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Abstract. We introduce g-analogues of Clifford and Weyl algebras. Using these,
we construct spinor and oscillator representations of quantum enveloping
algebras of type Ay_,, By, Cy, Dy and A§) ;. Also we discuss the irreducibility
and the unitarity of these representations.

1. Introduction

Clifford and Weyl algebras are two of the most important algebraic objects in
theoretical physics. These algebras represent creation and annihilation of particles
satisfying Fermi or Bose statistics. Moreover, they have deep connections with
many other important algebras, such as Kac-Moody algebras and Virasoro
algebras.

Recently, the progress of the quantum inverse scattering method has led to
new algebraic structures known as quantum groups. Jimbo [J1] and Drinfeld [D]
defined a one-parameter family of Hopf algebras which can be thought of as a
g-analogue or quantum deformation of the enveloping algebra of a Kac-Moody
algebra (see also [KRS]).

One of the purposes of this paper is to show that the Clifford and Weyl algebras
have deformation which is compatible with the deformation of Kac-Moody
algebras mentioned above. More precisely, we define g-analogues o/ of these
algebras and construct algebra homomorphisms from quantum enveloping
algebras of type Ay, By, Cy,Dy and A§’ to the algebras o7 . Since o/ acts on
the exterior or polynomial algebra V* as usual, we get spinor and oscillator
representations of quantum enveloping algebras.

In Sect. 2, we recall the definition of quantum enveloping algebras and its
representation theory briefly. In Sect. 3, we define g-analogues 2/ of Clifford and
Weyl algebras and study representations V¥ which are irreducible if g is not a
root of unity. When g is a root of unity, the representation V™ of </
remains irreducible, but the representation V'~ of &/, has countably irreducible
components. In Sects. 3 and 4, we construct and study the spinor and oscillator
representations of quantum enveloping algebras of type Ay_;, By, Cy and Dy. In



130 T. Hayashi

Sect. 5, the unitarizability of these representations are discussed. In Sect. 6, we
construct the spinor and the oscillator representations of quantum enveloping
algebras corresponding to the infinite Cartan matrix A, and the affine Cartan
matrix A§) ;.

1. Q-Analogues of the Enveloping Algebras

1.1 The Hopf Algebra U ,(X). Let X = [a;;]; <; j<n b€ a symmetrizable generalized
Cartan matrix and let d;(1 <i < n) be the non-zero integers such that d;a;; = d;a;
and the greatest common divisor of d;’s is 1. Let g # 0 be a complex number such
that g** # 1 for any i. The quantum enveloping algebra U (X) corresponding to X
and the parameter q is a Hopf algebra with unit 1 and generators e, f;, kif?

(1 i £ N) satisfying the following relations:

kiki—l =ki-1ki= 1, klkakjklﬁ (1.1)
kiejki ' =qfve;,  kifiki ' =qi “f;, (1.2)
kP —k;?
eifj—fjei=5ij*‘—‘—qi2_qi_2, (1.3)
1—a.

(- 1)"[ “”] el e =0 (i )) (14)

0=n<1-ayj qz

n l—aij 1-aij—n n . -

(-1 fi7wTifi=0 (@ #j) (L.5)

0snsi-ay; no g2
Ale)=e®@ki ' +k®e;, A(f)=/fi®k'+kQf, Ak)=k®k, (1.6)
ee)=0, &(f))=0, ek)=1, (L.7)
Se)=—q; *ei, S(f)=—qifi, S(k)=ki ', (1.8)

where A, ¢ and S denote the coproduct, counit and antipode of U,(X) respectively,

¢;=q" and [r::] is the number defined by
q

m| [m]!,
n|, [m—n]l,[n],)
— q—m

[y = Dl [ = (20, [1,e D= T2 (19)

We call elements {e;, f;, k;|1 <i < N} the Chevalley generators of U,(X). A number
of the form [m], is often called a g-integer.

1.2 Representations of U ,(X). For U, (X)-modules M and N, we can define actions
of U,(X) on the tensor product M @ N and linear dual space M* as follows:

au®v):=A(@)(u®v), (acU,(X),ueM,veN), (1.10)
Caf,uy:={f,8(@u), (acU,X),ueM,feM*). (1.11)
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Let the parameter g not be a root of unity. For a U,(X)-module M and
z2=(24,...,2y)e(C*)N, we set M, = {ueM |k;v = z;v}. A vector veM is said to be
primitive if 0 #veM, for some ze(C*)" and e,v =0 for all ie{l,...,N}. We say
that M is a highest weight module with highest weight z, if M is generated by a
primitive vector ve M,. For each ze(C *), there exists an irreducible highest weight
module with highest weight z and it is unique up to isomorphism (see [L1] and [R]).

2. Q-Analogues of Clifford and Weyl Algebras

2.1 The Algebras o/ ;. Let N be a positive integer and ¢ be a non-zero complex
number such that ¢* 1. We define algebras &/ =.o/F(N) with generators
Y, Yl w, w7 (1 £i< N) by the following defining relations:

w0;=0;0;, 0,07 =0 o;=1, 2.1
wi‘/’jwi_1 =qiaij‘/’j, wi\l/}wi_l =q$a”‘//;’ (2.2)
Vit Y=Yy Yyl =0, (2.3)

Yl Uivi=0 (i #)) (24)

Yl @i =072 Yl a7 Yl = o} 2.5)

Note that the relations (2.5) are equivalent to the following relations:

w;)* — (ge;) "2 L0l —o?
e 26)
We call the algebras &/, and &/, the g-analogue of Clifford and Weyl algebras
(or g-Clifford and q-Weyl algebras) respectively.

As well as the original case, the algebra /] (respectively /) have a
natural representation on exterior (respectively polynomial) algebra in half of the
generators. Let V™ (respectively V™) be the exterior (respectively polynomial)
algebra generated by elements x; (1 <i < N). For integers m = (my,...,my)eZ",
we define an element x(m) of V* as follows:

xTAxEEA - AXRY (mef0,13V) .

x(m) = { 0 (otherwise) (for o/ (N)), (2.7)
X xRy (meZY,) _

x(m) = { 0 (otherwise) (for /¢ (N)). (28)

Clearly the set {x(m)|me{0,1}"} (respectively {x(m)imeZ¥,}) is a basis of the
vector space V'*. Then the action of the algebra &/} on V= is given by

@;(x(m)) = g~ ™x(m), Y(x(m))=(—1)™ """ x(m —e,),
Yleem)) = (= m*rmoixmtey), (m=(my,..,my)e{0,1}Y),  (29)
for &/, and

w;(x(m)) = g™x(m), ¢;(x(m))=[m;]2x(m —e,),
Yl(x(m))=x@m+e), (m=(my,...,my)eZl), (2.10)
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for o/ . Here e;’s are elements of Zgo defined by e; =(1,0,...,0),...,ey=(0,...,0,1).

Proposition 2.1. (1) The representation V* of /] (N) is irreducible. (2) If q is not
a root of unity, then V= is an irreducible representation of o/, (N).

Proof. Let W be a sub-representation of ¥V~ and u=) a,x(m) (a,eC) be

a non-zero vector of W. Let n=(n;) be the maximum "clement of the set
{meZ¥ ,|a,, # 0} with respect to the lexicographic ordering of Z¥,. Then we have

W)™ (W) u = a,[n ]l [ny]!2x(0). 2.11)

Since all coefficients [n],. do not vanish, the vector x(0) belongs to W. Now part
(2) follows from V™ = o/, (N)x(0). The proof of part (1) is similar. []

2.2 The Case q is a Root of 1. We next consider the case ¢* is a primitive L!* root
of unity. In this case, the representation V™ is no longer irreducible, since the
structure constants [m],. may vanish. Here we noted some formulae for g-integers:

[l]qz, [2]4129 cees [L - 1]q2 # 0’ [L]qz = 0,

[m+ Lplp = ¢?Imlg [L—1—mlp=(—g)m+ 1]z (mped), @12
For each p=(py,...,py)eZ%,, introduce a sub <7, -module ?; = (B xB2- - xRV
of V7, then Vp' is a submodule of f/pT if p—p'eZ¥,. Moreover define its

quotient V=~ by
V,y=V, / i

Denote by x,(m) the image of the vector x(m+ Lp) in V. Then {x,(m)/me
{0,...,L—1}"} is a basis of ¥ and the .o/, -action on V is given by

M=

Ve (2.13)

1]

1

@;(x,(m)) = g™ " Pix (m),  Y;(x,(m)) = g*7 [m;]2 x,(m —e;),

Yl(x,m) =x,m+e), (m=(my,...,my)e{0,...,L—1}¥). (2.14)
Proposition 2.2. Suppose q* is a primitive ! root of unity. Then for p=(py,...,Py)E
7%, (1) the o7 (N)y-module V, s irreducible. (2) The algebra automorphism
Vi g? Py Yoy, opgth o, of o] carries V, to the module isomorphic
toVy.

Proof. Note q"? belongs to {+1,+./—1}, then part (2) is an immediate
consequence of the formula (2.14). O

Remark. In [M], Morikawa studies another g-analogue Wy(g, R) of the Weyl
algebra over a commutative ring R. The algebra Wy(q, R) is generated by a;,d;
(1 £i £ N) with defining relations

a;a;— a;a; = 4;4; — 4;4; = a;4; — 4;0, =0 (i # j),

diai - qaiﬁi = 1. (215)
There exists an algebra homomorphism i: Wy(q*, C) - o/, (N) defined by i(a;) =
vl ud) =0y (1Si<N).
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3. Constructions of Representations of Quantum Enveloping Algebras

3.1 Identities in o

133

Lemma 3.1. Let i, j, k be distinct elements of {1,...,N} and let ¢, (respectively ¢,)

be either \; or Y (respectively ¥, or y}). Then,
1. the following identities hold in </

Wb = o (@0 = @) 2,

Vit W1 = o= (00, ~ qoi) 2,

[!//n!//T]— q-l{(qwz)—(qwz)"l}

iz(%*/’j)(‘ﬂj‘l’k) - (l//j(Pk)((Pi‘//j) = CU;? 2(pi(nok,
qi2(¢i‘//})‘//j - '//1((01'//}) = a)fz(pl.,
qiz‘/’}('/’jq)k) - (l//j(Pk)‘/’} = wftz (%
2. The following identities hold in </, :

Wb = {0 o) 0,

i 1) = s { (a0~ (qor0) 7,

2 -2
[0 1) =5 (gt~ o))

qiz((/’il//})(%(/’k) - ('/’j‘Pk)((Pin) =— (0;? 20; 0
eV D) — W) o)) = — (¢ + 97 o] *Y;0,

W W00 — 0] = — (@ + a7 ) ) 2 g

Proof. Using (2.3) and (2.4), we get,
WL v il = WD W) — Wlv) ¥l

Hence we obtain from (2.6) that

Lol 0l] = —%{«W—mw) 2)(w? — w;°2)

@
— (0} — 2)((qwj)2"(qwj) 2)}

1 _ s
=q2_q—2((wiwi 1)12—(60,'60,' 1)+2).

(3.1)

(3.2)

(3.3)

(3.4)
(3.5)
(3.6)

3.7

(3.8)

(3.9)

(3.10)
(3.11)
(3.12)

(3.13)

(3.14)
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This proves (3.1) and (3.7). The proof of other identities is quite easy and will be
omitted. [

3.2 Construction of the Representations. Now we will construct representations of
quantum enveloping algebras corresponding to Cartan matrices of classical type.
Explicitly these matrices are given as follows:

2 -1 0 0
-1 2 : 0
0 L :
Av=| - S Ay -y 0
: —1
2 -1
0 0 _1 ) 0 0 -2 2
0 0
CN= AN—I (.) N DN= AN—I —i) .
-2 0
0 o -1 2 0 0 -1 0 2
(3.15)
The corresponding non-zero integers (d;) = (dy,...,dy) are given by
type Ay (d)=(1,1,...,1), type By (d)=(2,...,2,1).
type Cy  (d)=(1,...,1,2), type Dy (d)=(1L1,...,1) (3.16)
Theorem 3.2. There exist algebra homomorphisms defined by the following formulae:
(A) 7'[‘} : Uq(AN— 1) - J%qt (N):
ei""/’i‘ﬁh o fiev 1‘/’T ki—(@,055) 1<iSN-1), (3.17)
(B) :Uy(By) > o p(N),
eiHll’ill/g+1a fi'_”pi+1'l’i’ kiboo, (1SiSN-1),
ex— Yy, Nl 2 kyr—qoy. (3.18)
© ¢ U (Cy)—> A4 (N),
eyl g, fi'—’WHl‘//;f: kimo; o, (1SiSN-1),
1 2 2 -1, -
—_—— , k Loy 2. 3.19
eN""qz P N S Z+q R W% ky—q oy (3.19
(D) nD: q(DN)_)'ﬂq (N)a
eyl fioVia vl kimw0y (1LiSN-1),
en—Un_1Un, Sy VWA -1, kyqoy - oy (3:20)

Proof. This is an immediate consequence of the defining relations of the algebras
«/F and the above lemma. Here we give the proof only for 7. Define elements
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&, fik; of o . by the right-hand sides of the arrows of the formula (3.17). It suffices
to show that these elements satisfy the relations (1.1)~(1.5) for X = 4y _;. The
relations (1.1), (1.2) and (1.3) for i = j directly follow from (2.1), (2.2) and (3.7). For
i # j, (1.3) easily follows from (2.3) and (2.4). If |i — j| = 2, then (1.4) follows easily
from (2.3), (2.4). Suppose j =i+ 1. Then the right-hand side of (1.4) equals

€88y, —(q°+q %8818+ 8,188 =8/(8:8,,, — 78, ,&)
+q7 @81 — 4781188, (3.21)
By (3.10), we get
881 — 818 = — ol (Y, (3:22)
Substituting this to the right-hand side of (3.21), and using (2.2), (2.3) and (2.4), the

left-hand side of (3.21) proves to vanish, that is, the formula (1.4) holds for j =i+ 1.
The case for j=1i—1 is similar. []

Now we get an action pj¥ of the quantum enveloping algebra U ,(X) on V* through
the homomorphism 7§ of this theorem.

Definition. For X = Ay_y, By, Dy, we call px the spinor representation U, (X) on
V*.For X = Ay_,,Cy, we call px the oscillator representation of U,(X) on V.

4. Structure of the Spinor and the Oscillator Representations

4.1 Generic Case. Now we proceed to study the spinor and the oscillator
representations. It is easy to see that ¥ * has the following direct sum decomposition
as a U, (Ay—-,)-module:

VE=QVE VE= @ Cx(m). @.1)
r=0

|mj=r
Here for m = (m;)eZ% o, we set [m| = Z m;. Note that V," =0 for » > N. Similarly,

as a U,(Cy)-(respectively U, (Dy)-)module, V'~ (respectively V*)is decomposed as
follows:

VE= Vg/en@ Vciida Vien = <——BO Vzir, V(;idd = C—_BO V%—r+ 1- (42)

We will first consider the case where the parameter g is not a root of unity. The
following theorem follows from standard arguments (see e.g. [L1,R]).

Theorem 4.1. Let q not be a root of unity. Then we have,

(A) The Uy (Ay_,)-module V. (0 <r < N) (respectively V; (reZy,)) is irreducible
with highest weight vector x(ey_,.+ -~ +ey) (respectively x(rey)) of weight
(@° ")y <isn-1 (respectively (1,...,1,9")).

(B) The U ,(By)-module V* is irreducible with highest weight vector x(0) of weight
1,...,1,9).

(C) The U, (Cy)-module V., (respectively Vo44) is irreducible with highest weight
vector x(0) (respectively x(ey)) of weight (1,...,1,q7 ") (respectively (1,...,1,4,93)).
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(D) The U (Dy)-module V., (respectively V 5,) is irreducible with highest weight
vector x(0) (respectively x(ey)) of weight (1,...,1,q) (respectively (1,...,1,q, 1)).
Now consider the representation ¥'* for a root g of unity.

Theorem 4.2. The representations V" of U (Ay_,) (respectively V., and Vi, of

U,(Dy), V" of Uy(By)) are irreducible for any q (q* # 1 for X = Ay_, and Dy;q® # 1
for X = By).

Proof. Since the matrix coefficients of the representation of y; and ¥! do not
depend on the parameter g, those of the Chevalley generators e;’s and f;’s also do
not depend on g. It is easy to check that the Lie subalgebra of End V' * generated
by e;’s and f}’s is isomorphic to sI(N,C), so(2N + 1) or so(2N). Hence the result
follows from the original theory of spinor representations. []

4.2 Degenerate Case. Let q* be a primitive L™ root of 1. For reZ , and peZ¥,,
we define a sub Uy(Ay-,)-module V  of VS to be the image of V,
by the surjection V™ —» V. It is easy to see that ¥, #0 if and only if
Lip|sr=Llp|+(L—N.For0=sr=(L—1)N, we set K, =V..

Theorem 4.3. (1) The U, (Ay_,)-module V, is irreducible and generated by the
vector v, = x,(tey s+ (L— 1)(ey_s4+1 + -+ + ey)), where integers s and t are defined
byr=(L—-1)s+t,0=t<L—-1.

(2) The algebra automorphism ej—q* Pie,, fi—q? P+1f,, kp—oq @+ "Pk. of

U,(Ay-,) carries V, to the module isomorphic to K,_ .

Proof. Part (2) follows easily from (2.14). Hence it is sufficient to show (1) for p=0.

Letu= Z, a,Xxo(n) be a non-zero element of a sub-module of K, and let m = (m;)
in]=r

be the maximum element of the set {n|a, # 0} with respect to the lexicographic
ordering < of Z¥,. We will show that there exists an element E of Im 7 such that
CUO,r (n = m)

0 (m<m,|n|=r)

Ex,(n) = { 43)

for some C #0. Using (3.10), we see that the following elements belong to the
image of 7 :
€;j:= wi2+1wi2+2"‘wf~1lpi¢;,

eji::wi2+1wi2+2”'w12—1¢j¢:'r’ (I=i<j=N) (4.4)

Set i(m):=min {i|m; #0} and j(m):=max {jim;#L—1}. Then we see that
i(m) <j(m) + 1 and that i(m) = j(m) if and only if m = tey_;+ (L — 1)(ey_g+ 1+ -+
ey). If i(m) < j(m), then we set p(m) = m — e, + €. Clearly we have
i(m) < i(p(m)), j(p(m)) < j(m),
ez(m)j(m)xl)(m) = cxo(p(m)), ej(m)i(m)xﬂ(p(m)) = C,xo(m) 4.5)

for some ¢, ¢’ # 0. It is easy to see that we can determine sequences m =mgy, my,...,
m,e{0,...,L—1}",io,...,i,, jo,-.-»j,€{1,..., N} uniquely by the following condi-
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tions:
m,, =p(m,), i,=im,), j,=jm,), io<jo, i1 <jise-osbyo1<Uu-1> uZJp
(4.6)
Then we have x,(m,) = v,, and
Exy(m) = Cv,,, Fuv,, = C'xy(m),
E=e , " €ij> F=ejie ., 4.7)

for some C, C’' # 0. Moreover, since card {v|1 Sv< i, =k} =mfor ISk N —s
andcard {v|1 v p,j,=k} =L—1—mforN —s+1=<k < N,wehave Ex,(n)=0
for any element n < m such that |n| =r. Thus we get v,,€ W. On the other hand, by
(4.7), we get U, (Ay-1)vy, = K, and the theorem is proved. []

Proposition 4.4. (1) The algebra automorphism e;—q*=2e;, fi—>q* *2f,, ki—k;
carries the dual module (K,)* to the module isomorphic to K _ )y,
(2) The dimensions of the module K, is given by

. N N\ /N+r—1—Lk
d1mK,=k;)(—l)"<k>'< N1 ) @.8)

Proof. Part (1) follows from direct computation. To prove part (2), we introduce
symmetric functions h, and h- by

00

N
hzy, .zt =[] A+ zg + - + ()Y,
0 i=1

) N
Z h,(Zl,...,ZN)tr= H(l +Zit+(Zil’)2+"'). (4.9)
r=0 i=1
The monomial z7--- zj™ occurs in hf with coefficient 1 if m = (m,)e{0,...,L — 1}¥
and |m| = r, and does not occur if otherwise. Hence it suffices to calculate hX(1, ..., 1).
Let (¢;> (1 i< N) be a cyclic group of order L with a generator c¢;. Then, in
Cl<¢y) x - x {ey>1®C[[t]], we have

£ N
Y by, =Tl M+t + 4+ () "L+ A+ 2L+
r=0 i=1

=(1—=t5""Y hicq,...,cpt" (4.10)
r=0
Using this, we get
L & k N
h,(cl,...,cN)=kZO(—— 1) < h >h,_Lk(c1,...,cN). 4.11)

Since h,(1,...,1)=dim(V,) =<N +:_— 1), we get the desired result. []

Next we consider the action of U,(Cy) on V. We define submodules V..,
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V podd by
Vp_even EEB P 2r’ Vp_odd C—D Vp 2r+1° (4 1 2)

Similarly as Proposition 2.1, we get,

Theorem 4.5. (1) The U, (Cy)-modules V.., and V., are irreducible and gene-
rated by the vectors x,(0) and x(ey) respectively.
(2) The following algebra automorphzsm carries V.

and V44 to the modules
isomorphic to V..., and V4 respectively.

p.even

0,even

e,-n—»q”‘”"ei, fi'_)qZLmei’ kil___)qL(le-—p,)ki (1§1<N),
ey—ey, Sy—=fns ky— g PVky. (4.13)

(3) If L is even then dimV, . =dimV, ,=L"2. If L is odd then dimV, =
(LY +1)/2 and dim Vs = (L —1)/2.

5. Unitarity of the Representations

In this section, we will discuss the unitarizability of the representations constructed
in the previous sections. Throughout this section, we deal only the case the
parameter g belongs to the set R":= R\{+ 1} or the set T":= {zeC||z| =1, z # +1,

+./-1}

5.1. =-Algebras. First we prepare some terminology. Let A be an algebra over the
complex field C. We say that 4 is a *-algebra if there exists an anti-linear,
anti-algebra automorphism #*:ar>a* (acA) such that (a*)* =a for all aeA. The
map = is called the *-operation of A. If an algebra map f from A to another
x-algebra preserves the x-operation, then f is called a x-homomorphism. A
representation W of A is called a *-representation if there exists a Hermitian
form (|) such that (au|v) = (u|(a*)v) for every u, ve W and aeA If, in addition, (|)
is positive definite, then W is called a unitary representation of the %-algebra A.

5.2. Ax-Operation on o/ . Now we define a *-operation on .o/ +(N) by the following
formulae:

o;  (q€R)

ot (qeTy G

W)*=yl, W)=y, (0)*= {
We can determine unitarizability of the representations of <7 constructed in the
previous sections.

Proposition 5.1. The module V* has a unique Hermitian form (|) such that
(x(0)|x(0)) =1 and (V*,(])) is a unitary representation of o] for all qeR’ or T".
Explicitly the form (]) is given by

(x(m)|x(n)) =6, (m,ne{0,1}"). (5.2)

Proof. Tt is easy to verify that the module V'* is a unitary representation with
y y rep
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respect to the Hermitian form (5.2). The uniqueness of the form follows from
V= (N)x(0). O

Proposition 5.2. The module V~ has a unique Hermitian form (|) such that
(x(0)|x(0)) = 1 and (V~,(1)) is a *-representation of o/, . Explicitly the form (|) is
given by

(x(m) [x(0) = 8,0 [m, T2 [mo ] Lo+ [myllys  (m,neZY). (53)
The representation (V ~,(|)) is unitary for qe®R’, but is not unitary for qeT'.

Proof. The positivity of (5.3) for geR’ follows from the fact [m],. > 0 for meZ. .
Let g belong to the set T'. We first note that the form is positive definite if and

only if [m],. >0 for all m > 0. Let / be the number such that ¢* = exp ./ — 1% and

0 <h < 2n Then we have

(], = sin(mh) _ sin(m(2n — h))
"e= TG0k T sinQr—h)

(5.4)

Hence it suffices to discuss the case 0 <% < 7. Since 2 < 27/A, there exist a positive
integer m such that m < 2n/h <m+ 1 < 2m. Then [m];. <0, hence the form is not
positive definite. [

Propesition 5.3. Suppose q* is a primitive L' root of unity. Then there is a -unique
Hermitian form (|) on V (peZ%,) such that (x,0)x,(0)) =1 and (V,(])) is
a x-representation of o/, . Explicitly the form (|) is given by

(x,(m)[x,(n)) = 5m,nq2LZi”‘“’i[m1]!qz [my]! - [my1lpe, (mymne{0,...,L— 1}Y).
(5.5)

The representation (V. ,(])) is wunitary if and only if pe2Z%, and
g= texp(+/—1(n/2L)).

Proof. First we note that the form (]) is positive definite if and only if g227 =0
(1<i<N) and [m],.>0 for me{0,...,L—1}. Let k be the integer such that
g*=exp(/—1lkn/Lyand 1 £k <L, L+1<k<2L.Ifk=1,then,forl1<m<L-—1,
we have 0 < kmn/L < n. Hence [m],» >0 and the form is positive definite if and
only if pe2Z%,. Suppose 2 <k <L — 1. Since L/k > 1, there exists an integer m
such that 1 < L/k <m <2L/k < L. Then [m],. <0, hence the form is not positive
definite. The case L +1 < k < 2L is similar. []

5.3. Unitary Representations of Enveloping Algebras. Now fix a real number
q # +1. We will define *-operations on quantum enveloping algebras by

e)*=fi, (f)*=e, (k)*=k (5.6)
for U (Ay-1), U By) and U,(Dy), and
() =(=1%~f, (f)*=(=D""e, (k)*=k (5.7)

for U,(Cy). We denote the corresponding *-algebras by U, (su(N + 1)), U (so(2N + 1)),
U, (s0(2N)) and U (sp(N,R)) respectively. Note that the map * is a coalgebra
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automorphism, that is, if A(a)=) b;®c; for acU,(X) then A(a*)=) b}@c¥.
Hence the tensor product of two unitary representations is also unitary.

Proposition 5.4. Let the parameter q belong to R'. Then, (1) The maps n¥, ng , nc
and my are x-homomorphisms from U (su(N)), U, (so(2N + 1)), U, (sp(N,R)) and
U,(s0(2N)) to o F(N), o 5(N), o, (N) and o/ (N) respectively.

(2) The module V* is unitary as a representation of U (su(N)), U, (so(2N + 1)) or
U,(s0(2N)). The module V™ is unitary as a representation of U (su(N)) or
U, (sp(N, R)).

Proof. Part (1) is trivial. Part (2) immediately follows from Propositions 5.1 and
52. O

Note. Let the parameter g belong to T'. Again there exist *-operations on quantum
enveloping algebras such that the maps nf, nj, nc and =}, are -algebra
homomorphisms. These are defined by

(e)*=fi, (f)*=e, (k)*=k ! (5.8)
for X =A4y_,, By, Dy, and
@)*=(=17"f,, (f)*=(=1""e, (k)*=k ' (59)

for X = Cy. By Propositions 5.1 and 5.3, the module V* for ge T’ and the module

Vo for g= texp(+ \/—:Tn/ZL) are unitary representations of the quantum
enveloping algebras with respect to these -operations. Unfortunately these
x-operations are not coalgebra automorphisms but anti-coalgebra automorphisms,
that is, if A(a) =) b;@c; for aeU(X), then A(a*) =Y c* @ b¥.

6. Spinor and Oscillator Representations of U, (A ;)
6.1. o (o) and U, (A,). In this section, we construct representations of the

quantum enveloping algebra corresponding to the affine Cartan matrix A{) , which
is given as follows:

-1

0

2 =2 Ay :
A<11>=<_2 2), AL = N-1 o | vz3)

—1

-1 0 0 —1 2

6.1)

Let </} (o0) be the algebra with generators {1,y Y], w{"'|ieZ} satisfying the
defining relations (2:1)—(2-5). Let ¥V *(o0) be the linear span of the set

I = {m = (m),;;|m;€{0,1}(ieZ), m; = 0 for |i| » 0},
I = {m = (m),;,lmeZ 5 o(ieZ), m; =0 for |i| » 0}. 6.2)
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We define the action of &/ (o0) on V*(0) by the following; for any mel*,

_ Ja " x(m) (i<0)

w;x(m) = {q,,,,_ tx(m) (i>0) (6.3)
_{(—1mx(m—e) (i<0)

ixtm) = {(— DE<mxm+e) (i20)

(—DZ<Mx(m+e) (i<0)

T —
= ey (1o
for o/ (00) and

_ Ja™x(m) (i<0)
wiX(m) = {q—mi— 1x(m) (i > 0)’ (6.4)
V. x(m) = {[mi]qzx(m —e¢) (i<0) Jx(m) = {x(m +e) (i<0)

x(m + ¢;) (iz0y —[m]px(m—e) (i20)

for o/ (00). Here we set e; = (0,;),., and x(n) = 0 for n¢l*. Let U,(A,) be the Hopf
algebra with generators 1, e;, f,,k*! (ieZ) satisfying the defining relations (1.1)—
(1.8) with respect to the infinite rank Cartan matrix 4 ,:

2 i=j
Ap =1Ax)jlcr (A ={ -1 li—jl=1 (6.5)
0 |i—jl=2

Slmﬂarly to Theorem 3.2, we introduce the algebra homomorphisms 73 ,,:U (A4 ,)—
o (00) defined by

ei'_’%—x‘//:'ra fz"‘”ﬁlpz 1 ki (o;- 160_1)+1 (ie2). (6.6)

6.2. Construction of the Representations. For N = 2, introduce the operators on
VE(o0):

E - nA oo(e )( ]._I Ai (ki—Nrki_+lNr)>’ (IGZ),

]IV

T TCA OO(fl < l:[ O()(kl Nr 1+1Nr)>’ (lEZ),

%i:=nni,w(ki+m), o= T Eirne fi=Y Fions OSiSN-1). (67)

seZ sel

N

These operators prove to be well defined. In fact, for each mel*, there exists an
integer M such that

72:;ioo(ki)x(ln) = x(m), 7ti,on:)(ei)x(l‘n) = 09 ni,oo(fi)x(m) = 0 (68)
for |i| = M.

Theorem 6.1. There exists a representation of U (A{L,) on V *(c0) defined by e;—¢,
fi—f; and kp—k, (0<i< N —1).
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Proof. Here we give the proof only for the case N = 3. First we prove the following
identities in End V *(c0):

¢°E; i—j=0(modN)
Eki ={

bentd

g 'E; i—j=t1(modN),
E; otherwise

;  i—j=11(modN), 6.9)

{q‘sz i—j= (modN)
otherwise

O _
EiFj_ FjEi =ﬁ<< n ﬁ,w(k?wr >< l_lonf,oo(kiﬁm))

q9 —q r<o
- < ]___L nf,oo(kiz-i—Nr))( ];[O ni,oo(ki_+2Nr)>>, (610)
[Equ]:()a [Fqu]=O (l —jﬁ'—éo)il (mOdN))’ (611)
E2E;— (> + ¢ )EEE+EE=0 (i—j= +1(modN)), 6.12)
F2F,—(q* + q )F,F,F,+ F,F?=0 (i—j= +1 (mod N)). (6.13)

Fix an index mel* and take an integer R such that
75 oo (ki ye)X(m) = 3 o (K ) x(m) = X(m),
E; yx(m)= Ej+er(m) = F;; yyx(m) = Fj+er(m) =0,
(75 oo (ks o) Ej1 = [04 oo (ki e Fi1 = (75 o0 (K 3)s Ed
= [7% wk;sne) F1=0, (6.14)

for any integer r satisfying |r| 2 R. Then,

- - . .
(EF;— FE)x(m)= T[] ¢ (Aw)'dN"’HAw)'+N"’7fjf,oo(eifj_fjei)sz(m)

1sr=R

1
“F—q2 0T s oo(k? — ki ?)K?x(m)

5:‘1’ + 2 + -
= W((L{O nA,oo(ki+Nr)><rl:IO “A,oo(kz+2m)>
- ( n nAi,oo(kiz+ Nr )( 1:[0 ni,oo(kilz}\lr)))x(m)a (615)

r<o0

where K= [] 7 ,(ki—nkii'y,). This proves (6.10). Next, we show the relation

1£r=R
(6.12) for two typical case; j—iel + NZ.,and j=i+ 1. If j—iel + NZ.,, then,
for u = x(m), E;x(m),

q 'EEju=mn} ,(ee)K*u=n3 ,(eje)K*u=qE;Eu. (6.16)



Q-Analogues of Clifford and Weyl Algebras 143

Hence,
(E?E;—(¢* + 4~ DEEE; + E;E})x(m) = E/(E; E; — ¢°E; E;)x(m)
+q AEE;— ¢°E;E)Ex(m)=0.  (6.17)
Ifj=i+1, then
E,E,E;x(m) =7} ,(e;e;e;)K>x(m)
E.E;E;x(m) =1} ,(e;e;e,)K>x(m), E;E.E;x(m)=n} ,(e;e;e)K3x(m).  (6.18)

Hence (6.12) follows from the relation (1.4) for the algebra U, (4,). The remaigin~g
parts of (6.9)—(6.13) are similarly obtained. Now we show the operators &, f;, k;
satisfy the relation (1.3). Let S= R be an integer such that [E, v, F;.y]=
[EisniFjins] =0 for [t| <R and |s| = S. Then

[e;, 7j]x(m) = Z LE; s nss Fj+Nt]x(m)

-5<s,t<8

0y _
== > ‘-‘2‘<< H ﬂf,oo(ki2+Ns+Nr))< H ”;?L,co(ki+21vs+1vr}>
q —q r<0 r>0
- ( Uo ”f,w(kiz—zvs +Nr)>( Uo nf,w(k;~2Ns+Nr)>>x(m)

— 50'

qz —q 2
as required. The other relations of (1.1)—(1.5) follow clearly from (6.9)—(6.13). Thus
we get the theorem. [J

(k? — k7 %)x(m) (6.19)

Note. In [FJ] and [B], the vertex operator representations of quantum affine
algebras are constructed. The relation between the vertex and the spinor representa-
tions of quantum affine algebras will be studied elsewhere.
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Note added in proof. After this paper has been submitted, Prof. Mitsuhiro Takeuchi of Tsukuba
University Pointed out to the author that there exists an algebra isomorphism A from &7, (N) to the
4N-fold direct product of the usual Clifford algebra C(N):={z|ziz;+ zjz;, = z{z} + z}z} =
2,20+ 22, —6,=0). Let I,={%1, i\/— 1}. For (=({,)ely, we define an algebra map
ag: sl § (N)>C(N) by afyp) =Lz, o)) =z, a(w)={zizt+ g7 '21z). Then the map A is given
by A(u) = (x(u)) (e, (N)). The author is grateful to Prof. M. Takeuchi for this comment.





