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Abstract. We show that three dimensional Chern-Simons gauge theories with a
compact gauge group G (not necessarily connected or simply connected) can be
classified by the integer cohomology group H4(BG,Z). In a similar way,
possible Wess-Zumino interactions of such a group G are classified by
H3(G, Z). The relation between three dimensional Chern-Simons gauge theory
and two dimensional sigma models involves a certain natural map from
H4(BG,Z) to #3(G,Z). We generalize this correspondence to topological
"spin" theories, which are defined on three manifolds with spin structure, and
are related to what might be called Z2 graded chiral algebras (or chiral
superalgebras) in two dimensions. Finally we discuss in some detail the
formulation of these topological gauge theories for the special case of a finite
group, establishing links with two dimensional (holomorphic) orbifold models.

1. Introduction

Topological gauge field theories in three dimensions are related in an interesting
way to two dimensional mathematical physics [1] and are interesting as well for
their purely geometrical content. One of the key ingredients in formulating three
dimensional topological gauge theories is the Chern-Simons action functional.
Thus, let M be an oriented three manifold, G a compact gauge group, Tr an
invariant quadratic form on the Lie algebra of G, and A a connection on a G bundle
E. lΐE is trivial, the connection A can be regarded as a Lie algebra valued one form,
and we can define the Chern-Simons functional by the familiar formula

A / \ A / \ A ) . (1.1)
δπ~ M

One can then use this functional as the Lagrangian of a quantum field theory. In
this paper we use a normalization in which the path integral reads

Z(M) = J 2 A e2πiS(A}. (1.2)
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The parameter k in (1.1) must be an integer so that the integrand in the path
integral is single-valued.

If G is a connected, simply connected compact Lie group, then a G bundle on a
three manifold is necessarily trivial, so the above definition of the action is
adequate. For more general Lie groups (such as those studied in [2]) non-trivial
bundles over M may exist and we will include in the path integral also a
summation over all possible bundles E. The inclusion of non-trivial bundles
actually tells us that we are considering the gauge group G and not a connected,
simply connected group whose Lie algebra equals Lie(G).

If the bundle E is not trivial, the formula (1.1) for the action S does not make
sense, since a connection on a non-trivial bundle cannot be represented by a Lie
algebra valued one form as in that formula. A more general definition can be
obtained as follows. Any three manifold M can be realized as the boundary of a
four manifold B. If it is possible to choose B so that E extends over B then (upon
picking an extension of A over B) we can define the Chern-Simons functional by
the formula

8π2

A standard argument shows that if k is an integer, S(A) is independent, modulo 1, of
the choice of B and of the extensions of E and A. Equation (1.3) reduces to (1.1)
when (1.1) makes sense, and so does represent a more general definition of the
Chern-Simons functional.

Depending on π^M) and G, there may exist non-trivial flat connections on M.
The action S(A) for a flat connection A is in general not zero, but is an interesting
invariant of the representation of the fundamental group of M determined by the
flat connection A. However, (1.3) implies the important fact that

S(A) = 0 (1.4)

for a flat connection A which extends as a flat connection over some bounding four
manifold B. In other words, if B and E and the extension of A can be chosen so that
F = 0 on B, then obviously S(A) = 0.

In general it will be impossible to find a four manifold B, with boundary M,
over which E can be extended, and therefore (1.3) is still not a completely general
definition of the topological action. One of our goals in this paper is to give a
completely general definition (for an arbitrary compact group G, not necessarily
connected or simply connected). To understand a bit better the nature of the
problem, note that if A and A' are two different connections on the same bundle E,
then (1.3) can always be used to define the difference S(A) — S(A'). In fact, the four
manifold B = MxI has boundary Mu( —M) (here ( — M) is M with opposite
orientation). Since B retracts onto M, the bundle E has (up to homotopy) a unique
extension, which we will also call E, over B, and it is possible to find a connection
A" on B that interpolates between A on M x {0} and A! on M x {!}. So a special
case of (1.3) is

7.

F), (1-5)



Topological Gauge Theories and Group Cohomology 395

where F is the curvature of A"; in fact, by standard arguments the right-hand side
of (1.5) depends modulo 1 only on A and A' and not on the choice of A". Since (1.5)
defines the difference S(A) — S(A) for any two connections A and A' on E, what
remains to be fixed is just an integration constant that depends on M and E but not
on the particular choice of a connection A. To define a topological quantum field
theory, one needs a way to fix these integration constants for all possible three
manifolds M and G bundles £, in a way compatible with basic physical
requirements of unitarity and factorization.

To give an orientation to this problem (and an example which is quite typical of
our interests in this paper), consider an example which is of the opposite type from
the connected, simply connected groups for which (1.1) serves as an adequate
definition of the topological action. Let us consider the case in which G is a finite
group. Every principal G bundle has a unique, flat connection, and corresponds to
a homomorphism λ : πi(M)-+G. Since the connections are unique, the integration
constants that we previously isolated by using (1.5) are in this case from the
beginning all that there is to discuss.

Since we want to be able to consider transition amplitudes between initial and
final states (defined on Riemann surfaces), we consider three manifolds M whose
boundaries are not necessarily empty. A "topological action" S for the gauge group
G would be a rule which to every pair (M, λ) (with M being a three manifold and λ a
homomorphism of π^M) to G) assigns a value S(λ) in R/Z subject to the following:

(i) Two actions S and S' should be considered equivalent if they differ by a
functional that only depends on the restriction of λ to the boundary of M - since in
that case the difference between the transition amplitudes e2πιS and e2πιS' can be
absorbed in a redefinition of the external state wave functions.

(ii) If M has no boundary, and it is possible to find a four manifold B such that
dB = M (that is, the boundary of B is M) and such that λ extends to a
homomorphism λB:π1(B)-^G, then we require S(λ) = 0. As we have seen in (1.4),
this requirement holds for arbitrary G, not just finite groups.

Physically, this requirement amounts to a requirement of factorization. This
point may require some discussion. In fact, if M is the connected sum of three
manifolds Ml and M2, one could find a four manifold B of boundary Mu( — Mt)
u( — M2). If one picks B to represent a space-time history of M splitting into

then every G connection λ on M extends over B, and (1.4) implies

which is the statement of factorization.
The problem of classifying action functionals S(λ) subject to (i), (ii) is a standard

problem and the answer is as follows. Such action functionals are in one to one
correspondence with elements of the cohomology group H3(BG, R/Z), where BG is
the classifying space of the group G. These concepts will be explained to some
extent in the following sections.

This answer can be reexpressed in the following way. Looking at the long exact
sequence in cohomology derived from the exact sequence of groups,

0->Z->Λ-*K/Z->0, (1.7)
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and using the fact that for a finite group, the cohomology with coefficients R
vanishes, we find that Hk(BG,R/Z)^Hk + 1(BG,Z). In particular, H3(BG,R/Z)
^H4(BG, Z). Therefore, we can consider the topological actions for finite groups
to be classified by H4(BG, Z).

This way of looking at things is fruitful for the following reason. Let us go back
to the case in which G is a connected, simply connected group and the simple
definition (1.1) of the topological action is adequate. For a group of this type, the
topological actions are classified by the integer k that appears in (1.1) or (1.3). On
the other hand, it is also so for connected, simply connected G that H4(BG, Z) £ Z.
What is more, the generator ofH4(BG, Z) corresponds exactly to the characteristic

class — -^Ύτ(F AF) that appears in (1.3). Thus, we can consider the topological
8π

actions for connected, simply connected groups to be classified by H4(BG, Z).
Thus, a common answer arises for the two opposite kinds of group - the

connected, simply connected ones in which the classification of the components of
the space of connections is trivial and the finite groups in which this classification is
the whole story (since there is only one connection on any given principal bundle).
This strongly suggests that the same result will hold for gauge groups intermediate
between these extreme kinds. We will show that this is so - that for an arbitrary
compact Lie group G one can construct a topological action corresponding to any
element of H4(BG,Z).

One reason that this is natural is that general Lie groups can be built in simple
ways from the types considered above. In fact, any Lie group G appears in an exact
sequence

where G0 is the component of the identity and Γ is the group of components. If G is
compact, then Γ is a finite group, one of the two types that we have considered. G
also appears in the fundamental exact sequence

l-^π1(G)^G^G->l, (1.9)

where G is the simply connected universal cover of G. Combining these two exact
sequences, any compact G with finite fundamental group is built from a connected,
simply connected group and some finite groups - the two extreme cases that we
have just considered.

This paper is organized as follows. In Sect. (2) we will briefly review some
essentials in the theory of group cohomology that we will need in the subsequent
sections. After these preparations we will discuss the construction of topological
actions in Sect. (3). In Sect. (4) we will address the relation of these three
dimensional topological theories to two dimensional WZW conformal field
theories and generalizations of them. Our discussion will be limited here to a
derivation of the two dimensional Wess-Zumino actions. These are classified by
the classes in #3(G,Z), and we will show that the natural map H4(BG,Z)
->/I3(G, Z) gives us the correspondence. This map is not surjective, and this gives
an alternative explanation of why for non-simply-connected groups, chiral
algebras only exist at certain particular values of the level k [2]. In fact, the
quantization condition on k is completely explained by topological considerations
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in four dimensions. Section (5) contains an extension of the construction of
topological gauge theories to the category of spin manifolds. These topological
"spin" theories will require a definite choice of spin structure on the manifold in
order to be well-defined. They are related in two dimensions to what one might call
Z2 graded chiral algebras, or chiral superalgebras. Superconformal field theories
are examples of theories with interesting chiral superalgebras, and it seems more
natural to think about superconformal field theories as theories with chiral
superalgebras than to regard them as theories with chiral algebras in which there
just happens to be a primary field of dimension 3/2 with certain interesting
properties.

Finally, in Sect. (6) we will return to a theme touched on above - the three
dimensional topological theories with finite gauge group. We will show that these
theories can be very neatly represented in a form similar to lattice gauge theory.
These theories have some claims to being the most simple quantum field theories,
being completely finite, and topological in nature. They also provide an
elementary but enlightening illustration of the functorial description of quantum
field theory along the lines of Segal [6]. We will furthermore establish in some
detail the connection between our results and those obtained in the analysis of two
dimensional (holomorphic) orbifold models in [7].

2. Cohomology of Groups

In order to be more or less self-contained, we will first review some essential
ingredients of homology and algebraic topology that we will need in the following
sections. We give a very brief review of the singular homology and cohomology
theory of topological spaces, in particular of classifying spaces of compact Lie
groups, and their relation to characteristic classes. A much more thorough
treatment of the material in this section can of course be found in the mathematical
literature, for instance in [8-12]; for an introduction to integer homology, aimed
at physicists, that stresses the importance of torsion, see [13].

2.1. Singular Cohomology Theory. We will first recall the definition of singular
homology with integer coefficients. For any topological space T we can introduce
the groups of singular chains Ck(T). A singular /c-chain is essentially a map of a
collection of /c-dimensional simplices into the space T. The group operation is
simply addition with integer coefficients. One further defines certain subgroups
Bk(T) and Zk(T) of Ck(T). The "boundaries" Bk(T) and the "cycles" Zk(T) consist
respectively of chains C that satisfy C = dB and dC = Q, with d the boundary
operator. The homology groups are defined as the quotients Hk(T,Z)
~Zk(T)/Bk(T). Completely similarly, one can introduce the space of (integer)
cochains

Ck(T, Z) - Hom(Cfc(T), Z), (2.1)

and with the aid of the coboundary operator δ, coboundaries, cocycles and
cohomology groups Hk(T,Z). Here the coboundary operator is defined by

(2.2)
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with <• , •> the pairing Ck(T)® Cfe(T)->Z. The cohomology groups Hk(T, F) can be
defined with coefficients in any abelian group F, by replacing Z by F in the
definition (2.1) of the cochains. In particular, with real coefficients we have Hk(T, R)
= Hk(T,Z)®R. Due to the fundamental theorem of De Rham, these real cocycles
can be represented by closed differential forms. We further recall that in the case
that F is a divisible group, so in particular for F = R, we have another very simple
definition of the cohomology groups:

\F), (2.3)

i.e. aeHk(T,F) is a homomorphism Zfc(T)-»F that vanishes on boundaries.
An element of finite order of an abelian group is called a torsion element. The

homology and cohomology groups of a topological space (with arbitrary
coefficients) are abelian groups. The universal coefficient theorem gives an
isomorphism (but not a completely natural one) between the torsion QΪHk_^(T, Z)
and that of Hfc(7^Z). Torsion elements in Hfc(7^Z) cannot be represented in the
usual fashion by differential forms, since torsion classes are elements of the kernel
of the map ρ:Hk(T,Z)^>Hk(T,R). An Abelian group A has a torsion subgroup
Tor A, but there is no natural map from A to Tor A. Given α e Hk(T, Z), there is no
natural way to identify a torsion part of α unless α is itself a torsion element of
Hk(T,Z). On the other hand, if one wishes to study α modulo torsion, this is
naturally done by studying the image ρ(α) of α in Hk(T,R).

2.2. Group Cohomology and Classifying Spaces. In order to define the cohomology
of a topological group G, we first have to introduce the concept of a classifying
space. A classifying space BG is the base space of a principal G bundle FG, the so-
called universal bundle, which has the following fundamental property: Any
principal G bundle E over a manifold M allows a bundle map into the universal
bundle, and any two such morphisms are smoothly homotopic. We will write

y.M^BG (2.4)

for the induced map of the base manifolds, the so-called classifying map. The
topology of the bundle E is completely determined by the homotopy class of the
classifying map y. That is, the different components of the space Map(M,#G)
correspond to the different bundles E over M. It can be shown that up to
homotopy BG is uniquely determined by requiring EG to be contractible. That is,
any contractible space with a free action of G is a realization of EG. In general the
classifying space BG of a compact group is an infinite-dimensional space as the
simple examples BZ2 = RPCO, BU(1) = CPCO, and BSU(2) = HPCO show. We notice
that for our class of Lie groups, BG will be a fibre bundle over BΓ with fibre BG0.

The group cohomology of a group - as opposed to its cohomology as
topological space - can now be defined as the cohomology of the associated
classifying space BG. Of course, the group cohomology and the ordinary
cohomology of G are intimitely related, and one relation between them will be
important in Sect. (4). The elements in H*(BG, Z) are also called universal
characteristic classes, since under the pullback y* they give rise to cohomology
classes in /f*(M,Z) that depend only on the pullback y* they give rise to
cohomology classes in H*(M, Z) that depend only on the topology of the bundle E.
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For a compact Lie group we have the very useful property, due to Borel, that
with real coefficients all odd cohomology vanishes:

Hodd(BG,R) = Q. (2.5)

So the odd cohomology (and homology) consists completely of torsion. For finite
groups an even stronger result holds : all cohomology is finite : H*(BG, R) = 0. With
the use of the exact sequence 0->Z->,R->jR/Z-»0 this implies for finite G the
isomorphism

H\BG, Z)^Hk~ \BG, R/Z) . (2.6)

For the even, real cohomology an important isomorphism exists due to Weil:

H*(BG,R)^I(G). (2.7)

Here /(G) is the ring of polynomials on Lie(G) which are invariant under the
adjoint action of G. The isomorphism is established using the Chern-Weil
homomorphism that maps a polynomial P e /(G) to the class [P(F)]5 where F is the
curvature of an arbitrary connection in the universal bundle. P(F) is a closed
differential form of degree 2k is the polynomial P is of degree k. It is a fundamental
result that the image [P(F)~] in H*(BG,R) is independent of the choice of
connection. In this paper we will be mainly interested in the case k = 2, where P is
an invariant quadratic form on Lie(G), which we usually denote as Tr.

The group cohomology of the unitary groups U (ή) is perhaps the most familiar
example. It contains no torsion, and is given by the polynomial ring in the Chern
classes ck of degree 2/c,

H*(Bl7(n),Z) = Pol[Cl,...,cJ. (2.8)

As an example of a finite group, we can consider the cyclic group Zn. Again the
cohomology ring is finitely generated. There is a single generator x of order n and
degree 2, so that

Hodd(BZn, Z) = 0 , if even(BZB, Z) = Zn. (2.9)

Finally, we recall that for discrete groups the cohomology groups Hk(BG, F)
have an algebraic description, that is perhaps more familiar to the reader.
Cochains are represented as functions α : Gfe->F, and, if we write the abelian group
F multiplicatively, the coboundary operator is defined as

x Π α(gι,...,gI &+ι,...,g f e +ιΓ1 ) ί. (2.10)
ι=l

These cochains can be assumed to be normalized, i.e. α(gl5 ...,gfc)= 1 if gf = 1 for
some L The equivalence between algebraic cocycles and simplicial cocycles of BG is
proved using Milnor's construction of BG [14]. We will give an elementary
derivation of this result in Sect. (6) where we treat Chern-Simons theory for finite
groups.
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3. Topological Actions

As we have already discussed in some detail in the introduction, the form of the
standard Chern-Simons action for a trivial bundle E over a three dimensional
manifold M with a compact, simple gauge group G is

8π2 i T( Λ + 3

It is a (non-trivial) result in cobordism theory that any closed, oriented 3-manifold
M is the boundary of some 4-dimensional oriented manifold B, and the trivial
bundle E can of course always be extended to a bundle over B. This implies that the
above expression can be rewritten in terms of the bounding manifold B as

S(A) = —2 J Tr(F Λ F) (mod 1), (3.2)

with F the curvature of any gauge field A' on B that reduces to A at the boundary
dB = M. Since the right-hand side is an integer when evaluated on a closed
4-manifold, this form of the action is independent of the choice of bounding
manifold B and connection A'.

If the bundle E is not topologically a product G x M, the above representation
needs to be modified. It will in general not be possible to extend the bundle E to a
similar bundle over the bounding 4-manifold B. To deal with this problem, we can
be somewhat more general and allow B to be a smooth singular 4-chain, since a
differential form can be integrated over any such chain. Since we are looking for a
4-chain B with a bundle E that restricts to E at the boundary M, we are actually
trying to find a 4-chain in the classifying space BG that bounds the image y(M) of
M under the classifying map y. The restriction of the universal bundle to this
4-chain would give us the bundle E. The obstruction to the existence of such a
4-chain is exactly measured by the image ^[M] in the cohomology1 group
H3(BG, Z). We note that if the bundle E has an extension over B, the connection
can always be extended using a partition of unity. For connected, simply
connected Lie groups H3(BG,Z) vanishes, and (3.2) can serve as a general
definition of the action (3.1) also for bundles with a non-trivial topology. However,
for general compact G we have to take this possible obstruction into proper
account.

As we mentioned in the previous section, the third homology group, and in fact
all odd homology of BG, consists only of torsion. This implies that for each bundle
E over M there always exist a positive integer n such that

0. (3.3)

1 By permitting B to be a general 4-chain, we reduce the problem to homology and avoid having to
consider the bordism theory of BG. If we require B to be a smooth 4-manifold, the obstruction to
the existence of B with a compatible bundle lies in the bordism group Ω3(BG,Z) [15]. Bordism
groups are as generalizations of homology groups. The homology and bordism groups of BG only
differ in their torsion. In fact, if BG has no odd torsion one can prove Ω3(BG, Z) = H3(BG, Z), see
also [16]
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Stated otherwise, E can be extended to a bundle E' over a 4-chain B, whose
boundary consists of n copies of M, such that the restriction of E' on all boundary
components is isomorphic to E. We shall call such a bundle E of order n. Of course,
it is always possible to choose the connection such that A' also reduces to A at SB,
i.e. exactly, not up to a gauge transformation. So we have no problem in defining
the action modulo 1/n as

. (3.4)
8π2

This makes it clear that our task is to resolve an rc-fold ambiguity consisting of the
ability to add a multiple of 1/n to the definition of S. We must resolve this
ambiguity, for all possible three manifolds and bundles, in a fashion compatible
with factorization and unitarity.

So far, the basic object that we have used is the differential form

which represents an element Ω of the de Rham coholomogy group H4(BG, R). This
differential form has integral periods, so it is in the image of the natural map
ρ:H4(BG,Z)-*H4(BG,R). Thus, there exists a cohomology class ώeH4(BG,Z)
such that ρ(ώ) = Ω. However, the choice of ώ may not be unique. It is unique only
modulo a torsion element in H4(BG, Z). We will now show that the choice of a
particular ώ such that ρ(ώ) = Ω gives a way to resolve the ambiguity in the
definition of the action in (3.4). This should not come as a surprise, since the torsion
part of H4 is related to the torsion in H3 through the universal coefficient theorem.

Let ω be any integer-valued cocycle representing the cohomology class ω.
Then, we define the topological action for a connection on a bundle of order n to be

S= - if Ω(F)-<7*ω,β>l (mod 1), (3.5)
n\B J

with y the classifying map B^BG. (Note that <y*ω,£> is an integer for all
chains B.) We can now perform some consistency checks on this definition. First
on closed 4-manifolds we have

fβ(F) = <y*ω,B>, (3.6)
B

so that (3.5) is manifestly independent of the bounding manifold B and the way we
have continued the bundle and the connection on B. It is not difficult to verify that
our definition is also invariant under homotopy transformations of the classifying
map y. Also, the action depends only on the cohomology class ώ and not on the
particular cocycle chosen to represent it, since under shifts ω->ω + (5ε, with ε an
integer cochain, the action changes by

δS=--<y*δε,JB>=-(y*ε,M> = 0(modl). (3.7)

A further necessary requirement will be gauge in variance, at least on manifolds
without boundary. Let us first establish that result, before we discuss manifolds
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with boundary in the next section. Let A and A9 be respectively a specific
connection on E and its gauge transform. Since we can construct an interpolating
gauge field At with ίe [0,1] = /, such that A0 = A and A1=A9, on the manifold
B = M x/, we have

S(A)-S(A9)=$Ω(F). (3.8)
B

The gauge field ^4 is equal up to a gauge transformation at the two ends of the
"cylinder" B and we can identify the two ends of B and consider A to be a
connection on a bundle E' over the closed manifold MxS1. This bundle is
constructed with transition function g, and J Ω(F) equals the characteristic class of

B
E' and is therefore an integer.

We note that the phase choice made in (3.5) is very sensitive to the torsion
information in ω. If we transform ω->ω + ω', where ω' is a n-torsion element, the
action will pick up a Zn phase. This is in particular relevant if Ω(F) = Q, i.e. "level"
k = 0, as is always the case for finite G. Then the class ω is torsion and determines a
3-cocycle α e H2(BG, R/Z) through the isomorphism

Tor H\BG, Z) ̂  H\BG, R/Z). (3.9)

In that case we can rewrite the action, which is now independent of the connection,
as

S = <y*α,[M]>. (3.10)

3.1. Differential Characters. The particularly simple formula of (3.10) holds when
ω is a torsion element, but in a certain sense it can be generalized to arbitrary ω.
That is, the action S can be rather naturally written as

S = <«Λ,[M]>, (3.11)

where aA is a 3-cocyle in H3(M, R/Z) that depends on the connection A and the
bundle E. The cocycle OCA is the pull-back under 7* of a cochain α e C3(BG, R/Z) on
the classifying space BG which is defined as the modulo 1 reduction of a real
cochain β that satisfies

δβ = Ω(Fu)-ω. (3.12)

It is evident that β and therefore α depend in this way on the torsion information in
ω. Here Fu is the curvature of a so-called universal connection Au on the classifying
space. These universal connections were shown to exist for compact Lie groups by
Narasinhan and Ramanan [17], and they have the fundamental property that any
connection A on a G bundle E over the manifold M can be obtained as A = y*Au for
a suitable classifying map. Although α is evidently not closed and not uniquely
determined by the above equation, the pull-back y*α = aA is a well-defined cocycle
on M determined completely by the class ω e H4(BG, Z) and the connection A. In
fact, α is what Cheeger and Simons call a "differential character" [4]. Let us explain
this in somewhat more detail.

The ring of differential characters H*(T,R/Z) is a generalization of the
cohomology ring. Just like a cocycle, a differential character α is defined to be a
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homomorphism of the group Zk(T) of singular cycles into jR/Z. But instead of
requiring it to vanish on boundaries, one imposes the weaker condition that the
value assigned to a boundary equals the integral of a certain differential form Ω (of
degree fe + 1) on the bounding chain:

<α,3J3>=ίΩ(modl). (3.13)
B

If dimT=fc, and T is closed, then the definition of Hk clearly reduces to the
characterization (2.3) of Hk, because on a fc-manifold, the fe+1 form Ω would
automatically be zero. It is furthermore obvious that in order to make the above
relation well-defined Ω should be closed, and that the class [Ω] in the De Rham
cohomology should be necessarily integral. So [Ω] will always be the image ρ(ω) of
an integer cocycle ω under the map ρ: Hk+1(T, Z)^>Hk+ΐ(T, R). Note however that
Hk+1(T, Z) can contain torsion, and consequently ω is not completely determined
by its image ρ(ω).

One can now ask how a differential character can be determined in terms of
differential forms and cohomology classes. It is not difficult to proof the following
[4]. Let Λίk+1(T) denote the set of all pairs (Ώ,ω) of degree fc + 1 satisfying
[Ω] =ς>(ω\ then the following sequence is exact:

0->Hk(T, R)/ρ(Hk(T, Z))-+Hk(T, R/Z)-+Λk+l(T)-+Q. (3.14)

The proof proceeds by picking a real cochain β such that jβ = α(modl), and
defining Ω and ω by the relation

δβ = Ω-ω. (3.15)

An important conclusion is that, if Hk(T,R) vanishes, the differential form α is
completely determined by the pair (Ω, ω). This is in particular the case if T equals
the classifying space BG and k = 3, since the cohomology of BG with real coefficient
vanishes in three dimensions. The pair (Ω(FU), ω) e A4(BG) determines
aeH*(BG,R/Z) uniquely by relation (3.12). When pulled back to the three
manifold y*α becomes a cocycle because of dimensional reasons.

3.2. Manifolds with Boundaries. Up to now we only have been able to define the
Chern-Simons unambiguously for closed manifolds. However, in analogy with the
Wess-Zumino action in group manifold models, the topological action for
manifolds M with boundaries can in principle be defined by choosing an arbitrary
completion of M to a closed manifold and compute the action of this closed
manifold. This prescription depends of course on the choice of completion, but the
difference between two choices is completely calculable. This defines the path-
integral on M not as a function but as a section of some (trivial) line bundle over the
space of connections on the boundary.

Another approach to manifolds with boundaries is our definition S = <α, y(M)>
using differential characters. In this light we have to deal with two separate
questions: (i) for fixed classifying map y, is the topological action well-defined; and
(ii) how does it transform under homotopy transformations of 7? In particular,
what is the behavior under gauge transformations?

Let us begin to address the first question. We recall that the cochain α in the
classifying space BG was defined as the mod Z reduction of a real cochain β that
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satisfied δβ = Ω(Fu) — ω. This relation is not enough to fix α uniquely. In fact, we
have the possibility of a "gauge" transformation

(3.16)

with v E C2(BG, R/Z). On closed manifolds this term disappears, but for a
3-manifold M with boundary dM = Σ the topological action transforms under
(3.16) as

S-»S + <v, y(Σ)y. (3.17)

When the boundary of M is non-empty, the path integral on M represents a
transition amplitude among initial and final states defined on the boundary of M.
The addition to the action of the extra term that appears on the right-hand side of
(3.17) will make the path-integral on M change by a phase that only depends on the
bundle structure and the connection at the boundary Σ. These phases can be
absorbed into the wave functions of the initial and final states. So, although the
action is not invariant under (3.16), it transforms in a well-defined way with a
boundary term, and the corresponding quantum field theories are identical.

The second question is to what extent is the definition of the action sensitive to
homotopy transformations of the classifying map, in particular gauge trans-
formations. First we observe that if we choose for each surface Σ, with a
principal G bundle and a connection, a fixed classifying map y.Σ^BG, and
decide to use only these maps at the boundary of our 3-manifold, the action for
a manifold with boundary is unambiguously defined. The argument that
shows invariance of the action under restricted homotopy transformations of
y:M-^BG that leave y fixed at the boundary is completely analogous to the
case of closed manifolds.

However, we still have to deal with gauge invariance. Let us first discuss the
case of a trivial bundle E and simple G, so that we can use the explicit
representation (3.1). It is well-known that the Chern-Simons form

Q(A) = Ύr(A Λ dA + f A Λ A Λ A)

is not invariant under gauge transformations. If A9 is the gauge transform of A by a
gauge transformation g, then

Q(A9) = Q(A) + d(Ύτ A Λίίgg"1) — iTr(g-1(ig)3. (3.18)

This implies in particular that if g φ 1 at the boundary Σ, the action transforms
under g as

JTrfe-Mg) 3, (3.19)

where the Wess-Zumino term appears. We would like to stress that the variation of
S only depends on the connection at the boundary and the gauge transformation g.
So the path-integral Z(M) transform with the same phase factor as the action e2πis.
The result is that Z(M), a function on the space si of connections at the boundary
Σ, cannot be simply considered to be a function on the space jtf/& of connections
modulo gauge transformations, which is the (unconstrained) phase space of the
theory. Rather, we should consider it as a section of a line bundle over
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For non-trivial topology the argument is analogous. As in the last section, let y0

and 7i be two homotopic classifying maps that induce the connection A and A9 on
the manifold M. The action will now transform as

S^S + <α,y(Γx/)> + f y*P(F), (3.20)
B

with B = M x /. Here the last term has an interpretation as the Chern-Simons
action on ΣxS1, where the bundle is constructed by the transition function g
restricted to Σ. This shows that the variation of S only depends on the data on Σ.

4. Correspondence with CFT

Part of the interest of three dimensional Chern-Simons theories comes from their
relation [1] to two dimensional current algebra theories. In this section, we will
discuss those aspects of this relation that are illuminated by the topological
considerations of the last section. In particular, we wish to gain a better
understanding of subtleties in this correspondence that arise [2] for groups that
are not simply connected. In the subsequent we will assume that the gauge group
G is non-abelian.

4.i. The Wess-Zumino Action. To begin with, we recall [5] that conformally
invariant sigma models in two dimensions with target space a group manifold
require the introduction of the so-called Wess-Zumino term. Let us recall how this
is defined. We are given a Riemann surface Σ and a map g : £->G, G being some
compact Lie group of interest. We wish to define the Wess-Zumino term S(g). To
begin with, if G is simply connected, the map g is homotopic to a trivial map, and
extends to g: W^G, where W is a three manifold with dW=Σ. Just as in the
formulation (1.3) of the Chern-Simons action, in this situation the Wess-Zumino
term has a convenient definition

ί Trίg-MgΛg-^gΛg-^g), (4.1)
w

where for reasons explained in [5], k must be an integer. The key object in (4.1) is
k

the differential form Φ= 2Tr(g~Mg)3 on the group manifold G. This form

defines an element of H 3(G, R), and since it has integral periods it lies in the image
of the natural map ρ : #3(G, Z)->#3(G, K).

If G is not simply connected, the maps Σ ->G come in distinct homotopy classes
% It may happen, in general, that for suitable i, the definition (4.1) does not make
sense for g e %, since a three manifold W and an extension of g over W may not
exist. The obstruction lies in H2(G, Z). (An example of a semi-simple Lie group with
H2(G9 Z)ΦO would be S0(3) x SO(3), or more generally the groups Spin(4rc)/D2 as
discussed in [18].) Even if W does not exist, if we are given two maps g and g' both
in the same homotopy class <% the difference S(g) — S(gf) can be defined as in (4.1),

1dgΛg-1dgΛg-1dg), (4.2)

where now W= Σ x /, and g : W-^G is any map that agrees with g on Σ x {0} and
with g' on Σ x {!}. Just as in our study of the Chern-Simons term, (4.2) defines the
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Wess-Zumino term except for an integration constant in each topological sector
<%. What remains is to fix these integration constants, for all possible Σ and all %
in a way that is compatible with factorization.

If G is semi-simple, H2(G,R) = Q and the obstruction to definition (4.1) is the
torsion class g^ [Σ] e H2(G, Z). If this class has order n, then S(g) can be defined as

1 , .
S(g) = - ft Φ — <£*</>> W> 1 (m°d 1), (4.3)

n \w J

with dW=n Σ and 0 an integer class in #3(G, Z) such that ρ((/>) = Φ. So the torsion
information in H3(G, Z) (that gives rise to different "periodic vacua" [18]) suffices
to fix the phase ambiguity in the definition of the Wess-Zumino term, completely
analogous to our discussion in Sect. (3) of the Chern-Simons action. Thus, for
semi-simple G, the Wess-Zumino terms - and therefore, according to [5], the
conformally invariant sigma models on group manifolds - are classified by
#3(G,Z).

In general, when G is not semi-simple the relevant notion is that of differential
characters. If α e f?2(G, R/Z) is any differential character of G such that (Φ, φ) is the
corresponding pair in Λ3(G), then a general definition of the Wess-Zumino term
would be

(4.4)

Note that the pair (Φ, φ) does not determine α uniquely, and the ambiguities in α
correspond to generalized θ angles on the torus H2(G, R)/ρ(H2(G, Z)), as can be
seen from Eq. (3.14).

4.2. The Natural Map H4(BG)-+H3(G). We know now that in general, Chern-
Simons theories in three dimensions are classified by #4(£G,Z), and Wess-
Zumino terms in two dimensions (and hence conformally invariant sigma models)
are classified by H3(G, Z). A correspondence between them must therefore involve
a natural map from H4(BG, Z) to H3(G, Z). Let us first discuss in geometrical terms
the map that proves to be relevant. The universal bundle

gives rise to a map τ : Hk(BG, F)->Hk~ί(G, F), with F any group of coefficients, as
follows [3]. Since EG is a contractible space, any cocycle representing an element
ω E Hk(BG, F) becomes exact when lifted to EG. So we have a relation of the form

π*ω = δβ. (4.5)

We now define τ(ώ) as the restriction oϊβto the fibre G. Since the restriction of π*ω
vanishes, the cochain τ(ω) is closed and it is easily verified that the cohomology
class of τ(ω) does not depend on the choice made in the above definition. The
inverse of the map τ is a well-known tool in the study of characteristic classes and
cohomology of Lie groups and is usually referred to as transgression [8] (while τ is
also known as the suspension map.)

We now want to show that the map τ is actually the correspondence between
Chern-Simons actions and Wess-Zumino terms that arises in connecting three
dimensional quantum field theory with two dimensional quantum field theory. As
has been shown in the concluding section of [1], the chiral algebras of two
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dimensional current algebra can be obtained from three dimensions by quantizing
the three dimensional Chern-Simons theory on the three manifold M = DxR, with
D a disk.

In fact, [2, 20], the two dimensional WZW action can be explicitly derived
from the three dimensional Chern-Simons action by first integrating over the
"time" component AQ of the gauge field in the functional integral. The portion of
the action (1.1) that depends on A 0 is

F12), (4.6)

where F12 is the spatial component of the curvature, tangent to D. The functional
integral over A0 therefore gives a delta function setting F12 to zero, and so we are
left with a connection on M whose components tangent to D are pure gauge, i.e.
Ai = g~1dίg (/ = 1, 2) for a map g : M-+G (g is unique up to a transformation g^ug
where u depends only on "time"). Since M is contractible, any bundle E over M is
necessarily trivial, and we can evaluate the topological action by choosing a global
section and pulling the Chern-Simons form to M. The resulting action now reads
[2]

S= Jβfe-'dgί + exact. (4.7)
M

The exact terms that we will ignore here just correspond to local terms in the two
dimensional action. The important contribution is the first term which corre-
sponds to the Wess-Zumino term. With θ the Maurer-Cartan form on G, i.e. the
restriction of the connection to the fibre, we can rewrite the first term as

f g*β(0), (4.8)
M

where Q(θ) is a closed differential form on G whose class is integer. That is, the
Chern-Simons form defines an integer cohomology class in H3(G, R).

The transformation just found from an element of H4(BG, R) with integral
periods used to define (1.1) to the element of H3(G,R) with integral periods that
appears in (4.7) is precisely the map τ written out in terms of differential forms. One
should go on to show that even when one takes torsion into account, the map from
three dimensional theories classified by H4(BG, Z) to two dimensional theories
classified by H3(G, Z) is the inverse transgression map. However, we will not tackle
this here.

Now, the crucial map τ from H\BG, Z) to //3(G, Z) is not necessarily onto. (The
special classes in ff *(G) that are images of the map τ are usually referred to as
universally transgressίve [8].) This fact implies in particular that not all group
manifold models "descend" from a three dimensional Chern-Simons theory. In
fact, we will see that only those group manifold models that allow a description in
terms of a so-called extended chiral algebra will be generated by three dimensional
gauge theories.

4.3. Non-Simply Connected Groups. As an example we first consider the cases
G = SU(2) and G = SO(3), with the relation

1 . (4.9)
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For both groups we have H4(BG) = H*(G) = Z. (Here and in the subsequent all
cohomology groups are understood to be with integer coefficients unless otherwise
stated.) The generators for H4(BG) are respectively the second Chern class c2 for
5(7(2), and the first Pontryagin class p1 for 50(3). We will denote the respective
generators of the cohomology groups H3(G) by α for 5(7(2) and β for 50(3), with
the important relation

π%β) = 2α. (4.10)

This factor of two is simply due to the fact that the volume of 50(3) is half the
volume of 5(7(2). This corresponds to the familiar fact that, if we normalize the
Wess-Zumino term with respect to the group 5(7(2), the corresponding term for
50(3) can only exist for even k [19].

It is well-known that all classes of H*(SU(2)) are transgressive [8], so τ(c2) = α
and this implies a one-to-one correspondence between the 5(7(2) WZW models
and Chern-Simons theories, which are both characterized by their level k e Z. This
will however not be the case for 50(3). In fact, we will see that only the models
based on even elements of #3(50(3)), i.e. level k divisible by four, correspond to
three dimensional topological theories. Note that it has been observed [2] that
exactly for these values the chiral algebra for 50(3) exists, since the chiral vertex
operators that are associated with the non-trivial loops in 50(3) have conformal
dimensions fe/4, and these dimensions should be integer.

This restriction to k = 0 (mod 4) has a completely topological explanation. Let
us recall that, although every 5(7(2) bundle naturally gives rise to a 50(3) bundle,
the opposite is not true. Not every 50(3) bundle can be extended to a 5(7(2) bundle.
In fact, this can only happen for certain specific values of the characteristic classes.
To determine these values we have to compare the "instanton charges" in the four
dimensional 5(7(2) and 50(3) gauge theories. In a normalization where 5(7(2)
instantons have integer charge the 50(3) instantons can have fractional charges.
The fact that a non-simply connected group can have fractional instantons is a
well-known phenomenon, e.g. on the hypertorus T4 one can construct SU(n)/Zn

instantons with charge l/n [22]. We will actually show that the minimal charge of a
50(3) instanton is ̂ , and this naturally quantizes k in units of four. Equivalently, if
a 50(3) bundle E on a four manifold extends to a 5(7(2) bundle, the first Pontryagin
class pι(E) always has to be divisible by four. That is, under the map Bπ: #5(7(2)
->£50(3) as induced by the exact sequence (4.9), we have (see e.g. [21])

Bπ*(Pl) = 4c2. (4.11)

This can be seen as follows, though perhaps in a slightly abstract way 2. After lifting
to a suitable flag space, any 5(7(2) vector bundle V (that is, any rank two complex
vector bundle of structure group 5(7(2)) splits as a sum of line bundles V=L@L~ *.
Now recall that p^E) can also be defined as the second Chern class c2(W) of the
complexified three dimensional vector bundle W in the adjoint representation of
50(3). In this case we find W=L2®L°®L~2, so that Pl(E) = c2(W) = 4c2(V).

A concrete example of a 50(3) bundle that has instanton charge £ can be
constructed on CP2. Our normalization will be as follows. Let λa denote the

' We would like to thank D. Freed for the following argument
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generators of the Lie algebra of 50(3), satisfying [λa,λb'] = iεabcλc. A general
curvature can be expressed as F = Σ Faλa and the instanton number reads

a

F-. (4.12)

For the basic instanton over the 4-sphere q = 1 . Now consider the fundamental line
bundle L over CP2. Its curvature F' satisfies

J
CP2

(4.13)

We can now make L into a 5O(3) bundle using the embedding (7(1 )C 50(3), which
maps eiθ->eiθλ3. This gives F = F'λ3 and in this case the contribution in (4.12) is 4π2

for a = 3, and zero otherwise, so q = ̂ , as promised.
The existence of 50(3) bundles of instanton number 1/4 means that in 50(3)

Chern-Simons gauge theory, the level k must be divisible by four (in units in which
an arbitrary integer is allowed for Sl/(2)). This result was first established in [2].

We can now easily establish that the 50(3) Chern-Simons theories lead to
group manifold models corresponding to even elements of #3(50(3)). Since we
have a commuting diagram

H4(BSO(3)) -̂ -> H4(BSU(2))

lτ lτ (4.14)

#4(50(3)) — ̂  H4(SU(2))

the Eqs. (4.10) and (4.11) immediately imply the relation

Φι) = 2]8. (4.15)

That τ(pί) is necessarily even can also be proved (and generalized to arbitrary
50(n)) using the fact that the class pγ satisfies p1 = w2uw2 (mod 2). This gives
τ(Pι) = 0 (mod 2), since for any coefficent field F the inverse transgression
τ:H\BG,F)-^Hk-^(G,F) satisfies φuκ) = 0 [3].

Let us now consider the somewhat more general situation where we have an
exact sequence

with G a connected, simply connected, simple group, and Z is a cyclic subgroup of
the center of G. In that case all relevant cohomology groups are still isomorphic to
Z. The relation between the generators of H3(G) and H3(G) has been carefully
investigated in [18] : the constant of proportionality is either one or two. As to the
cohomology of the classifying space, let ώ and ω denote the generators of
respectively H4(BG) and H4(BG). In all generality we have a relation

Bπ*(ω) = Nώ, (4.16)

where we wish to determine the integer N. The interpretation will be again that in
four dimensions G instantons can have instanton charge ί/N when compared to G
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instantons, and that the Chern-Simons theory is only well-defined for k divisible by
N. The calculation oϊN is as follows. Let Tc G be the maximal torus of G with rank
r, and let A be the weight lattice of G as generated by the fundamental weights wt .
The inclusion TcG gives a natural map H*(BG)^>H*(BT). Now H*(BT) is
generated by the 2-cocycles xt, the first Chern classes in the decomposition
T= U(l)r. The xt are the images of the fundamental weights wf under transgression
in the universal bundle ET, i.e. under the isomorphism /^(T) ̂  H2(BT). The image
of the generator ώ of H4(BG) in H4(BT) is given by the Weyl group invariant
combination

ΣΪAijXtVXj, (4.17)
ίj

with Aί<7 the Cartan matrix.
Now let the sublattice Λ'cΛbe the weight lattice of G = G/Z with generators vt.

The corresponding elements of H2(BT) we will denote by yt. The y{ are linear
combinations of the xi with integer coefficients. Since ώ is again the smallest Weyl
invariant integer combinations of the yί9 the relation (4.16) between ώ and ω is
simply determined by comparing the images of ώ and ω in H*(BT). This gives the
following result for N. Every element za of the center Z corresponds to a
fundamental weight wα, and N is defined as the smallest integer that satisfies
for all 0,

iN<wα,wα>eZ. (4.18)

This result confirms the relation found in [2] where it was established that the
conformal dimensions ha of the vertex operators that create vortices associated to
the fundamental group π1(G) = Z, and that extend the chiral algebra of G to the
chiral algebra of G are given by

, , f l

2(k + h) ( j

with h the dual Coxeter number and ρ half the sum of positive roots of G. The
conformal dimensions ha should be integer and this reproduces the condition k = 0
(modΛO using the relation 2<ρ,wfl> = /z<wα,w f l> [18].

An interesting example is G = SU(n)/Zn. According to [18] the WZW models
based on G exist at level k e 2Z or k e Z depending on whether n is even or odd
respectively. But according to (4.18) the quantization of k for the corresponding
Chern-Simons theories is in multiples of N, with N = 2n for even n and N = nϊoτ
odd n. So we see that the map τ:H4(BG)^H3(G) is simply multiplication by n.

5. Topological Spin Theories

Up to now all topological theories were defined on oriented 3-manifolds, possibly
with boundary. In general we can consider manifolds with extra structure, and in
this section we want to discuss topological theories defined on spin manifolds. We
recall that a spin manifold M is an oriented manifold with a choice of spin
structure. A spin structure on an oriented manifold exists if the second Stiefel-
Whitney class w2(Γ) of the tangent bundle T of M vanishes. For three dimensional
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manifolds, this is always so. (But an oriented three dimensional manifold may
admit more than one spin structure if there is two-torsion in H1(M9 Z).) We will
refer to topological theories which require choices of spin structure as "topological
spin theories" or simply "spin theories" for short. These theories will have the
fundamental property that the definition of partition functions and transition
amplitudes associated with M require a choice of spin structure on M.

Just as ordinary topological theories in three dimensions lead to ordinary
chiral algebras in two dimensions, spin theories lead to what one might call Z2

graded chiral algebras or chiral superalgebras. A chiral superalgebra consists of a
collection of holomorphic fields At(z) of integer or half-integer dimension ht which
are closed under operator products,

*Mt(w) (5.1)

(and with c^ = 0 unless hk — hi — hj is an integer) and obeying certain other axioms
that are just analogous to the axioms for bosonic chiral algebras. If the At are all of
integer dimension, this reduces to the notion of an ordinary (bosonic) chiral
algebra. The superconformal algebra in two dimensions should be regarded as a
Z2 graded chiral algebra. But there are many other theories that are not
superconformal but can be conveniently regarded as theories with Z2 graded
chiral algebras.

The general axioms of quantum field theory tell us that a topological spin
theory will associate to each two dimensional closed surface Σ with a particular
spin structure α a Hubert space JJ?Σta. We would like to identify this Hubert space as
the space of holomorphic blocks of a Z2 graded conformal field theory on Σ.
Elementary examples are of course free fermion theories, where the chiral
superalgebra is freely generated by the spin \ currents ipt(z). These theories possess
for a given spin structure only a single holomorphic block whose dependence on
the spin structure is given by a theta-function θ[α](0|τ).

We will not treat here the general theory of "spin" Chern-Simons theories with
arbitrary compact gauge group G, but restrict ourselves to two examples. Consider
first the group (7(1), and let u be the generator of H\BU(\\ Z). (Here u = cf, with cί

the first Chern class.) Each class k - u defines a topological action, and consequent-
ly there are topological 17(1) theories in three dimensions with an arbitrary integer
level k. But if we are given a three manifold with a spin structure, the level need not
be an integer; it can be half-integer.

The reason for this is the following. Recall that H3(BU(\), Z) vanishes, so that
the action of the (7(1) theory on a 3-manifold M can always be defined as

, (5.2)
4π 2 έ

with B a four manifold that bounds M. The curvature form -— F represents the first
2π

Chern class c^L) of some complex line bundle L over M. This formula for the
action is well-defined since the integral
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is an integer on any closed 4-manifold B. But if B is a spin manifold this integer is
always even. The reason for this is the following. Equation (5.3) can be interpreted
in terms of the intersection pairing in H2(B, Z). In fact, the right-hand side of (5.3) is
a de Rham representation of <c1(L)uc1(L), [£]>. But on a four dimensional spin
manifold, the intersection pairing in H2(B,Z) is even, so (5.3) is even. This
statement can be given a rather elementary, geometrical proof. Alternatively, one
purely analytic way to prove that ct(L)2 is even on a four dimensional spin
manifold is to note that the index theorem for the Dirac operator DL on a four
manifold B twisted by the line bundle L gives

IndexDL = ̂ Pl(T) + ̂ (L)2 . (5.4)

(Tis the tangent bundle of B.) Taking L to be trivial and requiring Index DL to be an
integer, we learn that r^p^T) is an integer. (In fact, it can be shown to be even.)
Generalizing to arbitrary L and requiring that the index should still be an integer,
we learn that ^ct(L)2eZ, so that cx(L)2 and thus (5.3) is even.

Because of this, the definition (5.2) of the action still makes sense modulo 1 for
half-integer level k if M is a spin manifold. Note that we tacitly assumed that the
spin bordism group Ωs/in(BU(l)) vanishes, so that both the line bundle and the spin
structure of M can always be extended to B. This fact is proved by a spectral
sequence argument, using the fact that Ω*pin(point) = 0 for n = 1 , 2, 3 [1 5], and that
H#(BU(1)) is torsion free. Thus, we may conclude that there is a topological spin
theory with (7(1) gauge group and half-integer k. These theories should correspond
to a Z2 graded chiral algebra in two dimensions. Indeed in our normalization the
chiral vertex operators that appear in the two dimensional (7(1) chiral algebra
have weight k. Since we quantize the theory on a Riemann surface with a fixed spin
structure, we do not require an implementation of the full modular group, but only
of the subgroup which leaves a given spin structure fixed.

Note that k as we define it is half as big as the usual k in most discussions of the
abelian theory. Thus, to compare our discussion to other treatments one must
make a redefinition fc-»2fc. (However, comparison to [2] needs a redefinition
fc-»4fc.) So the "half-integers" become integers, and it is usually said that k must be
even in order to define a topological (7(1) Chern-Simons theory in three
dimensions or in order to be able to define the (7(1) chiral algebra in two
dimensions (with Zfc fusion rules). Note that in this normalization the k = 1 theory
represents the theory of a free Dirac fermion. In general the bosonic subalgebra of
the level k theory equals the chiral algebra at 4fc, so the spin projection of the Dirac
fermion occurs at k = 4, as is well-known to be true.

A second example of a spin theory is 50(3) Chern-Simons theory. It is likewise
true that on a spin 4-manifold the first Pontryagin number of a 5O(3) bundle E is
always even3. Therefore, in the spin category, the level k (normalized with respect
to 5(7(2)) can be half as big as in the bosonic category; that is, k can be any even
number, not necessarily a multiple of four. So our claim is that for k = 2 (mod 4), the
50(3) affine models do have a chiral superalgebra and have a diagonal partition

3 In fact this is true for all S0(n). It follows from a fact that we used earlier, namely that p^E)
= w2(E)2 mod 2. As a result, the first Pontryagin number of E, which is <pι(E),[M]>, is equal
modulo two to <w2(E)uw2(.E), [M]>, and this vanishes because the intersection form on H2(M) is
even for spin manifolds
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function if formulated on Riemann surfaces with spin structure. This corresponds
to the results in [2], Indeed, if we calculate the conformal weight h of the chiral field
that extends the SU(2) current algebra to 50(3) we find h = k/4, which is half-
integer for k = 2 (mod 4). The extended characters χ,- (with integer spin j) in the
Neven-Schwarz sector are of the form χ,- = χ, + χk/2 -p where the χ/s represents the
517(2) characters. If we calculate the partition function of the corresponding
bosonic model that is obtained by the summation over spin structures, we find the
familiar expressions for the 5O(3) partition functions. (See also the discussion in
[23].) An elementary example is the case k = 2 which can be described by three free
Majorana fermions. The fermionic model has a single character (θ[α]/^)3/2, and
the chiral algebra is generated by the three fermionic currents ψi(z).

Now let us look at these results in the Hamiltonian formalism. As we have
stressed, it must be possible to define the topological action 5 also on a manifold M
with nonzero boundary Σ, so that one can study transition amplitudes. In that
case, the topological action is not defined as a number. Rather, e2πis must be
defined as a section of a line bundle L over the space jtf/& of all gauge-inequivalent
connections on Σ. For illustrative purposes let us consider how these line bundles
can be defined in the cases of 5(7(2) or 50(3) gauge group. For 5(7(2) the
fundamental line bundle over jtf/& is obtained as follows. We take the "twisted" d
operator on Σ coupled to two conjugate fields (b,c) of spin 0 and 1. Here b
transforms in the two dimensional representation R of 5(7(2) and c transforms in
the dual representation JR - which is actually isomorphic to R. The line bundle L is
now defined as the determinant line bundle of the operator cίcoupled to the 5(7(2)
gauge field taken in the two dimensional representation jR.

Let us now consider 50(3). If we are working on a bosonic surface Σ9 the
fundamental line bundle over jtf/& is again the determinant bundle of the d
operator, coupled to a similar pair of fields (fc, c) of spin 0 and 1, which we now put
in the adjoint representation of 50(3), which is the lowest dimensional non-trivial
representation. The trace over the Casimir of this representation, which deter-
mines the anomaly in the two point function of the currents, is four times that of the
fundamental representation of 5(7(2), and this reproduces the result of Sect. (4)
that the level k should be a multiple of four. But - and here is the key point - if Σ has
a spin structure, we can use a single real field w of spin \, with w in the adjoint
representation of 50(3) which is real, rather than the pair (b, c). A single spin \ field
w in the adjoint representation of 50(3) has twice the anomaly of the pair (b, c) in
the two dimensional representation of 5C/(2). So in the spin category 50(3) current
algebra can have level k = 2 (mod 4).

6. Finite Gauge Groups

We will now turn to the very special case of a finite gauge group G. Our main result
will be that the structure of topological gauge theories with finite gauge group will
correspond to the two dimensional holomorphic orbifold models that were
considered in [7]. An holomorphic orbifold is a model obtained by modding out a
symmetry group G of a holomorphic or chiral conformal field theory, i.e. a theory
whose partition and correlation functions are the modulus squared of a section of a
holomorphic line bundle over the moduli space of Riemann surfaces. A famous
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example of such a holomorphic theory is the E8 level one WZW model, and
holomorphic orbifolds can for instance be obtained by taking the quotient of this
model with any finite subgroup G of E8. According to [2] the modular geometry of
these orbifold CFT's will be reproduced by Chern-Simons theories whose gauge
group is the semi-direct product of E8 and G. However, here the group E8 is
essentially used to reproduce a trivial theory in two dimensions, at least for closed
surfaces. This can be accomplished much more economically by simply omitting
the E8 gauge theory, and this leads us naturally to consider Chern-Simons theories
with finite gauge group G. In our opinion these theories are also of some intrinsic
interest, since they are very simple examples of topological "quantum field
theories." That is, they provide an elementary illustration of the approach to
quantum field theory along the lines of category theory - an approach we will now
briefly review, before we turn to the explicit construction of the models.

6.1. Axioms of Quantum Field Theory. In a convenient axiomatization of quantum
field theory [6], the structure of a d 4-1 dimensional quantum field theory includes
(among other things) a functor Φ from the category of closed d-manifolds into the
category of Hubert spaces. We will use the term manifold somewhat loosely; the
correct terminology for the objects of our category would be *-manifolds. Here *
can be any extra structure: for example an orientation, a spin structure, a complex
structure, or a metric. Two manifolds are isomorphic if there exists a diffeomor-
phism that preserves the structure. Depending on the structure we obtain dif-
ferent types of quantum field theories: topological, "spin," conformal, etc. The
"arrows" or morphisms between the objects in these two categories are re-
spectively cobordisms and linear transformations. So an arrow M:Σ-*Σ'
is a rf+1 dimensional manifold M that interpolates from Σ to Σ'. More
precisely: M is a manifold that satisfies

dM = Σv(-Σ')9 (6.1)

and whose structure reduces to the respective structures on Σ and —Σ' at its
boundary. Here "u" denotes the disjoint sum, and — Σ the manifold Σ with inverse
structure, e.g. reversed orientation, as defined by

d ( Σ x I ) = Σv(-Σ). (6.2)

By definition M exists iff Σ and Σ' are cobordant in the category under
consideration. Note that we have split the boundary of M into two components Σ
and Σ', by labeling them respectively as "ingoing" and "outgoing."

A category also presumes the existence of an associative composition of
arrows, which in this case corresponds to "glueing" together two d+l dimensional
manifolds M: Σ-*Σf and M': Σ'-^Σ" along their common boundary Σ' to form the
manifold M<>M':Σ->Σ". We will further need for each Σ an identity arrow
1Σ:Σ->Σ, that satisfies

I Γ oM = Mol r = M, (6.3)

for which we choose the manifold 1Σ = Σ xl.
The functor Φ will associate to each d-dimensional manifold Σ a vector space

that we denote as jfΣ9 and to each arrow M a linear map ΦM: jtfΣ-*jtfΣ,. If Σ and Σ'
are not homomorphic ΦM represents a tunneling amplitude between different
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space-like topologies. The functor Φ should preserve the associate composition
law which essentially corresponds to the superposition principle of quantum
mechanics. Furthermore, the manifold Σ x / is mapped to the identity map
1 . %^ v -*&?

i . c^iΓj — ̂ ^Σ
Since the boundary can consist of disjoint components, we will further require

Φ to satisfy the following natural conditions: (i) if Σ consists of the empty set, the
corresponding Hubert space is one dimensional, and (ii) if Σ is the disjoint union of
several manifolds, the corresponding Hubert space is the tensor product:

(6.4)

We observe that a closed d+1 manifold M can now be seen as an arrow M : 0->0,
and accordingly is mapped to a morphism ΦM:C-»C. This implies that we can
associate to M a number Z(M), the partition function. The manifold Σ x / can also
be considered as an arrow Σu( — Σ)->Q. This implies a canonical isomorphism

If M and M' have boundary components — Σ and Σ, labeled respectively as
"outgoing" and "ingoing," we can glue the two manifolds together at Σ to form M".
Φ should also respect this partial composition. So if vt and vl are conjugate bases in
J^Σ and Jf/, we have

This is the famous "glueing" or "sewing" axiom. It allows us in particular to
calculate the dimensions of the Hubert spaces J^Σ by glueing the two ends of the
cylinder Σxl together, which gives

dim^-Tr^l =Z(Σ x S1). (6.7)

6.2. Topological Gauge Theories with Finite Gauge Group. After these prelimi-
naries let us now turn to the somewhat esoteric subject of topological gauge
theories with finite gauge groups. We will restrict our discussion here for obvious
reasons to three dimensions, but the generalization to other dimensions is
completely straightforward. In the theories under consideration the only degree of
freedom will be the topology of the principal G bundle E over the manifold M. For
a discrete group all G bundles are of course necessarily flat, and the topology can
only be detected in the possible holonomy around homotopically non-trivial
closed curves. Accordingly, G bundles are completely determined by homomor-
phisms of the fundamental group π^M) of the 3-manifold M into the group G,
up to conjugation. We will denote both this homomorphism and the corre-
sponding homotopy class of the classifying map M-^BG as y. In accordance with
the general discussion in Sect. (3) we choose a class αe/ί3(£G, U(1)) = H4(BG,Z)
as topological action. [Note that in this section we will identify RfE= U(l) with
the unit circle in C, and write the cohomology groups accordingly multiplicative-
ly, which might confuse the reader.]

The partition function for a closed 3-manifold M will be defined as the sum
over all possible G bundles over M, weighted with the action W= e2πis,

-S- Σ W(y), (6.8)
|Cj| yeHom(πι(M),G)
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TO = <y*α,[M]>. (6.9)

In (6.8), πx(M) is defined relative to some choice of base point. We notice that the
path-integral is reduced to a finite sum. The weights W(y) are manifestly invariant
under diffeomorphisms of M. Since all bundles over the 3-sphere are trivial, we
have in particular

=~ (6.10)

Note that although the isomorphism class of £ depends on γ only up to conjugacy,
we sum over all of Hom(π1(M), G). This prescription is required for the property4

Z(M) - Z(S3) = Z(Ml) Z(M2), (6.11)

where M is the connected sum of the two manifolds M1? M2. This relation follows
immediately from two facts : (i) the fundamental group of M equals the free product
πΛM J * πl(M2)9 and (ii) if y = (y 15 y2) e Hom^M), G) ̂  [M, BG],

<α,y(M)>^<^,y1(M1)> <α,72(M2)>, (6.12)

since we can construct a 4-manifold B (the "world-sheet" swept out during the
factorization process M->M1 + M2) that interpolates from M to M1uM2.
Evaluating c)α = 1 on the image of this manifold B into BG gives the required
property. The normalization of the partition sum (6.8) is such that

Z(S2xS1) = l . (6.13)

Here we used that π^S2 x S1) = Z and W(γ) = 1, since any bundle over S2 x S1 can
be continued over the bounding 4-manifold B3 x S1, with B3 the 3-ball. Stated
otherwise, in the light of (6.43), the Hubert space ^2 turns out to be one
dimensional.

Note that if α represents a non-trivial class, it is a priori possible that the
partition function vanishes for a particular manifold. For instance, if G equals the
cyclic group Z2 and M = RP3, there are two possible bundles over M, since the
fundamental group of M has order two. Now recall that the classifying space BZ2

can be represented as RP™. The non-trivial classifying map corresponds to the
imbedding RP3 C #P°°, which generates the third homology group and is dual to α.
In this case the two contributions cancel and the partition function vanishes

Z(ΛP3) = i(l+(-l)) = 0. (6.14)

6.3. Hίlbert Spaces and Interactions. An interesting class of objects in any
(compact) topological field theory are the dimensions of the Hubert spaces J^Σ

obtained by quantizing the theory on a space-time ΣgxR with Σg a Riemann
surface of genus g. At first sight "quantization" seems quite elementary in this case,
since the classical degrees of freedom are discrete and finite. The phase space is
simply the moduli space i^g of G bundles over Σg,

(6.15)

4 More generally this definition is necessarily to define a functor as discussed in the previous
section that respects the glueing axioms
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A representation y of the fundamental group of the Riemann surface consists of
elements (gt , /ιf) (i = 1,..., g) satisfying Π [&> ΛJ = 1, and a G bundle is determined

i

by 7 up to conjugation. Although ̂ gisa finite set of points, and naively every point
contributes one quantum state, in general we only have an inequality

dimJί^hg. (6.16)

Let us explain why this is true. The dimensions of the Hubert spaces can be
determined in principle - and here also in practice - by calculating the partition
functions Z(Σg x SJ. In the case of a trivial cocycle, α = 1, the action W will always
be one, and the definition of the partition function is just the suitably normalized
sum over all representations of the fundamental group of the three manifold.
Representations of π^(ΣgxS^ are given by representations y = (gi,hi) of the
fundamental group πJ^Σg) of the Riemann surface, together with an element fe, the
holonomy associated to the factor S1, in the common stabilizer subgroup Ny of the
holonomies gf, ftf. For a fixed γ the prefactor in the partition sum is |ΛΓy|/|G|. Since
|G|/|AΓy| equals the order of the orbit of the representation y under conjugation, the
partition sum yields exactly Z(Σg x Si) = \i/"g\, as expected.

However, if α Φ1 there can be k e Nγ such that the action W(y9 k) is not equal to
one5. In fact, the action will always be a one-dimensional representation of Nγ9

W(y,kl)W(y,k2)=W(y,k,k2). (6.17)

This relation can be proved by constructing a 4-manifold that has as its boundary
three copies of Σg x S1, and which allows a representation of its fundamental group
that reduces at the boundary to the representations appearing in (6.17). We can
take for this 4-manifold ΣgxY9 with Y the two sphere with three holes (the trinion
or "pair of pants"). With a suitable orientation the monodromies around the three
holes are respectively kί9 fc2, and fe1/c2. The summation over all keNy in the
partition sum will now give zero if the representation (6.17) is non-trivial. So in that
case the bundle over Σg described by y does not contribute a quantum state, and
the dimension of the Hubert space is smaller than expected. This effect has been
noted in [2] and can be regarded as a global anomaly.

Now for arbitrary genus and general cocycle α the explicit calculation of the
dimensions of the Hubert spaces for arbitrary genus might be a complicated
calculation. However, we can make a shortcut. Any Riemann surface can be
obtained by sewing together several copies of the thrice-punctured sphere Y.
Similarly the 3-manifolds Σg x S1 can be obtained by sewing manifolds of the form
YxS 1 . Now the manifold Y x S 1 is not closed. Its boundary consists of three
copies of the 2-torus Σί = Sί xSl

9 and consequently the path-integral on YxS1

will represent a tri-linear map

ΦY χ S ι : ̂  x ̂  x -#k->C. (6.18)

5 Probably the simplest example of this phenomenon occurs when one considers the group G = Z2

x Z2 x Z2 and the bundle over the 3-torus obtained by twisting with the three generators of G
along the three generating cycles of the fundamental group of the torus. It is easy to verify that
there is an element in #3(G, 17(1)) such that W=—l
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Fig. 1. The sphere with four holes can be composed in two distinct ways from two copies of the
sphere with three holes, as indicated in these diagrams. The group elements correspond to
monodromies around the punctures

So let us add a few words to the general definition of Φ in the case of manifolds with
boundaries. Let M be an arbitrary 3-manifold Σ^Σ'. According to our general
assumptions ΦM is a linear map JΊfΣ-+J^Σ>, and we should specify its matrix
elements. For fixed maps y : π1(I')->G and / : π^Σ^-^G the kernel of ΦM is given by

)= Σ w(f), (6.19)
|vj| y"eHom(π!(M),G)

where the summation is over those y" that restrict to γ and y' at the boundaries. It is
not difficult to check that this definition satisfies the conditions that we imposed in
Sect. (4.1).

So in order to calculate the dimensions of the Hubert space for arbitrary genus
it suffices to know the Hubert space of the 2-torus and the map ΦΎ xsι that we just
described. Let us first evaluate the action for the manifold YxS 1 . Since the
manifold has a boundary the action is only well-defined if we choose some fixed
classifying maps at the boundaries. So, as discussed in Sect. (3.2), we will assume
that for each homomorphism of the fundamental group of a Riemann surface into
G we have been given some fixed classifying map. (We will belabor this point in the
next section.) An element of yeHom^^YxS1), G) is given by elements g,
(i = l,2,3) satisfying g1 - g2 - g3 = l, that represent the monodromies around the
three punctures of Y, and an element h that commutes with the gt and that
corresponds to the generator of the factor S1. So the independent variables are
g1? g2, and h. Of course, the bundle over Y x S1 is only properly defined in terms of
the elements g l5 g2, h once we picked a base point and specified the cycles along
which the holonomies are determined. Let us denote the action as

wω=c*(gι,g2). (6 2°)
Our claim is that the object ch is an (algebraic) 2-cocycle of the stabilizer group
Nh C G, the subgroup of all elements in G that commute with h. That is, we have
the relation

Ch(gι> g2)ch(gί9g2, £3) = ch(gl9 g2, g3)cΛ(g2, g3) (6.21)

for any three elements g1? g2, g3 e Nh. This statement has a very natural geometric
proof. Consider the sphere with four holes. It can be obtained in two different ways
from two copies of Y, as is represented diagrammatically in Fig. 1. This is similarly
true after taking the direct product with S1. Since the action cannot depend on the
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way we have chosen to construct the manifold, the above relation follows
immediately.

So we see that on a priori grounds the Chern-Simons theory associates group
cocycles ch to each stabilizer subgroup Nh of G. However, to actually calculate ch in
terms of the 3-cocycle α, we have to resort to a different approach.

6.4. A Lattice Gauge Theory Realization. We would now like to explain why the
abstract description of the topological action can, in the case of a finite gauge
group, be reduced to a concrete description somewhat reminiscent of lattice gauge
theory.

Recall that a lattice gauge theory, formulated on a lattice with vertices Vi9 links
Lij9 etc., associates to each link Lip oriented form Vj to Vi9 a gauge field g0 e G. A
gauge transformation is simply a set of elements ht e G, and the transformation acts
on the gauge field as

gy->VgyΛΛ (6 22)

The total curvature fijk for a 2-simplex is given by the holonomy

fijk = %ίj'gjk'Zki> (6.23)

and is only well-defined modulo conjugation. The action is some local functional
of the gauge fields. These lattice theories are particularly well suited for finite
groups, where no obvious continuum theory exists. We would like to define here
something close to a lattice Chern-Simons theory.

We have seen that for a finite gauge group G, H4(BG,Z) is isomorphic to
H3(BG, t/(l)), and the topological action can be specified by giving an element
<xeH3(BG, £/(!)). Given an oriented three manifold M without boundary (the
orientation is always assumed in what follows), and a map γ:M-+BG, the
topological action is the pairing <y*α, [M]>. We will now discuss how this can be
evaluated. We may as well assume that M is connected. In addition, we suppose
that we are given a triangulation of M; given such a triangulation, we will exhibit a
recipe for computing the topological action.

Since BG is connected, we can pick a base point * in BG, and deform the map
7: M->#G so that every 0-simplex in M is mapped to * by y. Now let σ be a one
simplex in M. Since the endpoints of σ are mapped to the base point *, y(σ) is a path
from * to * which determines an element of the fundamental group π^BG). On the
other hand, this group is isomorphic to G (since BG is the quotient of the
contractible space EG by the free action of G). Thus, to every one simplex σ in M,
the map y determines a group element gσ e G. The assignment of group elements to
one simplices is reminiscent of lattice gauge theory. In this situation, however, the
lattice field strength vanishes: if the three one simplices σl9 σ2, and σ3 bound a two
simplex, then the product gσι gσ2 - gσ3 vanishes (since it represents an element of
π^BG), namely y(σ1uσ2uσ3), which must vanish since σ 1uσ 2uσ 3 bounds a two
simplex or disc). This product is precisely the field strength in the sense of lattice
gauge theory. Thus, in this lattice gauge theory model, one is limited to flat
connections.

Now, if we really want to establish an analogy with lattice gauge theory, the
topological action <y*α, [M]> should depend only the the "gauge field," that is, on
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the gσ, and not on other details of γ. In fact, if /: M^BG is some other map that
determines the same gσ's as those determined by γ, then γ and / are homotopic to
each other. To see this, one constructs a homotopy from γ' to y on the k skeleton of
M, inductively in k. For k = 1, the existence of a homotopy from γ to y' is precisely
the statement that they determine the same gσ's. Once the homotopy from y to y' is
established on the k skeleton, the obstruction to extending it over the k +1 skeleton
lies in πk+i(BG) (or more precisely in Hk+1(M, πfc+1(BG))), and vanishes since for G
a finite group, the homotopy groups nn(BG\ for n> 1, all vanish.

Given that y and y' are homotopic, the cocycle condition on oteH3(BG, 17(1))
implies that for M a manifold without boundary, the topological action is the same
for y as for y'. Thus, if M has no boundary, the topological action depends only on
the "gauge field" gσ.

6.5. Manifolds with Boundary; Gauge Theory Action. It remains to understand the
case in which M has a boundary. If M has a boundary, the topological action
cannot be defined as W= <y*α, [M]>, because the fundamental class [M] does not
exist for a manifold with boundary. Also, we want a somewhat different
formulation that will be concrete and closer to lattice gauge theory.

Given a three simplex T and a map y : T-+BG, the cocycle α e H3(BG, (7(1)), by
definition, assigns an element W(T)e (7(1) to this data. From this point of view, a
three simplex Γis not just a tetrahedron; it is a tetrahedron with an ordering of the
edges as 0,1,2,3. Roughly, we would like to regard M as a union of three simplices
M = UfT; and define the topological action as Π W(Ί^. A chosen triangulation of

M gives a realization of M as a union of tetrahedra. To give an ordering of the
vertices in each of these tetrahedra, we order the vertices in M as 1,2,3,..., n (if
there are n 0-simplices in M), and then in each tetrahedron 7], we order the vertices
in ascending order.

In a given tetrahedron 7], the ordered vertices appear in either a right-handed
arrangement or a left-handed arrangement; this determines an orientation of 7]
which either agrees or disagrees with the orientation induced from that on M. Let
us define an integer ε£ that is 1 or — 1 depending on whether these orientations
agree. Then if M has no boundary, the fundamental class of M can be defined as

[M]=£ε£7]. (6.24)
i

It follows from the definition of singular cohomology groups that the topological
action, which we earlier defined as W= <y*α, [M]>, can equivalently be defined as
the product over all individual simplices as

W=γ\W(Ti)
εi. (6.25)

i

This formula makes sense and is valid whether or not M has a non-empty
boundary.

In (6.25) we write the topological action as a product of terms that only depend
on the maps to BG of the individual tetrahedra 7J. This goes in the direction of a
lattice gauge theory description, but we have not achieved such a description yet,
since in general the W(T^) do not depend only on the gσ, as we wish, but on all of the
details of the map y.
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Fig. 2. A 3-simplex T with gauge fields g, /i, k has action W(T) = <x(g,h, k)

To overcome this problem, we proceed as follows. For each choice of the gσ's
(with vanishing curvature), we will describe how to pick a particular map γ from M
to BG. By considering only these y's we will ensure that the W(iy$ depend only on
the gσ. The recipe for associating a particular map y with every collection of gσ's is
very simple. As in a previous argument, we consider the fc-skeleton of M and work
by induction in k. For every homotopy class of paths from * to * in BG, that is, for
every element g e G, we pick a particular path ug9 and we agree to use only these
paths. This ensures that the map y on the 1 -skeleton is uniquely determined by the
gσ's. When we consider extending y over the 2-skeleton, we see that the map to BG
of a two simplex Δ2 in M is given by a triple w f f l, ug7? and ug3 (with gιg2gs = 1). For
each such triple we pick a particular map v:A2->M. Similarly, when it comes to the
3-skeleton, for each three simplex A3, the map of its boundary to BG consists of a
certain collection of u's, and for each such collection, we pick a particular map
w : A 3 -»5G. This completes the story for M of dimension three, but otherwise the
induction would obviously continue indefinitely.

At this point we have what we want: (6.25) is a formula for the topological
action that depends only on the gauge theory data, and is similar to a lattice gauge
theory action in that the total action is a product of local terms, one for each three-
simplex.

So the basic object is the value of the action W(T) associated to a 3-simρlex T.
Once we have identified the vertices of the tetrahedron this action is a function of
the three independent gauge fields g, h, and k on the links, that we can choose as in
Fig. 2. We would now like to show that the action

α(gΛ*), (6.26)

is a group cocycle in the algebraic sense, i.e. we would like to prove

α(g, Λ, /c)α(g, Afc, /)α(/ι, fc, /) = αfefc, k, /)α(g, A, kl) . (6.27)

This relation follows quite easily if we consider a 4-simplex with independent
gauge fields g, Λ, fe, /. Its boundary consists of 5 tetrahedra, and the above equality
just expresses the general fact that the action of a boundary vanishes. Note that
under a "gauge" transformation α->α<Sβ, we have the transformation property

Let us summarize our lattice construction. For a given 3-manifold M, possibly
with boundary, we choose an arbitrary triangulation. [The definition (6.9) of the
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topological action makes it clear that the choice of the triangulation does not
matter, though this is not completely obvious in the lattice construction.] We
assign gauge fields to the links of the lattice, with the restriction that the curvature
vanishes for all 2-simplices that occur in the triangulation. We will sum over all
gauge field configurations, modulo gauge transformations that leave one point
fixed. This leaves overall conjugation of the gauge fields as a physical degree of
freedom. Since flat connections have only non-trivial holonomy around non-
contractible loops, our gauge field configurations are labeled by homomorphisms
of the fundamental group π^M) into the gauge group G. With an arbitrary choice
of ordering of the vertices, we associate to three simplex 7] the action W(T^ as in
(6.26). The total action is simply the product over all elementary simplices (6.25).

We can now explicitly check some properties of the definition, which are clear
on a priori grounds.

First, for a closed manifold, the value of W does not depend on the choice of
cocycle used to represent α e H3(BG, (7(1)). Under a transformation u^κxδβ we will
pick up terms that are defined on the 2-simplices. These are summed over twice,
once in each orientation, and cancel. For example, the simplex depicted in Fig. 2
would transform with (among other terms) a term β(g,h) associated to the
2-simρlex labelled by 0, 1, 2. However, since the manifold is closed, there will be a
neighbouring 3-simplex of opposite orientation that will contribute β(g,h)~1. So
both terms cancel.

It is further not difficult to show that this expression is also invariant under
further refinement of the lattice. It is sufficient to consider the barycentric
subdivision of a 3-simplex T, since every two triangulations have a common
subdivision in three dimensions. The barycentric subdivision will replace T by 4
new simplices. It is again exactly due to the cocycle condition (6.27) that the sum of
the actions of these 4 simplices equals W(T).

Another important property is gauge invariance on closed manifolds. This is
due to the fact that a gauge transformation h t e G on a vertex V{ of a simplex T
changes the weight W(T) by terms that only depend on the gauge fields on the
2-simplices containing Vt. If every plaquette belongs to two 3 -simplices, as is the
case for a closed manifold, the terms cancel two by two. More precisely, a gauge
transformation c e G acting on the vertex V0 of the simplex of Fig. 2, will transform
the action W(T) as

α(c, g, hk)

Each of the three factors will be cancelled by the neighbouring simplices.
We would like to close this section with one related remark. Depending on the

divisability of the order of the group it may be possible to choose the gauge

a(g,g-\h) = a(g,h,h-ί) = ί . (6.30)

In this gauge the above prescription becomes considerably simpler, since now the
action W(T) is invariant under chance of labelling of the vertices. One also has the
convenient reality condition

αfeMΓ^αίfc-SΛ-Sg-1). (6.31)
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Fig. 3. The manifold Y x S1, the direct product of the 2-sphere with three holes and the circle. The
top and bottom and all vertices should be identified. The group elements indicate a homomor-
phism

9 " 9

Fig. 4. The 3-torus and one of the six 3-simplices that can be used to triangulate it

6.6. The Partition Function of the 3-Torus. We can now compute several
interesting quantities using triangulations. We will first reconsider the manifold
YxS1. We have seen that the Chern-Simons theory associates to each group
element h e G a 2-cocycle ch of the stabilizer group Nh, and we would now like to
express the cocycles ch in terms of the fundamental 3-cocycle α. Once we have
realized that a sphere with three holes can be represented by a 2-simplex with its
three vertices identified, it is not difficult to imagine that YxS1 can be represented
as in Fig. 3. Three simplices suffice to triangulate Yx S1, and the corresponding
action is given by

(6.32)
—- α(glΛg2) *

It can now be explicitly checked, using repeatedly the cocycle condition δoc = 1, that
ch is indeed a 2-cocycle of the stabilizer subgroup Nh. Note that under (6.28) ch

transforms as ch-+chδβh, with

βh(s)= β(& Ό β(h> g) ~~1 (6.33)

Let us now move on to the partition function of the 3-torus S1 x S1 x S1. It can
be conveniently triangulated with 6 simplices. This can be easily seen when we
represent the 3-torus as a cube with periodic boundaries as in Fig. 4. If g, h, k are
the three commuting gauge fields on the edges of the cube, the partition function
can be evaluated to give

9,h,keG
W(g,h,k)9

(6.34)
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with the action given by

We can now explicitly check some general properties of W. First we observe that it
is indeed invariant under transformations α->α<5β, in particular W=\ whenever α
is cohomologically trivial. Furthermore, it can be verified that the above
expression is inert under the mapping class group of the 3-torus SL(3, Z).

The action can also be simply rewritten in terms of the 2-cocycles cg. Since the
three torus can be constructed out of two copies of the manifold Y x S1 we have

1. (6.36)

This is especially easily visualized with the aid of the triangulated manifolds of
Fig. 3 and Fig. 4. We will use this observation to evaluate and interpret the
partition function of the 3-torus.

For any finite group G let the positive integer r(G) denote the number of non-
isomorphic irreducible representations. It is a familiar fact that r(G) also equals the
number of conjugacy classes. Similarly we can define for any 2-cocycle c of G the
number r(G c) of irreducible projective representations jR(g) that satisfy

R(g)R(h) = c(g,h)R(gh). (6.37)

It can be shown that r(G; c) is the rank of the center of the twisted group algebra
and that it equals the number of so-called "c-regular" conjugacy classes [24],
which implies

r(G;c)^r(G). (6.38)

An element g e G is called c-regular if c(g, h) = c(h, g) for all h e Ng. If g is c-regular
then so are all its conjugates, and all elements of the form gnhm with h e Ng. If we
write for fixed g

ββ(Λ) = c(g,ΛMΛ,gΓ1, (6.39)

then by a simple computation we can show that εg is a one dimensional
representation of the stabilizer of g. An element g is c-regular iff εg = 1. This implies
the following expression for r(G; c):

r(G;c)=-5- Σ cfeΛM^g)-1. (6.40)
I"Ί 9,heG

l9,h]=l

Here we used again the property that the summation £ ε(k) vanishes for any non-
keK

trivial one-dimensional representation ε(k) of a group K. Comparing with the
expressions (6.34) and (6.36) for the partition function of the 3-torus we obtain

Z(S1xS1xS1) = Σ r(Ng cg), (6.41)
geC

where C is a set of representatives of the conjugacy classes CA of G. So in particular
we find that the partition function is an integer, in accordance with its
interpretation as the dimension of the Hubert space associated to the 2-torus
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In this calculation of the Hubert space for genus one, we recognize the general
phenomenon that not all G bundles give rise to quantum states in the theory.
According to the result (6.41), only those bundles contribute for which the pair
(g,/z) satisfies the condition that h is ^-regular (or vice versa, the condition is
symmetric). So we can take the following basis in the Hubert space. Let R9

a be the
irreducible, projective modules of the stabilizer group Ng with cocycle cg. Since the
stabilizer subgroups Ng are isomorphic for all g in a conjugacy class CA, we can
denote these groups as NA and their representations by R£. The basis elements v£
can now be defined by

1. - (6*42)0 otherwise.

Note that the "wave functions" v£:i^g^>C indeed satisfy v£(g, h) = 0, if h e Ng is not
a cyregular class. It can be verified that this basis is orthonormal. (Recall the
manifold Σλ x / furnishes a natural inner product on the Hubert space J^Σl.)

We will now proceed to show that the analysis of this three dimensional
topological gauge theory, reproduces the same result obtained in the two
dimensional analysis [7] for the dimensions of the Hubert spaces for arbitrary
genus, namely

dim^, = Σ (-^4Y'9'1'. (6.43)

The calculation is not difficult. In [7] the fusion algebra of the two dimensional
holomorphic orbifold models was derived, and this was shown to lead to the above
dimensions. We only have to check that, when expressed in the basis υ£ in J f l l ? the
morphism Φ y x sι reproduces these fusion rules. This is indeed true, since

h)ch(gί, g2) , (6.44)
9ιeCΛ,g2eCB,93eCc,heG

0 10203 =l,[0i, fc]=l

which is completely identical to the fusion algebra that was found in the two
dimensional analysis. It is now a straightforward result from the formula of
Verlinde [25] that the dimensions of the Hubert spaces for arbitrary genus are
given by Eq. (6.43), see also [7].

A special case occurs when all the cocycles cg are trivial. This is in particular
true for abelian G, and implies that there exist phases sg(h) (defined up to a
1 -cocycle) such that

(6.45)

It is easy to check that the phases εg(h) satisfy

β.-.(Λ) = eβ(Λ-1) = e^Γ1. (6.46)

Let us now introduce the quantities

sg(h)εh(g). (6.47)

These objects are manifestly invariant under the transformation (6.28), and so are
determined only by the cohomology class aeH3(BG, U(l)) and are invariants of
the theory. They equal the phases that were used to describe the modular
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transformation properties of holomorphic orbifold models in [7]. In fact, the
genus one modular transformations S, T read in the basis υ£9

= ϊ r Σ QΪ(h-l)Qh

β(g-l)σ(g\h), (6.48)
G heCB,geCΛ[ h , g ] = l

lσ(g\g) - 1/2 . (6.49)

Using surgery with this representation of the modular group as in [1], partition
functions of the three dimensional theory can be obtained. For instance we can use
genus one Heegaard splittings. A genus g Heegaard splitting [26] is a decompo-
sition of a 3-manifold M into two "handle-bodies" M1 and M2 of genus g by
cutting M along a Riemann surface Σg. Such a decomposition is always possible, as
an easy triangulation argument shows [26]. The boundaries of Mί and M2 are
identified by a mapping class group element Γ. Genus one Heegaard splittings with
a modular transformation Γ e SL(2, Z) that maps the homology cycle b to apbq give
rise to the Lens spaces Lpt9. Here b is the generator of the fundamental group of the
solid torus. The corresponding partition function is given by

Z(Lp,,) = <ί;0,Γt;0>, (6.50)

with υ0 the vacuum state in 3ίfΣί. Special Lens spaces are Ln l = S3/ZΠ, where we can
choose Γ = (TST)n. For instance we immediately find [1]

Z(S3) = S00=|^ (6.51)

in accordance with (6.10). For another concrete example consider again the group
Z2. The genus one Hubert space has 4 states with an Z2 x Z2 fusion algebra. Since
H4(BZ2yZ) = Z2, there are two possible choices for the phase σ(g\h): with g the
generator of Z2 we have σ(g|g)= ±1. We can now calculate the partition function
of S3/ZΠ using the above representations of S and T, with the result

» -n,

confirming in particular (6.14).
The requirement that the above matrices S, T lead to a consistent represen-

tation of the mapping class group leads to certain conditions on σ(g\h) that were
investigated in [7] and are now seen to be solved by giving a cohomology class
αe#3(£G, (7(1)). For example we can compare our results with the one obtained
for the group G = S3, where the group of possible phases σ(g\h) was calculated to be
Z3 x Z2. This result agrees with the three dimensional calculation, since

6.7. Discrete Torsion. We would like to close with some remarks on discrete
torsion [27]. The reader must have noticed a very close similarity of our discussion
to the idea of discrete torsion, as it appears in the theory of two dimensional
orbifolds. Recall also that discrete torsion is supposed to be classified by the classes
βeH2(BG, U(l)). Indeed, it has a very natural interpretation as a two dimensional
topological theory with finite group G, since it associates to each G bundle E over a
Riemann surface Σ with classifying map y a phase W(γ) = (γ*β,
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We would like to briefly clarify why it is true that it is H2(BG, ί/(l)) that
classifies discrete torsion. Consider strings propagating on a manifold M. For
every string world sheet Σ (Σ is a Riemann surface perhaps with boundary) and
homotopy class of maps X : Σ-+M, one wants to find an R/Z valued topological
action I(X) such that

(i) two such actions / and /' are considered equivalent if they differ by a functional
that only depends on the restriction of X to the boundary of Σ;
(ii) if Σ is a Riemann surface without boundary, and is the boundary of a three
manifold Y, and if X extends to a map X: 7->M, then I(X) = 0.

And of course we tacitly assume that the action of a disjoint union of surfaces
ΓuΓ is additive, /(ΓuZ") = /(I) + /(!*). It then follows from (ii) that the topologi-
cal action is odd under reversal of orientation, I(Σ)= — /( — Σ), since Σv( — Σ)
is the boundary of the three manifold ΣxL

The requirements (i), (ii) follow from the same consideration as explained in the
introduction. The physical reason for requiring (i) is that under the stated
condition, the difference between / and Γ can be absorbed in a redefinition of the
wave functions of the initial and final states. As for (ii), it corresponds to
factorization. (To see this, bear in mind that the prototype of factorization is a
Riemann surface Σ splitting into a union of two surfaces Σί and Σ2. In such a case,
a space-time history describing this splitting is a three manifold X such that dX = Σ
u( — ZΊ)u( — Σ2), and the statement of (ii) that I(dX) = 0 amounts then to I(Σ)

The requirements (i), (ii) above precisely state that I(X) = <JΓ*α, [£]> for some
element α 6 H2(M, Z). Therefore, if one is given a sigma model of maps of Riemann
surfaces in to a target M, and one asks how this model can be modified by
weighting the different topological sectors with different phases, the answer is that
the possible ways of doing this are classified by H2(M, Z).

Now, suppose that M is obtained as M0/G, where G is a finite group which we
suppose at first acts freely on M0. We suppose that a quantum field theory for maps
to MO has already been defined, and we want to define a quantum field theory for
maps of Riemann surfaces to M. In this process, one has the chance of modifying
the naive definition by phases. From what we have just seen, the possible ways of
doing this are determined by H2(M, Z). In general, knowledge of G alone does not
give complete knowledge of H2(M, Z) (even if one supposes that G acts freely on
M0), and therefore the possibilities for discrete torsion do not reduce simply to a
statement about G; to give a full statement of the possibilities one needs to consider
the nature of M0 and compute H2(M, Z).

However, what is usually considered under the heading of discrete torsion are
the possibilities that exist universally, just because of taking the quotient by G, and
irrespective of any properties of M0. In this case M0 may as well be topologically
trivial (contractible). In that case, M = M0/G is a model of BG and H2(M, Z) can be
identified with H2(BG, Z). In this way, by considering only the possibilities for
discrete torsion that exist universally, only because of the group action, the study
of discrete torsion reduces to group cohomology.

Of course, here we have supposed that G acts freely on M0 to get a situation
that can be conveniently understood geometrically and to make the relevance of
group cohomology obvious, without any formulas. It is well known that the formal
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construction of the quantum field theory associated with the quotient of M0/G
goes through in much the same way whether G acts freely on M0 or not. The
formulation and verification of the conditions that arise for modifying the
quantum field theory on M0/G with phases likewise makes sense regardless of the
nature of the G action, and the possible phases that exist universally are still
classified by H2(BG,Z).

As was shown in [7], discrete torsion also gives rise to a natural automorphism
of the fusion algebra of a conformal field theory. In the light of the three
dimensional framework, this will correspond to a phase transformation of the
states in the Hubert spaces 34?Σ that is an invariance of all the morphisms ΦM, i.e. all
interactions. Let us recall that states veJ^Σ are functions υ(y] with γe'f, the moduli
space of G bundles on Σ. An element βeH2(G, t/(l)) transforms the states as

ΦHΦ)<y*Ara> (6.53)
However if Σ — dM9 as is always the case for a transition amplitude, this phase
dissappears because of the condition δβ=ί.
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