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Abstract. We introduce ̂ -analogues of Clifford and Weyl algebras. Using these,
we construct spinor and oscillator representations of quantum enveloping
algebras of type AN^1,BN,CN,DN and ^ - I Also w e discuss the irreducibility
and the unitarity of these representations.

1. Introduction

Clifford and Weyl algebras are two of the most important algebraic objects in
theoretical physics. These algebras represent creation and annihilation of particles
satisfying Fermi or Bose statistics. Moreover, they have deep connections with
many other important algebras, such as Kac-Moody algebras and Virasoro
algebras.

Recently, the progress of the quantum inverse scattering method has led to
new algebraic structures known as quantum groups. Jimbo [Jl] and Drinfeld [D]
defined a one-parameter family of Hopf algebras which can be thought of as a
^-analogue or quantum deformation of the enveloping algebra of a Kac-Moody
algebra (see also [KRS]).

One of the purposes of this paper is to show that the Clifford and Weyl algebras
have deformation which is compatible with the deformation of Kac-Moody
algebras mentioned above. More precisely, we define ^-analogues s$^ of these
algebras and construct algebra homomorphisms from quantum enveloping
algebras of type AN,BN9CN,DN and Aff to the algebras stff. Since «s/* acts on
the exterior or polynomial algebra V± as usual, we get spinor and oscillator
representations of quantum enveloping algebras.

In Sect. 2, we recall the definition of quantum enveloping algebras and its
representation theory briefly. In Sect. 3, we define ^-analogues stf of Clifford and
Weyl algebras and study representations V± which are irreducible if q is not a
root of unity. When q is a root of unity, the representation V+ of si*
remains irreducible, but the representation V~ of si~ has countably irreducible
components. In Sects. 3 and 4, we construct and study the spinor and oscillator
representations of quantum enveloping algebras of type AN-ί9BN, CN and DN. In
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Sect. 5, the unitarizability of these representations are discussed. In Sect. 6, we
construct the spinor and the oscillator representations of quantum enveloping
algebras corresponding to the infinite Cartan matrix A^ and the afίine Cartan
matrix

1. Q-Analogues of the Enveloping Algebras

1.1 The Hopf Algebra Uq(X). Let X = [flj/Ii sijsN be a symmetrizable generalized
Cartan matrix and let df(l ̂  i ̂  ή) be the non-zero integers such that d^ = djU^
and the greatest common divisor of d?s is 1. Let q Φ 0 be a complex number such
that q4dι φ 1 for any i. The quantum enveloping algebra Uq(X) corresponding to X
and the parameter q is a Hopf algebra with unit 1 and generators e^j^kf1

(l^i^N) satisfying the following relations:

fcίfcΓ1 = fcΓ1fci=l. Kkj = kjkh (1.1)

kiβjkΓ^&ej, kjjkr^qr^fj, (1.2)

eifj-fjei = δij'^
1^, (1.3)

(1.4)
n Jqf

fΓaij-nfjfl = o (ίΦA (1.5)

ε(e ) z= 0, ε(fι) = 0, ε(fcf) = 1, (1.7)

S(et)=-qΓ2ei9 S{fi)=-qffi9 S(ki) = K\ (1.8)

where Δ, ε and S denote the coproduct, counίt and antipode of Uq(X) respectively,

q. = qd> a n d is the number defined by
lnJq

m

[m]!, = [m] 4 [m-l] , . . . [2] ,[ l ] , , [« ] , = g g . • (1.9)
q — q

We call elements {ei9fh fc£| 1 ̂  i ̂  N} the Chevalley generators of l/β(X). A number
of the form [m]^ is often called a ̂ -integer.

ί.2 Representations ofUq(X). For ί/q(X)-modules M and N, we can define actions
of Uq(X) on the tensor product M®N and linear dual space M* as follows:

(aeUq(X), ueM, veN), (1.10)

(1.11)
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Let the parameter q not be a root of unity. For a Uq(X)-modulQ M and
z = (zί9...9zN)e(C*)N

9 we set Mz = {ueM\ktv = ztv}. A vector veM is said to be
primitive if 0^veMz for some ze(Cx)N and etv = 0 for all ie{l,...,iV}. We say
that M is a highest weight module with highest weight z, if M is generated by a
primitive vector veMz. For each ze(C x )N, there exists an irreducible highest weight
module with highest weight z and it is unique up to isomorphism (see [LI] and [R]).

2. Q-Analogues of Clifford and Weyl Algebras

2.1 The Algebras jrff. Let AT be a positive integer and q be a non-zero complex
number such that q*φ\. We define algebras sff =stff(N) with generators
φi9 φ\9 ωh ωfι (1 ̂  i ̂  N) by the following defining relations:

— 1 - 1 -j /r\ Λ \

(ύiφjω^1 = q±δijφp ω^ωf1 = qτδiJφ), (2.2)

Note that the relations (2.5) are equivalent to the following relations:

—, φlφi^ T—^ ~2~ (2.6)

We call the algebras stf* and sί~ the q-analogue of Clifford and VΓey/ algebras
(or q-Clifford and q-Weyl algebras) respectively.

As well as the original case, the algebra J / * (respectively J / ~ ) have a
natural representation on exterior (respectively polynomial) algebra in half of the
generators. Let V+ (respectively V") be the exterior (respectively polynomial)
algebra generated by elements x{ (1 ^i^N). For integers m = (m1,...,m i V)eZ i V,
we define an element x(m) of V± as follows:

mN ίlϊlGίO 1)^)
/ i ' x ( f ° Γ S&

(otherwise)

0 (otherwise)

Clearly the set {x(m)|me{0,1}N} (respectively {x(m)|mGZ|0}) is a basis of the
vector space V±. Then the action of the algebra s/* on V± is given by

ω ^ m ) ) = q~mix(m\ φiixim)) = (— l) m i + "'"+mi~1x(m — ef),

for sί+ and

= qmix(m% φi{x(m)) = [mj^xίm - ef),

= x(m + e,), (m = (m 1 ? . . . , m N )6Z | 0 ) , (2.10)
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for si~. Here e/s are elements of Z> 0 defined by e± = (1,0,...,0),...,eN = (0,...,0,1).

Proposition 2.1. (1) The representation V+ of srfq{N) is irreducible. (2) If q is not
a root of unity, then V~ is an irreducible representation of stf~(N).

Proof. Let W be a sub-representation of V~ and u = Yjamx(m) (αmeC) be
m

a non-zero vector of W. Let n = (nf) be the maximum element of the set
|αm ^ 0} with respect to the lexicographic ordering of Z | o . Then we have

Since all coefficients [n\q2 do not vanish, the vector x(0) belongs to W. Now part
(2) follows from V =s/~ (JV)x(0). The proof of part (1) is similar. Q

2.2 The Case q is a Root of 1. We next consider the case q4 is a primitive Lth root
of unity. In this case, the representation V~ is no longer irreducible, since the
structure constants [rή]q2 may vanish. Here we noted some formulae for ^-integers:

[ L - 1 -m\2 = ( - q2L)\m+ \\2 (m,peZ), (2.12)

For each p = (/7 l9...,pN)GZ|0, introduce a sub J/~-module F~?=(xξ1xf2

of V~, then F~ is a submodule of FpT if p — p ' e Z ζ o Moreover define its

quotient V~ by

i = l

Denote by xp(m) the image of the vector x(m + Lp) in F p . Then {xp(m)|me

{0,. . . ,L- 1}N} is a basis of V~ and the sf~-action on V~ is given by

ωt(xf(m)) = <r+L"xψ(m), ψAx^m)) = q^ίm^x^m - et),

φ](xp(m)) = x p(m + e£), (10 = ̂ , . . . , m N )6{0,. . . , L - 1}*). (2.14)

Proposition 2.2. Suppose q* is a primitive L t h root of unity. Then for p = (p1,..., pN)e
^ o > (1) t n e ^q (N)-module V~ is irreducible. (2) The algebra automorphism
Ψi^<l2LpiΨhΨl^φ], (oi\-^qLpιωi of srf~ carries V~ to the module isomorphic
to V~.

Proof. Note qLpi belongs to { ± 1 , ± Λ / — 1 } , then part (2) is an immediate
consequence of the formula (2.14). •

Remark. In [M], Morikawa studies another ^-analogue WN(q,R) of the Weyl
algebra over a commutative ring R. The algebra WN(q9R) is generated by ahάι
(l^i^N) with defining relations

aiaj - ajat = άfa - άfa = a^ - άfr = 0 (i Φ j \

άM-qaiά^l. (2.15)

There exists an algebra homomorphism ι:WN(q4,C)-^>jtf~(N) defined by i(at) =

l f
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3. Constructions of Representations of Quantum Enveloping Algebras

3.1 Identities in ^

Lemma 3.1. Let i, j , k be distinct elements of {1,..., N} and let φt (respectively φk)
be either φ{ or ψ] (respectively ψk or φl]). Then,

1. the following identities hold in stf*\

[^^t,^ί]=^-rϊ{(ωlωί-
1)2-(ωίω71)-2}, (3.1)

q — q

]n ^ 2 Y2}, (3.2)

^ ^ τ , (3.3)

q±2(φiφ])(φjφk) - (Φjφk){φiφ]) = ωf2φtΨk, (3.4)

q±2(φίφ])φj - ΦMΦ]) = ωf 2 φ h (3.5)

q± 2 Φ)(Φjφk) - (ΦjφM) = coj 2 φk. (3.6)

2. The following identities hold in s$~\

ίΦiΦUjΦti= 2

 1 . . { (^^/-(ωΓ 1 ^-) ' 2 } , (3.7)
q —q

h ^ j ) - 2 } , (3.8)

}, (3.9)
2

q — q

]2})= -ω]2

ΨiΨk, (3.10)

q^WiΦ'iKΦj)2 - (ΦjfiΨiΦ)) = - (q2 + q'2)ωf2φjφh (3.11)

q^iΦtfiΦjφJ-iΦjφJiφ))2 =-(q2 + q-2)(q'ιωjy2φ]φk. (3.12)

Proof. Using (2.3) and (2.4), we get,

ίφiφ},ΦjΦU = (ΦiΦί)(Φ}Φj)-(ΦlΦi)(ΦjΦ})- (3.13)

Hence we obtain from (2.6) that

U Ώ { { { ) 2 ( Γ 2)K? - ω/2)

(3.14)
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This proves (3.1) and (3.7). The proof of other identities is quite easy and will be
omitted. •

3.2 Construction of the Representations. Now we will construct representations of
quantum enveloping algebras corresponding to Cartan matrices of classical type.
Explicitly these matrices are given as follows:

AN =

( 2 - 1 0

- 1 2

0

V 0

CN =

o\

0

2 -1

-1 2/

0\

0
-2

2/

Vo 0 - 2

0\

0

-1

2/

Vo ••• o - i o

o\

0

-1

0

2)

(3.15)

The corresponding non-zero integers (</;) = (d1,...,dN) are given by

type A* (dί) = ( l , l , . . . , l ) , type BN {d,) = (2,.. . ,2,1).

t y p e C N (di) = ( l , . . . , l , 2 ) , type DN (rf.) = ( 1 , 1 , . . . , 1). (3.16)

Theorem 3.2. There exist algebra homomorphisms defined by the following formulae:

kN\-+qωN. (3.18)

(C)

- 1
(3.19)

(D)

(3.20)

Proof. This is an immediate consequence of the defining relations of the algebras
.a/* and the above lemma. Here we give the proof only for π^. Define elements
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$h fh K oϊ^/q by the right-hand sides of the arrows of the formula (3.17). It suffices
to show that these elements satisfy the relations (1.1)—(1.5) for X = AN_ί. The
relations (1.1), (1.2) and (1.3) for i = j directly follow from (2.1), (2.2) and (3.7). For
ί Φ j , (1.3) easily follows from (2.3) and (2.4). If \i- j \ ^ 2, then (1.4) follows easily
from (2.3), (2.4). Suppose 7 = 1 + 1. Then the right-hand side of (1.4) equals

+ 4 - 2 ( e ^ + 1 - 4 2 έ ί + 1 β ^ . (3.21)

By (3.10), we get

eiei+1-q2ei+1ei=-q2ωf+ιφiφl+2. (3.22)

Substituting this to the right-hand side of (3.21), and using (2.2), (2.3) and (2.4), the
left-hand side of (3.21) proves to vanish, that is, the formula (1.4) holds for 7 = 1 + 1 .
The case for 7 = i — 1 is similar. •

Now we get an action p | of the quantum enveloping algebra Uq(X) o n F 1 through
the homomorphism π | of this theorem.

Definition. For X = AN_l9BN,DN9 we call pχ~ the spinor representation Uq(X) on
V+. For X = AN-l9 CN, we call pχ~ the oscillator representation of Uq(X) on V~.

4. Structure of the Spinor and the Oscillator Representations

4.1 Generic Case. Now we proceed to study the spinor and the oscillator
representations. It is easy to see that V± has the following direct sum decomposition
as a Uq(AN_ ^-module:

00

Here for m = (m;)eZ| 0 , we set |m| = £ m{. Note that F r

+ = 0 for r > N. Similarly,
ί

as a l/^CtfHrespectively Uq(DN)~)module, V~ (respectively V+) is decomposed as
follows:

00 CO

r=0 r=0

We will first consider the case where the parameter q is not a root of unity. The
following theorem follows from standard arguments (see e.g. [L1,R]).

Theorem 4.1. Let q not be a root of unity. Then we have,

(A) The Uq(AN^^-module V+ (O^r^N) (respectively V~ (reZ^ 0 )) is irreducible
with highest weight vector x(eN-r+1-i he^) (respectively x(reN)) of weight
(qδN~r>i)ι^N-ι (respectively (1 , . . . , l,<f)).
(B) The Uq(BN)-module V+ is irreducible with highest weight vector x(0) of weight
(1 , . . . , l,q).
(C) The Uq(CN)-module Fe~e n (respectively V~dd) is irreducible with highest weight
vector x(0) (respectively x(eN)) of weight (1 , . . . , 1, q~~x) (respectively ( !,. . ., !, q, q~ 3)).
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(D) The Uq(DN)-module Fe+e n (respectively V*dd) is irreducible with highest weight
vector x(0) (respectively x(eN)) of weight (1 , . . . , 1, q) (respectively (1 , . . . , 1, q, 1)).

Now consider the representation V+ for a root q of unity.

Theorem 4.2. The representations Vf ofUq(AN_1) (respectively V^ven and V+dd of
Vq(DN\ V+ ofUq(BN)) are irreducible for any q(q4 φ\ for X = AN.X and DN; q8 Φ 1
forX = BN).

Proof Since the matrix coefficients of the representation of φi and ψ] do not
depend on the parameter q, those of the Chevalley generators e^s and //s also do
not depend on q. It is easy to check that the Lie subalgebra of End V+ generated
by e?s and /f's is isomorphic to sl(JV, C), so(2JV + 1) or so(2JV). Hence the result
follows from the original theory of spinor representations. •

4.2 Degenerate Case. Let q4 be a primitive Lth root of 1. For r e Z ^ 0 and
we define a sub U q(AN - J-modυle V~r of V~ to be the image of V~
by the surjection F ~ - » F ~ . It is easy to see that V~rΦθ if and only if

-l)ΛΓ. For 0 ^ r ^ ( L - 1)ΛΓ, we set K r = F0;r.

Theorem 4.3. (1) The Uq(AN _ ̂ -module V~r is irreducible and generated by the

vector v?r:= xv(teN_s + (L — ^ ( e ^ . ^ ! + •••+ e^)), where integers s and t are defined

b (

(2) The algebra automorphism ei\-+q2Lpiei9 fi^q2Lpι + ίfά k^q^^'^ki of
^q(^N-i) carries V~r to the module isomorphic to Kr_lp].

Proof. Part (2) follows easily from (2.14). Hence it is sufficient to show (1) for p = 0.
Let u= Y an

χo(n) be a non-zero element of a sub-module of Kr and let m = (mf)
| n | = r

be the maximum element of the set {n|αn ^0} with respect to the lexicographic
ordering ^ of Z > 0 . We will show that there exists an element E of Im π^ such that

CV° r

( n < m , | n | =

for some CΦO. Using (3.10), we see that the following elements belong to the
image of π^:

eu:= ωf+1 ωf+ 2 - ω?_ x φt φ],

^,:=ωf+1ω?+2 ω?_1ιAJ ̂ I, (l^i<jSN).

Set ι(m) := min {i | mt φ 0} and j(m):= max {j \ m7- φ L — 1}. Then we see that
ί(m) ̂ 7"(m) + 1 and that i(m) ̂ j(m) if and only if m = ίe N _ s + (L - l)(eN_s+1 H h
ê y). If ι(m) <jf(m), then we set p(m) = m - eI(m) + e ^ . Clearly we have

{MM e ; (m)i(m)*θ(P(m)) = C ^ θ ( m ) ( 4 5 )

for some c, d Φ 0. It is easy to see that we can determine sequences m = m 0 , m1,...,
mμe{0,...,L - 1}*, i0,...,iμ 9 j θ 9 . . . Jμe{l9...,N] uniquely by the following condi-
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tions:

m v + 1 = p ( m v ) , /v = i(mv), jv=j(mv% j o < ; o , ix < Λ , . . . , i μ _ 1 < ; μ - i > h^Jμ

(4.6)

Then we have xo(mk) = vOr and

ExQ(m) = CvQr, FvOr = C'xo(m),

£ = e • •.£?..., F = eui'~ei , (4.7)
ιμ-lJμ-l H J l ' J l ι l -//i-l'μ-l V 7

for some C, C φ 0. Moreover, since card {v\l^v^μjv = k} =mkϊθΐ l^k^N — s
and card {v|l ̂  y^μ,jy = k) = L — 1— mkίovN — 5 + 1 ̂  fc g iV, we have £x o(n) = 0
for any element n < m such that | n | = r. Thus we get vOreW. O n the other hand, by
(4.7), we get Ό^A^^^v^ — Kr and the theorem is proved. •

Proposition 4.4.(1) The algebra automorphism eiv-*q2L~2ei, fi*->q2L + 2fi, k^kt

carries the dual module (Kr)* to the module isomorphic to KiL_1)N^r.
(2) The dimensions of the module Kr is given by

Proof. Part (1) follows from direct computation. To prove part (2), we introduce
symmetric functions hr and h\ by

f hL

r(z,,...,zN)f = ft (1 + V + + feOL"x),
r=0 i=l

)22 hr(zt,...,zN)f = Π ( 1 + ztt + (Zit)
2 + -)• (4-9)

The monomial z™1 z]?N occurs in h^ with coefficient 1 if m = (m^efO,...,L — 1}N

and I m I = r, and does not occur if otherwise. Hence it suffices to calculate h^(l,..., 1).
Let <cf> (1 ̂ i^N) be a cyclic group of order L with a generator ĉ . Then, in

> x ••• x < c N > ] ® C [ [ ί ] ] , we have

r = 0

= (l-tL)~N Σ hϊ{cl9...,cN)f. (4.10)

Using this, we get

-Lfc(ci? ?

cjv) (4.11)

Since hr(l,..., 1) = dim(Vr ) = I I, we get the desired result. •

Next we consider the action of Uq(CN) on V~. We define submodules Kp"even
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V p,even ~ \T7 y

 p,2r> V p,odd ~~ \U V p,2r+l* Γ+ 1 ^ /

Similarly as Proposition 2.1, we get,

Theorem 4.5. (1) The Uq(CN)-modules V~even and V~odd are irreducible and gene-
rated by the vectors xp(0) and xp(eN) respectively.
(2) The following algebra automorphism carries F~e v e n and V~oάd to the modules
isomorphic to K0~even and V^odd respectively.

pNkN. (4.13)

(3) // L is even then dim K~even = dim Kp"odd = LN/2. If L is odd then dim K~even =

(LN + l)/2 and dim F " o d d = (I* - l)/2.

5. Unitarity of the Representations

In this section, we will discuss the unitarizability of the representations constructed
in the previous sections. Throughout this section, we deal only the case the
parameter q belongs to the set U':= U\{± 1} or the set T':= {zeC|\z\ = 1, zΦ ±\,

5.1. *-Algebras. First we prepare some terminology. Let A be an algebra over the
complex field C. We say that A is a *-algebra if there exists an anti-linear,
anti-algebra automorphism *\a\-+a* (aeA) such that (a*)* = a for all aeA. The
map * is called the ^-operation of A. If an algebra map / from A to another
*-algebra preserves the ^-operation, then / is called a *-homomorphism. A
representation W of A is called a ^-representation if there exists a Hermitian
form (I) such that (au|u) = (w|(α*)ι;) for every w, veW and aeA If, in addition, (|)
is positive definite, then W is called a unitary representation of the *-algebra A.

5.2. A ^-Operation on sd^. Now we define a ^-operation on sίf (N) by the following
formulae:

We can determine unitarizability of the representations of srff constructed in the
previous sections.

Proposition 5.1. The module V+ has a unique Hermitian form (|) such that
(x(0)|x(0))= 1 and (K+,(|)) is a unitary representation of sd+ for all qeW or Jf.
Explicitly the form (|) is given by

(x(m)|x(n)) = ^ n ( m , n e { 0 , i n (5.2)

Proof It is easy to verify that the module V+ is a unitary representation with
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respect to the Hermitian form (5.2). The uniqueness of the form follows from
V+ = s/q(N)x(0). •

Proposition 5.2. The module V~ has a unique Hermitian form (|) such that
(x(0)|x(0))= 1 and (F~,(|)) is a ^-representation of srf~. Explicitly the form (|) is
given by

(x(m)|x(n)) = δjimd \q2 [m2] lq2. . [mN] \q2 (m, n e Z | 0 ) . (5.3)

Tftβ representation (V~,(\)) is unitary for qeW, but is not unitary for qeJf.

Proof The positivity of (5.3) for qeW follows from the fact [ni]q2 > 0 for m e Z > 0 .

Let q belong to the set T . We first note that the form is positive definite if and

only if [nί]q2 > 0 for all m > 0. Let ft be the number such that q2 = exp yj—lh and

0 < ft < 2π. Then we have

sin(mft) sin(m(2π —ft))
q2 sin ft sin(2π —ft)

Hence it suffices to discuss the case 0 < ft < π. Since 2 < 2π/ft, there exist a positive
integer m such that m < 2π/ft ^ m + 1 < 2m. Then [m]^2 < 0, hence the form is not
positive definite. Π

Proposition 5.3. Suppose q4 is a primitive Lth root of unity. Then there is a unique
Hermitian form (|) on V~ ( p e Z | 0 ) such that (xp(0)|xp(0))= 1 and (V~9(\)) is
a ^-representation of s$~. Explicitly the form (|) is ,

w j !β2 [m 2 ] ! β2 [mN] ! g 2, (m, ne{0,..., L - 1}*).

(5.5)

Tfte representation (Fp~,(|)) is unitary if and only if P G 2 Z | 0

^ = ± exp (± J^Λ (π/2L)).

Proof. First we note that the form (|) is positive definite if and only if q2Lpi ^ 0
( l ^ i ^ i V ) and [m]q2>0 for me{0,...,L—1}. Let k be the integer such that
q2 = Gxp(^Ίkπ/L)and 1 ̂  k < L,L + 1 ̂  fe < 2L. If fc = 1, then,for 1 ^m^L-1,
we have 0 < kmπ/L < π. Hence [m]^2 > 0 and the form is positive definite if and
only if p e 2 Z | 0 . Suppose 2 ^ / c ^ L — 1. Since L/k> 1, there exists an integer m
such that 1 < L/k ^ m < 2L/k ^ L. Then [nί]q2 < 0, hence the form is not positive
definite. The case L + 1 ̂  k < 2L is similar. •

5J. Unitary Representations of Enveloping Algebras. Now fix a real number
qφ ±\. We will define *-operations on quantum enveloping algebras by

(et)*=fi9 (/()* = βj, (Λi)* = iki (5.6)

for l / ^ - i ) , Uq(BN) and 1/̂ (2)̂ ), and

fe)* = (-l) ό i ' N // 9 (/i)* = (-l) i l>Nei> (feί)* = fcf (5.7)

for Uq(CN). We denote the corresponding *-algebras by t/9(su(JV +1)), Uq(zo(2N +1)),
Uq(so(2N)) and Uq($γ>(N, (R)) respectively. Note that the map * is a coalgebra



140 T. Hayashi

automorphism, that is, if A(a) = YJbi®ci for aeUq(X) then 4(α*) = ]Γbf ®cf.
i i

Hence the tensor product of two unitary representations is also unitary.

Proposition 5.4. Let the parameter q belong to W. Then, (1) The maps π%, π£, πζ
and %n are *-homomorphisms from Uq(zu(N)), Uq(zo{2N + 1)), Uq(zp(N, U)) and
Uq($o(2N)) to <srfq{N)9 j^q2(N), jtfq(N) and £0q(N) respectively.
(2) The module V+ is unitary as a representation of Uq(su(N))9 Uq(zo(2N + 1)) or
Uq($o(2N)). The module V~ is unitary as a representation of Uq(sn(N)) or
Uq(sφ(N,R)).

Proof. Part (1) is trivial. Part (2) immediately follows from Propositions 5.1 and

5.2. •

Note. Let the parameter q belong to ΊΓ. Again there exist ^-operations on quantum
enveloping algebras such that the maps π j , π j , π^ and π^ are *-algebra
homomorphisms. These are defined by

for X = AN-l9 BN, DN, and

for X = CN. By Propositions 5.1 and 5.3, the module V+ for qsJ' and the module

Fo~ for q= ±exp(+ y/^ίπ/2L) are unitary representations of the quantum

enveloping algebras with respect to these *-operations. Unfortunately these

*-oρerations are not coalgebra automorphisms but anti-coalgebra automorphisms,

that is, if A(a) = Yjbi® c{ for as Uq(X)9 then A (a*) = Σcf (x) bf.

6. Spinor and Oscillator Representations of

6.1. J / * ( G O ) and Όq{A^\ In this section, we construct representations of the
quantum enveloping algebra corresponding to the affine Cartan matrix Aβl x which
is given as follows:

2 -2

-2 2

- 1 0 0 - 1

- 1 \
0

0

- 1

2

Let be the algebra with generators

(6.1)

satisfying the

defining relations (2 l)-(2 5). Let F±(oo) be the linear span of the set

/+ = {m = ( m ^ l m ^ l O , l}(ieZ), mt = 0 for \i\ »0} ,

I+ = {m = (m ί) fez |m ι GZ^0(ieZ), mt = 0for \i\ »0} . (6.2)
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We define the action of a/*(oo) on K±(oo) by the following; for any m e / 1 ,

{q-m'x(m) (i<0) , , „

H (63)

for j^J-foo) and

for ^ " ( o o ) . Here we set ef = {δi3)jeZ and x(n) = 0 for nφl*. Let Uq{AJ be the Hopf
algebra with generators 1, e^j^kf1 (iεZ) satisfying the defining relations (1.1) —
(1.8) with respect to the infinite rank Cartan matrix A^\

^oo = [(/Uylyez. (^»)y = { - 1 U - ϋ = i ( 6 5 )
I 0 \i-j\-z2

Similarly to Theorem 3.2, we introduce the algebra homomorphisms π^^.U^A^)-^
* defined by

e^Φt-xΦl fi^ΦiΦli, k^icot-M1)*1 (ίeZ). (6.6)

6.2. Construction of the Representations. For N ̂  2, introduce the operators on

<:= πί,«(βi)f .Π <«(fc£-wΛ~Λr) J, (ieZ),

seZ seZ seZ

These operators prove to be well defined. In fact, for each me/*, there exists an
integer M such that

for I i I > M.

Theorem 6.1. 77ιer£ exists α representation ofUJ^A^-^ on V±(oo) defined by e$-+eb

fi^fi and kih+ki (O^iSN- 1).
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Proof. Here we give the proof only for the case N^3. First we prove the following
identities in End F±(oo):

Γq2Ej i-j = 0(modN)

ktEjkrί = )q-^Ej i-j=±l (modN),

I Ej otherwise

Cq~2Fj i-j= (modiV)

k.Fjkr1 = 1 qFj i-j=±l (modN)9 (6.9)

iFj otherwise

EiFJ- FjEt = 2

 δiJ-2(( Π <M+Nr))( Π πico(fcΓΛ
q -q \\r^o J\r>o

- ( Π <oo(*?+tfr) Y Π πicoίfcΓΛr))! (6-10)
\r<0 J\r^O JJ

lEi9Ej]=0, lFi9Fj-]=0 (*-j#0,±l(modΛO), (6.11)

EfEj - (q2 + q-2)EiEjEi + EjEj = 0 (/ -j = ± 1 (mod AT)), (6.12)

FfFj-(q2 + q-2)FiFjFi + FjF
2 = 0 ( i - j = ±l(modJV)). (6.13)

Fix an index m e i ^ and take an integer R such that

π£oo(fcf+ NΓ)*(III) = ̂ i 0 0 ( l i i + J x ( m ) = x(m),

£ i + N rx(m)= £ j + i V,x(m) = Fi+Nrx(m) = Fj+Nrx(m) = 0,

iπinik+NrlEj'] = ίπioo(ki +Nr\Fj] = lπloo{kj+Nr%Ei~]

= LniJkj+NrlFi-] = 0i (6.14)

for any integer r satisfying \r\^R. Then,

= 2

δii -2(( Π <Jkf+Nr))( Π <x(fcfΛ,)q2-q 2VV- Vo /\Λo

πi«,(fcΓΛr))pni), (6.15)

where K = Y\ πjoo(/Cj_iVr/cί~+

1ivr) This proves (6.10). Next, we show the relation

(6.12) for two typical case j — ίel + N Z > 0 and j = i+ 1. If j — iel + NZ>0, then,
for w = x(m), EfXίm),

q~1EiEjU = πX^βiβ^u = nj^ef^u = qEfi u. (6.16)
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Hence,

(EfEj - (q2 + q-^EfijEt + EjEf)x(m) = Ei{EiEj - q2EjEtM™)

+ q~2{EiEj - q'EjE^xim) = 0. (6.17)

If; = z + l , then

EiEiEjxim) = πj, J ^ ^ K ^ m )

EtEjEXm) = ninfaejej&xim), E^E^m) = nX^e^K^m). (6.18)

Hence (6.12) follows from the relation (1.4) for the algebra U^A^). The remaining
parts of (6.9)—(6.13) are similarly obtained. Now we show the operators ei9fhkι
satisfy the relation (1.3). Let S^R be an integer such that [Ei+Ns,Fj+Nt] =
LEi+N0Fj+Ns ] = 0 for \t\ ̂  R and \s\ £ S. Then

ieh fj]x(m) = X lEi+Ns, FJ+Nt]x{m)

V V s o A o° i+ΛίS+iVr y ^ r > 0

 j4 00 i+iVS+/Vr y

Π
r<0

(6.19)

as required. The other relations of (1.1)—(1.5) follow clearly from (6.9)-(6.13). Thus
we get the theorem. •

Note. In [FJ] and [B], the vertex operator representations of quantum affine
algebras are constructed. The relation between the vertex and the spinor representa-
tions of quantum affine algebras will be studied elsewhere.
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Note added in proof. After this paper has been submitted, Prof. Mitsuhiro Takeuchi of Tsukuba
University Pointed out to the author that there exists an algebra isomorphism A from <stfq(N) to the
4iV-fold direct product of the usual Clifford algebra C(N):= (zi\zizj +ZjZt = z]z) +z]z] =
Ziz) + z)zi-δij = θy. Let U:={±U±y/-l}. For ζ = (ζi)e/J, we define an algebra map
αζ:.<(JV)->C(JV) by φ^ = ζiZi, a(ψl) = ζiZl φ ^ C i ^ + q'1^. Then the map A is given
by A(u) = (αζ(u)) (uesί+(N)). The author is grateful to Prof. M. Takeuchi for this comment.




