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Abstract. I obtain an exact solution of Einstein's equations representing the
gravitational field of a steady beam of light. Another exact solution representing
two parallel beams shining in the same sense is also given; they do not interact.
From a study of null geodesies I conclude that a uniform beam of light is gravi-
tationally stable.

The exact solutions are plane-fronted gravitational waves. It seems that a
large class of these waves have as their sources pulses and beams of light.

§ 1. Introduction

TOLMAN (1934) made an extensive study of the gravitational field of
light pulses and beams in the linear approximation to relativity theory.
In this paper I give exact solutions corresponding to some of TOLMAN 's
approximate ones. The exact solutions confirm one of TOLMAN'S results,
namely that a test ray projected parallel to a steady light beam (and
moving in the same sense) is undeflected. Indeed I am able to strengthen
this to the statement that two steady parallel light beams (shining in
the same sense) do not interact, and hence remain parallel.

TOLMAN also discussed the stability of a light beam, and I take up
this problem by studying the null geodesies within the beam, and
conclude that a uniform steady beam is gravitationally stable.

An interesting by-product of the work is that the required exact
solutions turn out to be metrics of plane-fronted gravitational waves
(BRINKMANN, 1923; ROBINSON, 1956; HULY, 1959; PERES, 1959;
TAKENO, 1961 KUNBT, 1961 EHLEBS, and KUNDT, 1962 EDELEN, 1966).
Thus we have a physical explanation for a large class of these waves
— they are caused by pulses and beams of light.

In § 2 plane-fronted waves and their energy tensor are described, and
in § 3 I show how one can construct globally regular solutions representing
these waves and their sources. In § 41 specialise to the stationary case
and present a detailed comparison with the work of TOLMAN: an
extraordinary fact becomes apparent here — that the exact and line-
arised solutions are identical. In § 5 I give the exterior and interior field
of a uniform steady beam of light, and follow it in § 6 by the field of two
such beams (they do not interact). In § 7 two examples of time-dependent
fields are given. § 8 contains a detailed investigation of geodesies in the
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interior and exterior field of a uniform steady light beam, leading to the
conclusion that it is gravitationally stable.

To prevent any confusion I emphasise that I am writing throughout
about exact solutions of EINSTEIN'S equations, except in § 4 where I
refer to TOLMAN'S work.

§ 2. Plane-Fronted Gravitational Waves

I start with the metric for plane-fronted gravitational waves (EHLEBS
and KUNDT, 1962):

ds2 = — dx2 — dy* + 2dudv + 2 A du* , (2.1)

where — <χ> < x, y, u, v < oo. This metric is one of a class studied by
KEBB and SCHILD (1965). The function A(x, y, u) will be taken of
differentiability class C1, piecewise O3, and I shall suppose

A ^ 0 . (2.2)

The coordinates will be numbered

so that x1 and x2 are space-like, xz null and x* timelike. The metric
(2.1) has \gik\ = — 1, and

(-1 0 0 0\
0 - 1 0 01 ,0/n

0 0 -2A 1 (2 4>
0 0 1 O/

so that the coordinate hypersurfaces

ίc4 = u = const (2.5)

have normal % = (0, 0, 0, 1) and are null.
The metric (2.1) has for general A one Killing vector

s* = ]/24, (2.6)

which is null (EHLEBS and KUNDT, 1962). (The factor ]/2 is inserted for
later convenience).

The Kicci tensor for (2.1) has the value

(2.7)

where A^ = d^A/dx*, A2ί = dzAjdy^. From the field equations

(2.8)

we have

Λi + ̂ •Jβ'β* , (2.9)
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and, since si is a null vector, we may interpret this as the energy tensor of
a fluid of photons moving with velocity sί. The energy density will be
taken as

the justification for this will appear in § 4. In empty space A satisfies

Ax + ̂ 22 = 0. (2.11)
The transformation

.y2u = t-z, γ2v = t + z, (2.12)
takes (2.1) into

ds* = (- dx* - dy* - dz* + dt*) + A(dt- dz)* . (2.13)

When the metric is used in this form, I shall write

χί = x, x*^y, x*^z, x*=t. (2.14)

In these coordinates
& = (0, 0, 1, 1) , (2.15)

and the energy tensor can be written in the form

-Tξ=-T$=T$=Ti=ρ (2.16)

which will be needed later.

§ 3. Globally Regular Solutions

Any non-uniform solution A(x,y,u) of LAPLACE'S equation (2.11)
must be singular. Suppose it is of class CB except on the 2-surface

S:x = x0(u), y = y0(u), (3.1)

x0 and yQ being of class (73. To obtain a global solution of (2.8) we surround
$ by the 3 -surf ace

Σ: (x - x0(u)γ +(y- y0(u)γ = β*(> 0) , (3.2)

and replace A by some function A*(x, y, u) of class C3 inside and on Σ9

that is in
D : {(x, y, u, v):(x- x0 («))2 + (y - y0 (u)~)* < β*} . (3.3)

A* has to satisfy
λ BA BA* ^ /0 A.A = A>-w=-d^>OIlΣ (3 4)

It is fairly obvious that A* always exists. In the Appendix this is proved
rigorously in the case where A is class <74 on and near Σ. The method of
proof is to exhibit a function A* satisfying the conditions. (Naturally
A* is not unique).

A* will not satisfy (2.11) throughout D. Where it does not, Tik is
given by (2.9). In this way we can construct a globally regular solution
12*
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of (2.8) representing light beams or pulses moving with velocity sί

within D, and empty space outside D.
Evidently the procedure can be extended to any finite number of

singularities such as (3.1). Singularities on 3-surfaces /(#, y, u) = 0 can
be treated similarly provided their sections by every hypersurface
u = const are finite. I conclude that, confining ourselves to those plane-
fronted gravitational waves whose singularities lie in the finite part of
the (x, y) plane, we can by this procedure provide a large class of them with
interior solutions and so make them globally regular. It thus seems that
this class of plane-fronted gravitational waves have for their sources pulses
and beams of light. Further justification from the linearised Einstein
equations will be given in § 5.

It turns out that the solutions of most physical interest have, in
addition to a singularity on (3.1), a logarithmic singularity at x = oo,
y = oo. Reasons will be given later why this is purely a coordinate
singularity, of no physical importance. Therefore I shall not hesitate to
use these solutions.

§ 4. The Stationary Case

In §§ 4-6 I shall assume
A^A(x,y) (4.1)

so the metrics (2.1) and (2.13) are stationary. There are now two Killing
vectors if A is a general function of y and x,

respectively null and time-like. The energy tensor is now independent
of u, and, from the argument of § 3 I claim that the sources in the finite
part of the (x, y) plane are steady light beams parallel to Oz.

This statement becomes very plausible if, following TOLMAN (1934),
we study the corresponding linear approximation. Consider in special
relativity a directed flow of electromagnetic radiation parallel to the
positive z-direction. The non-zero components of T\ are

•*• 3 ~ -^3= = -̂  4 == - ^ 4 = = ί ? > v'*•**/

where ρ is the energy density, and we now obtain in the usual way
solutions of the linearised Einstein equations corresponding to this T\.
Indeed if we write

&* = *?<* + 7ik> (4 4)

ηik being the Minkowski metric components, and γiJc being small, we
easily find for the non-zero γi k

def Ί

733 =
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the integration being taken over the sources, [ρ] meaning the retarded
value of ρ, and R being the distance from the source-point to the field-
point. If the sources are independent of z and t we have the linearised
gravitational field of steady beams of light.

We now compare the approximate solution of the previous paragraph
with exact solution of § 2, restricted by (4.1). It turns out that the
approximate metric (4.4) and the exact metric (2.13) are identical if we
write

A = + A . (4.6)

Moreover, if h is independent of z and t it satisfies

*ιι + AM = lβ πρ , (4.7)

ρ being given by (4.3) now A satisfies the same equation, namely (2.10),
and the ρ occuring in the latter is connected with the energy tensor T\
by (2.16), which is the same as (4.3). Hence, the exact solution and the
solutions of the linear approximation are formally identical, and I shall
therefore suppose that the former, like the latter, refer to the gravitational
field of steady light beams shining in the positive z-direction. The fact that
the exact and linearised solutions are identical is highly unusual, but to
be expected because the right-hand side of (2.7) contains no non-linear
terms.

If the beams shine in the negative z-direction the affects are the
following. In the linear approximation T§, T\, y34, y43 change sign and
the remaining quantities are unaltered. In the exact solution T% and Γf
change sign, and (2.13) becomes

ds* = (- dx* - dy* - dz* + dt*) + A (dt + dz)* . (4.8)

If the latter metric is submitted to the transformation (2.12) we obtain
(2.1) with u and v interchanged. The conclusion of this paragraph is that
(2.1) or (2.13) can represent the field of several beams only if they all
shine in the positive z-direction.

§ 5. The Field of a Steady Uniform Beam of Circular Cross Section

Let us now consider a single beam symmetrical about Oz and shining
in the positive z-direction. For the exterior solution we may take

Ae = 8m log(r/α), r = + (x* + ϊ/2)1/2, (5.1)

where α is a positive constant, and m is the constant energy density
per unit proper length. The factor 8 is chosen to agree with the expres-
sion for h obtained by integrating (4.5) for an infinite line source of
constant density ρ, and using (4.6). We notice that the gravitational
potential is twice as great as that for a material rod of line density m
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factors of two often occur in relating electromagnetic to mechanical
energy. (BONNOR, 1960; TOLMAN, 1934).

We can easily construct an interior solution. Take

Ai = 4 πρ0r
2, (ρ0const) (5.2)

which, according to (2.10) and (2.16) corresponds to an energy tensor

-Tl=- Tl = T\ =Ti=ρ0 (5.3)

in the coordinates of (2.13). We may now use (5.1) and (5.2) as the
complete solution in conjunction with metric (2.13) or (2.1). Continuity
of the gik and their first derivatives is ensured on the boundary 3-
surf ace r = a (const) if we take

m = πρ0α
2, logα/α = 1/2 . (5-4)

These are sufficient to satisfy the standard boundary conditions of
general relativity. Thus the solution for a steady uniform beam with
circular cross section shining in the positive z direction is (2.13) for (2.1))
with

Ae — 4 m + 8 m log r/a, r ̂  a, (5.5)

At = 4 wra/αa, r ̂  a . (5.6)

The logarithmic infinity as r -> oo is a coordinate singularity the paths
of test particles and light rays are well-behaved for arbitrary r (see § 8),
and at any point one may introduce natural (i.e. freely-falling) coordinates
in which the metric is locally non singular. Hence the solution is free of
singularities.

§ 6. The Field of Two Parallel Beams

We can satisfy (2.11) by taking

A = Sm1 log fa/αO + 8 m2 log (ra/αa) , (6.1)
where

r\ = (x - ttf + (y - δj ,

Wi, &ί> aί and bi being constants. This represents the exterior field of two
beams of light with energy densities mx and m2 per unit proper length
both shining in the positive ^-direction.

It is remarkable that one may superpose solutions as in (6.1), without
introducing additional terms into the metric. (The situation is entirely
different in the Weyl static axially symmetric solutions : in these, if one
wishes, for instance, to superpose the solutions for two particles, one has
to introduce an additional singular term into the metric representing a
strut holding the particles apart). The physical meaning is that the light
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beams do not interact. This too agrees with the result of TOLMAN (1934)
in the linear approximation.

Owing to the linearity of (2.10) it is a trivial problem to construct
interior solutions for both beams.

§ 7. Two Time-Dependent Fields

I give two examples of time-dependent fields.
The space-time generated by

A = φ(u) log(r/α), α = const, (7.1)

represents a beam of light travelling along the z-axis, and of variable
intensity unless φ is constant. An interior solution can be obtained by
the method of § 3 if φ is of class C3. If for example φ = exp{— k*u2} we
have the field of a pulse of light. Suspending our differentiability
requirements and allowing φ(u) = δ(u)) thereby taking a sharper pulse,
we see that the gravitational field precisely keeps pace with the pulse,
being zero at every spatial point (x, y, z) except at one instant z = t,
when it is equal to that of an infinite rod.

The second field comes by taking

A = φ(u) logγ(x - χQ(u)γ + (y - yQ(u)Y . (7.2)

This can be thought of as the exterior field of beams from a searchlight
at z = •— oo whose position is

χ = χ0(u), y = y0(u),

but which always shines in the positive ^-direction, though with variable
intensity.

§ 8. Geodesies and Null Geodesies

The only non-zero Christoffel symbols for metric (2.1) are

/44 == Al9 1 44 = A%, ^14 — ̂ 1? ^ 2 4 ~ ^ 2 ' * 44 = -^4 W l)

The geodesic equations are therefore

)2

 = 0,^ + ̂ (^L)2

 = 0 j (8.2)dw / ' aw* 2 \ dw J ' ^ '

d*v du dx du dy

1^=°' <8-4)

where w is a parameter which is equal to the arc length s in the case
of geodesies.

First, we notice that the null line
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where x0,yQί v0, u0 are constants, is a null geodesic in the general plane-
fronted wave metric (2.1). The interpretation of this is that no matter
what the sources of the field, a light ray moving parallel to Oz and in the
positive sense is undeflected. This fact is consistent with the supposition
that the sources of (2.1) can be light pulses, moving parallel to the
positive sense of Oz, and not interacting with one another. In particular,
it is of course consistent with our solution (6.1) for non-interacting
parallel beams. The null Killing vector sί given in (2.6) is tangent to
(8.5) at every point.

For general A (x, y} u), the null geodesic (8.5) is the only one through
(XQ> yo>Vo> uo) which is undeflected. Any other has du/dw Φ 0 so from
(8.2) it will be deflected unless

A1 = A2 = 0 on the null geodesic. (8.6)

In particular if we consider the null curve 0 parallel to the negative
z-direction in (2.13), its tangent vector is proportional to

jt = (0, 0, - A, 1) (8.7)

in the coordinates of (2.1). This is not a null geodesic unless (8.6) is
satisfied. As an example where C is a null geodesic we may take the
empty space -time (2.1) with

A = sinx coshί/ , (8.8)

which satisfies (2.11). The null curve (8.5) is of course a null geodesic in
this space-time but so is the null curve

# = yπ, 2/ = 0, v= — W + VQ, u = w + u0ί (8.9)

which is parallel to the negative z-axis in (2.13). Thus there are special
points in some space-times through which rays parallel to Oz in either
sense are undeflected; but generally rays in the negative sense are
deflected.

Let us now apply the specialisation (4.1) thereby making the field
stationary. It is convenient to introduce plane polar coordinates by

y = rsmθ; (8.10)

Eqs. (8.2)— (8.4) then become

r -rθ*=-k*dA/dr, (8.11)

v - - 2JcA , (8.13)

u^k, (8.14)
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where "means differentiation with respect to w and k is a constant of inte-
gration. Eqs. (8.11) and (8.12) are formally the same as the Newtonian
equations of motion of a particle in a plane under a gravitational poten-
tial k2A(r, θ). The right-hand side of (8.13) represents a Coriolis force
giving the particle or ray an acceleration in the 2-direction if it has
a velocity in the x or ^/-directions. This is to be expected because the
field is stationary but not static.

We now specialise still further by assuming

A = A(r), (8.15)

as we are going to consider the geodesies of the solution in § 5. From
(8.11) [with (8.12)] and (8.13) we find, using the metric form (2.1) to
relate arbitrary constants

r* = _ Wr-z _ 2k* A + 2kc-σ, (8.16)

v=-2kA + c, (8.17)

θ = hr-*, (8.18)

where A is given by (5.5) or (5.6), c and h are further arbitrary constants,
and σ is zero for a null geodesic and +1 for a non-null geodesic. The
case k = 0 gives rise only to the null geodesic (8.5), so we henceforth
suppose that k =f= 0. We consider in turn the exterior and interior fields
of the light beam described in § 5.

Exterior Field. A is given by (5.5). We can make a number of deduc-
tions from the geodesic equations.

(i) No light ray [except (8.5)] and no particle can escape to r = oo.
This is clear from (8.16) since, because of the form of A, the right-hand
side becomes negative as r -> oo.

(ii) Excepting once again the ray (8.5), every particle or ray projected
in the 3-space θ = const, eventually hits the light beam. This follows
because (8.11) with θ = 0 shows that r cannot have a minimum or tend
to a finite limit as w -> oo on the other hand we have just seen that r
is bounded, so the result follows.

(iii) If h φ 0 there exist rays and trajectories of test particles which
do not reach r = oo, or hit the beam. This is clear because of the presence
of the term -A2/-2 in (8.16).

(iv) Observationally, the effects discussed here are negligible. Con-
sider, for instance, the case of a ray of light propagated radially outwards
in the field of (5.5). Using the metric in form (2.13) with initial conditions

σ = 0, to = 0, r = r0, Θ = Θ0, z = z0, -*L = *1 = o , (8.19)

we have from (8.14), (8.17) and (8.18), with the use of (2.12)

v0 = ύ0 = k = c - 2k(4tm + 8ralogr0/α) A = 0 , (8.20)
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whence substituting in (8.16)

- 2A0 - A) . (8.21)

Hence the maximum value of r reached by the ray is given by

whence
ι

rmax = ~

The dimensionless quantity m (Gdjc2 where d is the mass per unit length
in units of customary dimensions) is extremely small for beams realised

in nature. For example considering the light from the Sun which falls

on the Earth to constitute a beam, we have m ~ 6 X lQ-8gm cm"1.
Hence r/r0 is for practical purposes infinite, and the fact that the ray
cannot escape the beam is of no more than theoretical importance.

Interior Field. A is given by (5.6). The geodesic equations can be
completely integrated in terms of elementary functions. In particular
(8.16) and (8.17) give

r2 = μ + (μ* - -̂ -j sin (βw + ε) , (8.23)

where

and e, ε are additional arbitrary constants. The beam itself is composed

of rays such as (8.5), which is of course also a solution of the null geodesic
equations. We conclude that if, through a perturbation, one of these rays
should assume the form given by (8.23), (8.24) and (8.18), it would

oscillate about r = const. Therefore the uniform beam is gravitationally
stable1.

§ 9. Conclusion

The main conclusions of this work are the following.
(i) The gravitational field of light is twice that of a material source

of the same energy density.

(ii) The gravitational field of pulses and beams of light consists of

plane-fronted gravitational waves, well known already. There is no
evidence from my solutions that these waves carry energy away from

1 If the maximum value of r2 in (8.23) were greater than α2 the ray would
leave the beam. It would then follow the path of a null geodesic in the exterior
field, and might or might not return to the heam, according to the previous dis-
cussion.
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the light pulses and beams which are their sources : the mass parameters
of the latter remain unchanged.

(ϋi) Parallel beams (or pulses) of light shining in the same sense do
not interact.

(iv) A uniform beam of light is gravitationally stable,
(v) The new effects studied here are too small for observational

detection at present.
After this paper had been submitted for publication Mr. D. RAWSON

HARRIS called my attention to am interesting paper by PERES (1960) in
which the exterior field of § 5 is proposed for that of a light beam, and
the solution of § 6 is suggested for two light beams. These matters were
however only briefly discussed by PERES, whose interest was different
from my own here.

Appendix

In this Appendix we assume that A (x, y, u) is singular on the
2-surface (3.1), is of class at least <73 elsewhere, and is of class O4 on and
near Σ given by (3.2).

We have to prove existence of a function A* (x, y, u) of class <73 in D
(3.3), and satisfying (3.4). Take β > 0 and define G(r, θ,u) = A (x, y, u)
where

x — XQ(U) = rcosθ, y — y0(u) = rsinθ;
and also

f and g are of class C3 at least because of the hypotheses on A.
We next define, on 0 ̂  r ̂  β,

F(r, θ, u) = (j)4{/(0, «)-(£- r) [g(θ, u) - -i/(0,«)]j .

Then F is of class C3 in all its arguments, and also

We now obtain A* (x, y, u) by means of

Then A* has the desired properties; in particular it is of class (73 at
x = x0, y = ΐ/Q, the factor (r//?)4 having been inserted to ensure this.
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