the number N of electrons required for
the diatomic molecule to be stable satisfies lim N /Z = 1. In contrast to the

Z-K30

atomic case the emphasis here is on the lower bound on N. Our analysis will
imply a new bound on the size of the molecule. These results are proved in
the Born-Oppenheimer approximation. We also give bounds on N which hold
for all Z by a very elementary method, not assuming the Born-Oppenheimer
approximation.

1. Introduction

In this paper we will study stability of diatomic molecules. The Hamiltonian for
a diatomic molecule is

1 1 1

Zl , ,

--wr+w**»+H(N'z)' (1)

where H(N, Z) is the Hamiltonian with the center of mass motion of the nuclei
removed, Z = (Zi, Zi). RCM = (λ + ί)^(λRι -f R2) is the center of mass of the
nuclei, where λ = M\JM^ &, i = 1, ..., N are electron coordinates. We are not
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assuming that λ is equal to Zι/Z2, but we will assume that M /Z; is of the order
of the proton mass mp.

Introducing the coordinates

R = (Ri-R2) and xi = ξi-RCM,

we can write

Z2

χ. _ λ -IR χ. λ

H(N, Z) is an operator which in the physically relevant case acts on the fermionic
/ N \

space L2(Rjj) ® I /\ L2(R^ C2) ), but in general one can consider other spaces
\ι=l ' /

with different kinds of symmetry.
The question we are interested in here is when H(N, Z) has a stable ground

state ψ, stable meaning with an eigenvalue (energy) E(N9 Z) below the continuum.
In [9] it was proved that neutral diatomic molecules are always stable, since there
is at least a van der Waals attraction between the atoms (this was proved in the
limit where the masses of the nuclei are large compared with the mass of the
electron).

On the other hand if a molecule is too far from being neutral it cannot be
stable. There are two different cases of instability :

1. It was proved in [7] that if N > 2(Zι + Z2) + 2 then the molecule will break
up into a molecule with fewer electrons and at least one free electron.

2. In a recent paper [11] Ruskai points out that if N is too small (or equiva-
lently Zi, Z2 too large) then the molecule breaks up into two independent
atoms.

In her paper Ruskai not only proves this, she also derives asymptotic (N — » oo)
bounds on the critical nuclear charges in the fermionic case. Here we first present
an elementary proof in the spirit of Lieb [7] which gives bounds on the critical
charges for all TV indepedent of particle symmetry. Our main result, however,
is that for fermions diatomic molecules must be asymptotically neutral. The
asymptotic bound is derived in the Born-Oppenheimer approximation, MI =
M2 = oo, while the global bound is for completely dynamic nuclei. In the Born-
Oppenheimer approximation R is a parameter and the energy is a function of

R = IRI,
E(N, Z, R) = inf spec //(TV, Z, R) ,

( N \

Λ L2(R^ C2) . In this case we define
i=l ' /

E(N9Z) = i n f E ( N 9 Z , R ) .
R
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Here having a stable ground state means that the following two conditions are
satisfied.

(a) E(N9 Z) < E(N, Z,R = oo).

(b) E(N9 Z) corresponds to a stable ground state of H(N, Z, RO) for some
RO, i.e., E(N9 Z) is an eigenvalue strictly below the continuum for
H(N9 Z, RO).

It is this notion of stability which was proved in [9]. It is worth noticing that
E(R = oo) is the sum of the energies of two non-interacting atoms, i.e.,

E(N, Z, R = oo) = min (£atom(Zι, NI) + £atom(Z2, N2)) .
N\+N2=N

Thus (a) says that for a molecule to be stable the energy must be smaller than
the energy of any pair of corresponding independent atoms. The interpretation
of (b) is that even if the molecule does not split into independent atoms we still
have to make sure that all the electrons are bounded.

If (a) does not hold we have instability as in case 2 above, and if (b) does not
hold we have instability as in case 1.

Related to the question of neutrality are the questions of what the distance
R(N9 Z) between the nuclei is in a stable molecule [i.e., |Ro| in (b) above], and
what the binding energy is for such a molecule. The binding energy is defined as

ΔEb(N, Z) = E(N, Z, R = oo) - E(N, Z) .

For fermions it is easy to prove [see (21) below] that

R > C(Z{ + Z2)~1/3 .

The binding energy is of course smaller than the absolute value of the total
energy, but to the best of my knowledge it is not easy to get a better bound. For
fermions it is possible to improve both of these results.

Theorem 1. // H(N9 Z) has a stable ground state then, independent of particle
symmetry,

(2/3)(l+aΓl-/~<N, (3)
Zi + Z2

where a given in (23) below is the effect of the finite nuclear mass, it is of order
m/mp. //Mi, M2 = oo, then

(2/3) -~ < N < 2(Zι + Z2) + 2 . (4)
Zi +Z2

The upper bound in (4) is Lieb's result1. The lower bound will be proved in
Sect. 3 below.

The asymptotic neutrality is formulated in

1 For dynamic nuclei Lieb only had a weaker result, see [7] Sect. VI(B). In [10] Ruskai gives an
upper bound to N for completely dynamic nuclei
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Theorem 2 (Asymptotic Neutrality). Given z\, z2 > 0, with z\ -f z2 = 1. Let
(Zi, Z2) = (Zzi, Zz2). //Mi, MI = oo αrcd H(N, Z) has a stable ground state on
the fermionίc space, then

= l a n d l i m ' ^ O . ( 5 )
, Z) v '

In fact there exist Q, C2, Cs, ε > 0 depending only on zi, z2 swc/i ί/iαί

IZ-N^dZ1-', (6)

, Z) < C2Z
(7/3)(1~ε) , (7)

, Z) > C3Z-(1/3)(1-ε) . (8)

Remark. Intuitively it might be thought that Theorem 2 is a simple consequence
of electrostatics. But as we will now show the theorem would be wrong without
the assumption of fermions. The corresponding non-neutrality for "bosonic"
atoms was shown in [2]. Since the method used there essentially applies for
molecules as well, we will only sketch the proof here and refer to [2] for details.
We consider a molecule with Z\ = Z2 = Z/2, without particle symmetry. We will
show that stability condition (a) will be satisfied as long as N/Z remains in some
open interval around 1. That (b) is also satisfied can be proved exactly as it was
done for atoms in [2]. As in [2] an easy variational argument gives the following
upper bound to the molecular energy

E(N9 Z, R) < -Z3e(N/Z, RZ) ,

where — e is the Hartree energy

φ, r) = - inf JL(ρ, r) | / ρ = n j, r = (n, r2) r = |r| ,

and L is the functional

On the other hand for atoms it was proved in [2] that

Eaiom(N{, Zi) > -Z3 [*atom(#i/Zi, Z!/Z)1/2 + bZ

where b > 0 is a constant. It was proved in [6] (in the more general setting of
the TFW-model) that for n = 1 there exists ΓQ < oo such that

- e(n = 1, ro) < min [ - βatom(m, z, = i) - *atom(n2, z2 = i)]
«1 +712 = 1

= -2e*iom(n = 1/2, 1/2). . (9)

From continuity we can thus find n~ < 1 < n+ such that (9) holds for all
n~ < n < n+. But then it is easy to see that if n~ < N/Z < n+, R = roZ"1 and
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Z is sufficiently large then

E(N, Z, R) < - Z3e(N/Z, r0) < -Z3 min

[eΆtom(N2/Z)l/2 + bZ-2

min (EMm(N1, Z,) + E«am(N2, Z2)).

It is therefore clear that (a) above is satisfied as long as n~ < N/Z < n+ and
Z is large enough. This together with the fact that (b) also holds shows that
Theorem 2 is not valid without the assumption of fermionic symmetry.

We prove Theorem 2 by comparing with Thomas-Fermi (TF) theory, in
contrast to the above remark where we used the Hartree model. Indeed TF
theory is known to approximate the true quantum energy of fermionic atoms and
molecules to leading order.

The crucial fact about TF theory that will be needed here is that molecules
do not bind in this model. This is what is known as Teller's no-binding Theorem.
While this is usually considered a fault of the model, in fact, it just means that
the binding energy is of lower order than the full energy, i.e., (7) above.

The actual repulsion between atoms in the TF model was studied in [1, 3],
Their results will allow us to conclude (8). This comparison with TF theory is
carried out in Sect. 4.

From (8) we see that R is larger than the TF scale Z~1/3. The TF density
of the molecule is therefore almost a sum of two atomic densities. We show in
Sect. 5 exactly how this approximation depends on R. This is of importance in
proving the bound (6).

Equation (6) consists of an upper and a lower bound to N. The upper bound,
which is very similar to upper bounds in the atomic case (see [8, 5, or 12]), is
proved in Sect. 8. The lower bound is special for molecules and rely heavily on
(8). This is presented in Sect. 7.

Both the upper and the lower bound are proved by using TF theory to control
the true ground state density

|φ(x, σ; χ2, σ2; ... xjv, <?N)\2d(x2, σ2)...d(xN, σN),
o

(x is a space variable, σ is a spin variable) and 2-point correlation

\ιp(x, σι 9y,σ2',...;xN9 σN)\2d(x3, σ 3)...</(xjv, σN) .

These quantities are estimated in Sect. 6.
The lower bound on N is proved by showing that this bound is necessary for

the stability condition (a) to be satisfied. While the upper bound is proved by
showing it is necessary if (b) is also to hold.

In Sect. 2 we begin by describing a general localization argument which will
be used in Sect. 3 to prove the global lower bound on N and in Sect. 7 to prove
the asymptotic lower bound.
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2. Localization Argument

We will consider two-cluster decompositions α = (αi, α2) of {!,..., N}. The
intercluster potential is

r^τ+^.(10)ίeαi -̂

The cluster Hamiltonian is #α = H — /α. Hα is an operator on the space of func-
tions satisfying the appropriate symmetry condition in the two clusters separately.
By a change of coordinates of the form

R' = R + tι ̂  * + *2

and

i + λμ + l^R, z e α 2

for some constants t\9 ti > 0, it is easy to see that Ha = —(2M)A^ + Haι + Ha2.
Here M is a certain reduced mass and H^ is the atomic Hamiltonian

Z '
By the Weyl criterion we easily conclude that if H has a stable ground state then

E = inf spec H < £α = inf spec #α . (1 1)

The first step in the localization argument is to choose two functions χi,
χ2 etf1^3 xR 3) with

From the simple integration by parts argument used in proving the IMS-formula
(see [4]) we get

E(ψ\R\ψ) =

and

(ψ\Rl'2HRV2\ψ) =(ψ\R1/2 [] (χιfe R) 2

where χα(x, R) = Π Xife R) Π Xz(χj> R) Using (11) and the IMS-formula
ieαi 7'Gα2

again we obtain

>inf EΛwlRlw) + / {(w\IaRx2\w) — (wlL^Rlw}} , (14)α \ ^ ' ' τ / ^ ^ L \ τ v,α / j
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where the localization error is

+ i Σ ™2 + 7,M, \ MΛ Σ U f c 2

Mj+M 2

~ 2MιM2

The last inequality follows from the Cauchy-Schwartz inequality. From this we
easily obtain the final estimate, writing L for the sum of the error term in (12)
and all the Lα,

ΔEb(N,Z)(ψ\R\v)2:-(ψ\L\ψ)
N Z

(λ + i)-*\*l(xί>2M

(16)
f£ \χi-χj\

For simplicity we are not displaying the R-dependence of χ^. Using the Cauchy-
Schwartz inequality once more we can easily estimate the error by

R

3. Global Bounds on N

We will now make an explicit choice of localizing functions. These functions will
depend on the parameter μ = Z2/Zι. Writing

* = * + R and δ = R'
we have

x + μR = x + λ(λ+ IJ^R and 3c - R = x - (λ

Define

anα »w
We will assume that Z\ > Z2, i.e., μ < 1, the effect of this is to make χi greater
than χ2 in a larger region of space. Notice that if μ = 0 then χi = 1 while χ2 = 0.
It is easy to see that
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We consider the different terms in (16). We begin with L. A straightforward
calculation gives

Λ((Vxχι(x, R))2 + (Vxχ2(x, R))2) = μ(μ + 1Γ2*3(|*|2 + μR2Γ*

<^V>. (19)

For the R derivative we first notice that

R((VRχι(X, R))2 + (VRχ2(x, R))2) = χ^Λffitfiί*, R))2

Thus

R(VRχ1(x,R)2 + (VRχ2(x, R)2)

< (μ + l Γ V κ l + 1 (μ(Vsχι)
21

(20)

It is now clear that in order to estimate the error term in (16) we must estimate
(ψlR^lψ). We do this by comparing the energy E with the energy of the cluster
decomposition corresponding to all electrons in αi, i.e.,

£atom(Zι, N) > £atom(Zι + Z2, N) + <

The last inequality is very easy to derive (see [13]). It was proved in Ruskai [11]
using a simple concavity argument that

£atom(Zι + Z2, N) - £atom(Zι, N) > -3mσJVZ1Z2 ,

where
Γ ^N without particle symmetry

\ σΛΓ1/3 for fermions,

(σ is a constant). Thus

(21)

Putting together (17), (19), (20) and (21) we arrive at the following estimate on L
independent of particle symmetry

L μ
(22)
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where

m(Zi+Z2 . MH-M2 ZιZ2 Γ 1
+m

4 \Mι + M2 MιM2 Zi + Z2 L 4(Zι + Z2)

(Af!Zι-M2Z2)
2 \

MιM2(Mι+M2)(Zι+Z2y' l j

here we have inserted the values λ = Mι/M2 and μ = Z2/Zι and used that we
can assume 1 < N < Z\ + Z2. It is clear that a is of order 0(m/mp).

Returning to (16) it is clear that the term coming from the repulsion between
the electrons in different clusters will improve the bound on the critical charges.
Unfortunately it is not easy to estimate this term. When proving the asymptotic
neutrality for fermions we of course have to use this term, but here we simply
neglect it. From (16) we get

We estimate

(Z2|x + μR\ + μZι\x - R|)2 =Z2

2|x + μR|2 + μ2Z2|x - R|2

+ 2μZιZ2\x + μR| |x - R|

<(Z2

2 + Z?μ) (|x + μR|2 + μ\x - R|2)

With the choice μ = Z2/Zι we obtain

0>-V(l+4α)-N^|- + (^-)2

) (25)
4 Zi +Z2 \Zι +Z 2/

which implies

(26)
(Zi + Z2)

This completes the proof of theorem 1 :

Remark. If Z\ = Z2 it is easy to improve (21) so that neglecting the term of order
m/mp9

Zi < (1 + v/Π73)7V<3N.

Remark. Even though (26) is true for all Z\ and Z2 we point out that it is trivially
satisfied whenever Z2 < N. As in Ruskai [11] our method does not give any
information if Z2 < N.

4. Comparison with Thomas-Fermi Theory

We turn now to the more detailed study of the fermionic case. We assume here
that MI = M2 = oo, i.e., the Born-Oppenheimer approximation. For simplicity we
set m = 1/2 and RCM = 0 such that xt = &.
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The first step is to compare with TF theory. The TF functional for a diatomic
molecule is (for a review of TF-theory see [6])

*(β)=Ί I Q^dx-Z, fρ(x)\x-RlΓ
1dx-Z2 ί ρ(x)\x -R^dx

J J J

+ D(ρ,ρ)+Z1Z2/,R, (27)

where

D(f, g) = (1/2) J f ( x ) \ x - yΓlg(y)dxdy.

The physically correct value of γ is yp = (3π2)2/3 for spin ^ particles. For N < Z,
$ has a unique minimizer with J ρ = N that we denote

where R = (Ri, R2). The neutral density Qj>p(x; Z; R; Z) is the total minimizer
for δ.

Thomas-Fermi theory has the following scaling property which is crucial to
our analysis:

(y) / v. Ύ . Ύ) . \j\ Λ i~3 < 7 ' 2 ( l ) / ' 7 ' l / 3 < . — 1 „. . « . M \
^TP \ ' ' -IV , 1V I — y 4L/ ^"TΐJ \^ Y ^ 9 zL 5 L 5 'v ?

where Z = Zi + Z2, z = Z-1Z, r = Z1/3y~1R, and n = Z~1N. The energy (i.e.,
the minimum of $) scales like

where r = |rι — r2| = Z1/3^"1^.
The important fact about TF theory is that ETF approximates the true

quantum energy to leading order in Z. Not only this result but details from its
proof will be of importance to us. We therefore give a very short sketch of the
proof (see [6]).

Choose gi € C^flR3) radially symmetric, positive and with /g2 = 1, and such
that gι(x) = 0 for |x| > 1. Let gs(x) = s~3/2gι(x/s), then Jg2 = 1. Using the
positivity and harmonicity of the kernel |x — yl"1 we find for any ρ G L!(R3),

( N N \

Σfc<-*)2.Σ><-*>2)-

+ 2D &(• ~ ̂ )2, ρ - D(g, ρ) -
V i=l /

Denoting

(29)
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we get the following operator inequality for the diatomic molecule Hamiltonian :

N N

H(N, Z, R) > ̂  ̂ } ~ D(ρ, ρ) + Z,Z2/R + £ hfrror}

z=l i=l

~lι, ..., Xnl ρ)-cNs~,

where /ι|g) and /ι|error) are one-particle operators defined by (δ is a parameter to
be chosen later)

ftfe) = _(1 _ δ)A. - Zlgs

2 * \Xi - R,Γl - Z2g
2

s * \Xi - R2Γ
J + gs

2 * ρ * top1

and

Λ(«ror) = _ δΔi + Z ι ( 2 „ |χ. _ Rι|-l _ |χί _ Rι-l

Choosing ρ to be the Thomas-Fermi density corresponding to γ = (1 — δ)yp, i.e.,

βN(x) = QπΓ*W(x;Z ,R , N ) (30)

we find, following the coherent state proof in [6] that

H(N, Z, R) >4(F^W(Z; R; N) -N j \Vgs\
2dx + K(Xl..., XN; g)

; R ; N ) + K(Xl . . . , X N ; Q )

/2 + JVs-1 + Ns-2)
With the choices δ = Z^1/30 and s = Z~1/2 this becomes

H(N, Z, R) > E(^(Z;R; N) + K(Xl..., xN;ρ)- CZ(7/3)(1-e> (31)

with ε = 1/70. The constant C depends only on z\ and Z2 (not on n since from
Theorem 1 (2/3)z1z2 < n).

The famous no-binding Theorem of Teller (see [6]) states that

Γ ( Z ; R ; N ) = £TF(Z; R; N) - lira EτF(Z; R; N) > 0.
R-K30

As jR tends to infinity the energy of the molecule will tend to the energy of two
independent atoms, i.e., there exist HI, n^ with n\+ni = n such that

lira £TF(Z R; N) = £&°ra(Zι, Znj) + £&om(Z2, Zn2) . (32)
R-+OO

n\ and n2 are determined by that the chemical potential for the atoms should be
equal (see Sect. 5) and are thus bounded away from 0.

The quantity Γ has been studied in [1] where it was proved that Γ is smallest
in the neutral case. For the neutral case it was proved in [3] that #7Γ is increasing
in R. We recall that from (21) there exists a constant r0 > 0 such that R > r0Z~1/3

for fermions. Thus with R = Z~1/3r, we have r > ΓQ and

Γ(Z; R; N) >Γ(Z; R; Z) = Z7/3Γ(z; r; 1) > R-7r7

Qr(z; r0; 1) = c0R~\

where we have used the scaling property of Thomas-Fermi theory.
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We choose two integers Λ/Ί, A/2 with N\ -f N2 = N and such that

\Nk-nkZ\<l for fc=l,2.

Then JVi = Z(«ι + OίZ"1)) and since ETF is not only an approximate lower
bound to the true energy but also an approximate upper bound, we find

1— ε)Ea

We have proved

Proposition 3. If H(N, Z, R) is ί/ie Hamiltonian for a diatomic molecule with R >
roZ"1/3 (which holds if H has a stable ground state) then there exist Λ/Ί, N2 with
N{+N2 = N ifN <Z,or N{+N2 = Z + O(Z~l) if N > Z, such that

H(N, Z) >£atom(Zl5 N{) +£atom(Z2, N2)

+ X(xι . . . , xN ρ) + coir7 - CZ(7/3)(1~ε) , (33)

where
^p ) y p ) (x;Z;R;N)

, (34)
τ v > z

wiίfc δ = Z-1/30.

Remark. Above we only described the case N < Z. The case N > Z is similar.
We know from Theorem 1 that N is always of the same order as Z.

Remark. Notice that ρ# = (1 - 5)"3ρ^((l - δ)~lx}.

Since for a stable ground state

0 < ΔEb(N, Z) < £atom(Zι, ΛΓi) + £atom(Z2, ΛΓ2) - E(N, Z) ,

we immediately conclude

0 < AEb(N, Z) < CZ^7/3^1^ - {{V|X(xι . . . , XN δ)lv> + ̂ o^~7} . (35)

Observing that K > 0 this proves (7) and (8) of Theorem 2.
Equation (35) also gives a bound on K, this bound will be used to prove (6).

We will use K to compare the true quantum mechanical density ρ with ρ. For
atoms a similar technique was employed in [5]. The next step in this comparison
is to study the structure of ρ.

5. The Behavior of the Thomas-Fermi Density for Large Internuclear Distance

Equation (8) shows that R is much larger than the Thomas-Fermi scale Z~1/3.
The density ρ will therefore be almost equal to the sum of the densities of two
independent atoms. In this section we will control this approximation using some
well known monotonicity properties of Thomas-Fermi theory. We will work with
the scaled variables z, n, r, and y = 1. Corresponding to the density ρyp we define
the Thomas-Fermi potential

φTF(x) = zι|x-rι|"1 +Z2IX-Γ2Γ 1 -£TF* W" 1 .
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The ratio n/(z\ -f z2) = n and the distance r determines the chemical potential
μ(r) > 0 for the molecule. We denote by φ\ and φ2 the solutions to the atomic TF-
equations (see [6]) centered at ri and r2 respectively, and with the same chemical
potential μ(r) as for the molecule. This means that the corresponding electron

"numbers" nk(r), k = 1, 2 satisfy (see the review in [6]) μ(nk/zk) — z^~4/3μ(r) Here
μ(λ) is the chemical potential for an atom with z = 1 and λ electrons, μ is strictly
decreasing and convex for λ < 1 and (1 — λ)~4/3μ(λ) is bounded above and below
by positive constants for λ away from 0. It is then not hard to see that

0 < c < \(n{(r) - m(oo))/(n2(r) - n2(α>))| < C,

for large r. Notice that we are not claiming that n\(r] + 712 (r) will give the total
number of electrons n. This will only be true as r — » oo, see Corollary 5 below.
Indeed nk(ao), k = 1, 2 are identical to the nk defined in (32).

The monotonicity property of TF theory (see [6]) gives

max{φ!(x), φ2(x)} < φ(x) < φι(x) + φ2(x) ,

where we have omitted the TF-subscript.
Using the TF-equation (ρ2/3 = [φ — μ]+)9 and the fact that φi(x) < c\x — rt|~

4

we immediately conclude the following estimate on the corresponding densities.

Proposition 4.

0 < ρ(x)-max{ρι(x), ρ2(x)} < Cmin{|x-r2Γ
2|x-r1r

4, |χ-rι|-
2|χ-r2r

4} . (36)

It is now an easy exercise to prove

Corollary 5. For large r,

Corollary 6. If r' < r/2 then

\x-rk\<r>

Proof. From the proposition,

0

\x-rk\<r'

But

< / ρ(x)dx — I maxjρi, ρ2}dx < Cr V < Cr' 3.

|x-rfc|<r' |x-rfc|<r'

/ ρk(x)dx < I max{ρι, ρ2}dx < I ρk(x)dx + Cr"

and

nk(r) = I Qk(*)dx = ί ρk(x)dx + O(rf~3) .
j j

|x-rfc|<r'

The result now follows from Corollary 5. D
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6. Estimate on the Electronic Density

The main technical step in controlling the number of electrons is to prove the
following estimate on the 2-point correlation function. A similar estimate was
proved for atoms in [12].

Lemma 7. Let θ e C°°(R3) with 0 < θ < 1, |VΘ| < ci^R"1 and such that \x-Rk\ >
c2R, k = 1,2 on suppθ, and let χ e C00^3 x R3) with 0 < χ and χx = χ(x, •)
compactly supported. Then

[Λ, y) - QN-ι(y)Q(χ)]θ(χ)2χ(x, y)dxdy

C I 0(x)tf(xΓdxJZw w v^& ;sup

(37)

where QN-I vvαs defined in (34) and ρ, ρ® are the true quantum mechanical cor-
relation functions for the stable ground state of H.

Proof. For gs as defined in Sect. 4 we have with the choice of s made there,

Izx*g s

2 -;6cl < <

It is then not difficult to see that

Q(x)θ(x)2dx

X

N

{ ί

N 2

s

2(

1/2

gs

2(y - x,) - Q(y) χ(xι, y)dy

Now using the Fourier transform (denoted by Λ) we estimate

N 2

i=2

r r ( N

/ \χx\
2\P\2dP / Σ

•̂  ^ \i=2

\PΓdp

where

= const | | Vy^x 1 1 2

-I was defined in (29).

,XN',Q),
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Using the IMS-formula and the fact that we are in the ground state we find
that

E ( N , Z ) ί ρ(x)θ(x)2dx

N

1, Z, R)6>(x, )

) , (38)

where in the f th term we have neglected the positive —At term. Since the ground
state is stable we know that actually

E(N, Z) < min (£atom(Zι, JVί) + £atom(Z2, N2)) .
JV. ~r-/V 2—N

From Proposition 3 (used for N — 1) we can thus estimate the right-hand side of
(38) below by

E(N9 Z) J ρ(x)θ(x)2dx + N J \ψ\2KN^θ(Xl)
2d3Nx

- C(Z7(1~ε)/3 + ZR~{) ί ρ(x)θ(x)2dx - cNR~2 .

In the last inequality we have thrown away the term coming from the repulsion
between the electrons and used the support property for θ. Thus since R >

) we get

JV / M2Kjv-ι(x2, . . . , xN)θ(x{)
2d™x < CZΊW3 ί ρ(x)θ(x)2dx + cNR~2 .

j j

Putting everything together and using J ρθ2 < N < const Z gives (37). D

A simple modification of the above proof gives

Corollary 8. For all χ G C^°(R3),

[ρ(x) - ρN.,(x)]χ(x)dx < Z™^ ||Vχ||L2 + Z

7. Lower Bound on W

In this section we prove the lower bound on the number of electrons. We will
assume that N < Z. We begin by defining new localizing functions for fermions.
Choose 0ι, 02 e C£°(R3) and Θ0 e C°°(R3) such that they satisfy the following
conditions.

1. 0 < Θ0, 0ι, 02 < 1.

2. For fc = 1, 2, 0^ depends only on |x — R/d,

supp0 f ed {x\ \x-Rk\ < ±R}

and θk = 1 for |x - Rk\ < (1/5)R.
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3. IVΘoUVΘiUVΘzl^CR- 1 .

4. 00(x)2 + 0ι(x)2 + 02(;c)2 = l.

For k = 1 or 2, 0^ localizes close to the nucleus at Rk. As our full localizing
functions we then choose

χι(x) = {0ι W 2 + αι00(x)2}1/2 and χ2(x) = (02(x)2 + α200(x)2}1/2,

where 0 < αi, α2 < 1 and αi -f α2 = 1, we are not going to make any explicit
choice for αi, α2 here since it is not important for the general argument. We
will keep them in the following derivation so as to simplify the identification of
different terms. Then

The point is that we localize the core electrons, i.e., electrons in supp0ιUsupp02,
differently from the outer electrons, i.e., electrons in supp0o An important step in
our analysis is to prove that almost all electrons belong to one of the two cores.

From (16) we find

N

-AEb > - cNR~2 - ]Γ(tp| ίZι\Xi - RiΓ1 - ]Γ Θι(xj)2\Xi - x} \~l

ί=l V 7^1

- Θ2(xj)\xι

= - cNR~2 -Al-A2 + B. (39)

Where we have defined the "attraction" between the fcth screened nucleus, k = 1, 2
and the outer electrons in the other cluster fe,

Ak =Zk ί ρ(x)a-kθQ(x)2\x - RkΓ
ldx

-Jρ(2}(x, y)θk(y)2akθQ(x)2\x-y\-{dxdy, (40)

and the "repulsion" between the screened nuclei

B =ZlZ2/R + Jρ(2>(x, y)\x-y\-iθl(x)2θ2(y)
2dxdy

-Zι ίρ(x)θ2(x)2\x-RlΓ
ldx-Z2 ίρ(x)θl(x)2\x-R2\-ldx.

J J (41)

The reason why we put attraction and repulsion in quotation marks is that we
do not know a priori that Ak, B are positive.

Notice that in contrast with Sect. 3 we have here made use of part of the
electron-electron repulsion term in (16).
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We will now estimate Ak, B using the results from the previous sections.
Let R = C3Z-(1/3)(1~ε) then from (8) R < R. Choose θk G C£°(R3) with the

same properties as θk except that

_ Γ 1 if \y-Rk\ <R/1
k(y) = \0 if \y-Rk\>R/6

and H V Θ f c H o o < cR . Then θk < θk. We will estimate Ak by Lemma 7 with θ = ΘQ
and

χ(χ,y) = *ι\χ-yΓ1Qk(y)2.

Notice that if θ(x)2χ(x, y) ^ 0, then \x — y\ > cR and thus for these x

\\Vyχx\\L2QR3) < cR R~^ ana \VyXχ\ < cR R~l.

From Lemma 7 we can now conclude
Γ

Ak <Zk I ρ(x)^θo(x)2\x — Rk\~ldx

- ίρ(x)ρN-i(y)akθ0(x)2\x-y\-lθk(y)2dxdy

+ cZ1~δ/r1 ί ρ(x)θϋ(x)2dx + cZ(5+sV6R-2. (42)

If NI and N2 satisfy N\+N2 = N and Nk/Z — nk = O(Z L) then using Corollary
6 in Sect. 5 and the definition of R we find

ly = Nk + (l- δγθ(R~3) = Nk + 0(Zl~ε),

and in (42) the order of the error term will not be increased by replacing ρ^-i
by the spherically symmetric TF density for an atom with Nk electrons centered
at Rfc, i.e.,

Ak <(Zk — Nk + cZ1-ε)α^ / Q(x)0Q(x)2\x — Rk\~^dx

+ cZ{~£R~{ I ρ(x)θQ(x)2dx + cZ(5+ε}/6R~2 .
j

Now by Corollary 8

Iρ(x)θQ(x)2dx = N - Jρ(x)(θ{(x)2 + Θ2(x)2)dx = 0(Zl~£). (43)

Thus again using (8) we finally arrive at

A{+A2< C(α2(Zι - NI) + αι(Z2 - N2) + cZl~ε)Zl~εR~l.

Likewise for B

B > C(Zι - JVi) (Z2 - ΛΓ2)jR~1 - cZ2~εR-1.
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By changing the choice of ε, (ε —>• ε/2) we can still write the error term above as
cZ^-&\

Inserting these two bounds into (39) and using ΔE^ > 0 gives

(Zi - Ni) (Z2 - N2) - cZ^tfZi - NO + (Z2 - N2)) - cZ2(1~ε) < cZ(4/3~ε/3),

or

- JV2/Z2) - cZ~ε(l - JVι/Zι) - cZ~ε(l - N2/Z2) < cZ~2ε,

the constant c depends only on z\ and z2.
From μ » c(l-Λ)4/3 for λ » 1 (see Sect. 5) we get that \(\-Ni/Zl}/(l-N2/Z2}\

is bounded above and below and hence 1 — Λ/&/Z& < cZ~ε. This is the lower
bound on N given in Theorem 2.

8. Upper Bound on N

The upper bound that we prove in this section is similar to excess charge bounds
for atoms (see [5 or 12]). From our comparison with Thomas-Fermi theory we
know that the nuclei are almost screened. By copying the proof in [7] we will
conclude that there cannot be too many electrons outside the screened nuclei.

Define
φ(x)=zι |x-RιΓ 1 +z 2 | x-R 2 Γ 1 .

With #o as in the previous section we compute

9Z)JE(N9Z)ρ(x)θQ(x)2φ(xΓ1dx

> £ (E(N - I, Z)

* / ^ 1

|x, - Xj I

or since |V(θ0φ~1/2)| < CR~l/2,

0>-Z fρ(x)θQ(x)2dx+ ί
j j

+ \ ί(>(2\x9 y)θQ(x)2(φ(
L J (44)

We estimate the different terms independently using Lemma 7. Since we can
assume N > Z + 1 we have this time that QN-I = Qz is the neutral TF density.
If we let θk be defined as in the previous section we will use Lemma 7 with
θ(x) = 00(χ) and

χ(x, y) = 2[θ1(y)2 + ~θ2(y)2]φ(xΓl\* - y\~l.
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Then for x G supp$o we have

|Vyχx | < CΪΓ1 and \\Vyχx\\L2^} < CR1/2.

First recall that

2)(x, y)#oM2[l — θQ(y)2]φ(x)~i\x — y\~ldxdy

and thus from Lemma 7

ρ(2)(x, J>)0o(x)2[l -

ρ(x)θϋ(x)2dx-cZR-1Rl/2

>(Z- cZ(I-ε)) / ρ(x)θ0(xfdx - cZ(7/6-ε/6) .
J

As in (43) we find from Corollary 8,

N - Z + C_Z(1~ε) < / ρ(x)θQ(x)2dx < N - Z + C+Z(1~ε) . (45)

We can therfore conclude that

~ yΓldxdy > (Z -

In estimating the next term in (44) we follow the argument in [7] and use the
triangle inequality to conclude

2

φ(xΓl + φ(yΓl > Σ zkl<P(χ)\x - ^IΓ1 [φ(y)\y - MΓ1 |χ - y\ -
fe=l

We now appeal to the general inequality

t Q(2\^y}f(x)f(y}dxdy> ( ί ρ ( x } f ( x ) d x ) 2 - ί ρ ( x ) f ( x ) 2 d x ,
j j j

which follows from (F2) — (F}2 > 0. We arrive at

/>>(*, y)θ0(x)2(φ(χΓ1 +φ(yΓ1)θ0(y)2\χ~y\^dxdy
J

fc=l

4- J ρ(x)θ0(x)4[φ(x)\x -

>C1(ίρ(x)θ0(x)2dx\2C2 ίρ(x)θ0(x)2dx,
J J
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where we have used that ΘQ < I and that on supp#o,

c.<φ(x)\x-Rk\ <c+.

Inserting all this into (44) and again using (8) on R we conclude

ρ(x)θQ(x)2dx < CZ(1~ε),

and hence from (45) the desired result

N < Z + CZ(1~ε).

This completes the proof of the asymptotic neutrality.
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